Cell, Volume 170

Supplemental Information

Lis1 Has Two Opposing Modes

of Regulating Cytoplasmic Dynein

Morgan E. DeSantis, Michael A. Cianfrocco, Zaw Min Htet, Phuoc Tien Tran, Samara L. Reck-Peterson, and Andres E. Leschziner

	Average velocity +/- SE (nm/s)
Dyn ^{wt}	89.16 +/- 4.54
Dyn ^{wt} + 300 nM Lis1	39.55 +/- 2.11
Dyn ^{WA}	18.50 +/- 0.52
Dyn ^{WA} + 300 nM Lis1	0.22 +/- 0.03
Dyn ^{WB}	4.77 +/- 0.19
Dyn ^{WB} + 300 nM Lis1	8.73 +/- 0.42
Dyn ^{EQN}	81.40 +/- 4.52
Dyn ^{EQN} + 300 nM Lis1	42.31 +/- 1.10
Dyn ^{WB/EQN}	4.96 +/- 0.20
Dyn ^{WB/EQN} + 300 nM Lis1	3.28 +/- 0.13
	Apparent K _d +/- SE (nM)
	for Lis1 in the presence of 1mM ATP-Vi
Dyn ^{wt-M}	49.78 +/- 6.1
Dyn ^{WA-M}	40.95 +/- 5.1
Dvn ^{WB-M}	55.25 +/- 7.5
Dyn ^{EQN-M}	196.30 +/- 30.8
	Microtubule binding density +/- SE (pM ⁻¹ µm ⁻¹)
	in the presence of 1mM ATP
Dyn ^{wt}	0.033 +/- 0.002
Dyn ^{WA}	0.50 +/- 0.06
Dyn ^{WB}	0.50 +/- 0.03
Dyn ^{EQN}	0.035 +/- 0.003
Dyn ^{WB/EQN}	0.48 +/- 0.03
-	Microtubule binding density +/- SE (pM ⁻¹ μm ⁻¹)
	in the presence of 1mM ATP-Vi
Dyn ^{wt}	0.037 +/- 0.004
Dyn ^{WA}	0.24 +/- 0.03
Dyn ^{WB}	0.36 +/- 0.01
Dyn ^{EQN}	0.040 +/- 0.002
Dyn ^{WB/EQN}	0.34 +/- 0.01
	Microtubule binding density +/- SE (pM ⁻¹ µm ⁻¹)
	in the presence of 1mM ADP
Dyn ^{wt}	0.53 +/- 0.03
Dyn ^{WA}	1.8 +/- 0.2
Dyn ^{WB}	1.6 +/- 0.1
	Microtubule binding density +/- SE (pM ⁻¹ µm ⁻¹)
	in the absence of nucleotides (Apo)
Dyn ^{wt}	1.48 +/- 0.03
Dyn ^{WA}	1.8 +/- 0.1
Dyn ^{WB}	2.9 +/- 0.1

 Table S1. Summary of velocity and binding data, Related to Figures 1 and 5.

Data collection	Dyn ^{wt-M:} Lis1	Dyn ^{WB-M:} Lis1
Microscope	FEI Talos Arctica	FEI Talos Arctica
Voltage (kV)	200	200
Detector	Gatan K2 Summit	Gatan K2 Summit
Pixel size (Å)	0.60	0.60
Defocus range (µm)	1.5-4.0	2.5-5.5
Movies	5614	4826
Frames/movie	53	25
Dose rate (electrons/pixel/s)	10.285	10.00
Total dose (electrons/ ${ m \AA}^2$)	82	50
Number of particles	25,520	27,807
Map-sharpening <i>B</i> factor ($Å^2$)	-50	-800
Final overall resolution (Å)	7.7	10.2

Table S2: Summary of cryo-EM data, related to Figures 2 and 3

Table S3. *S. cerevisiae* strains used in this study.

Strain	Genotype
RPY1	W303a (MATa, his3-11,15, ura3-1, leu2-3,112, ade2-1, trp1-1)
RPY799	W303a pep4Δ::HIS5, prb1Δ, P _{GAL1} -8HIS-ZZ-SNAP-gs-PAC1,
	dyn1∆::cgLEU2
RPY816	W303a pep4Δ::HIS5, prb1Δ, P _{GAL1} -8HIS-ZZ-Tev-PAC1,
	dyn1Δ::cgLEU2, ndl1Δ::Hygro ^R
RPY1099	W303a pep4Δ::HIS5, prb1Δ, P _{GAL1} -8HIS-ZZ-Tev-KIP2-g- FLAG-
	ga-SNAP–Kan ^R
RPY1167	W303a pep4Δ::HIS5, prb1Δ, P _{GAL1} -ZZ-TEV-GFP-3XHA-GST-
	DYN1(331kDa)-gsDHA-KanR, pac1Δ, ndl1Δ::cgLEU2
RPY1302	W303a pep4Δ::HIS5, prb1Δ, PAC11-13xMYC-TRP1, P _{GAL1} -ZZ-
	Tev-DYN1(331kDa), pac1Δ:: Hygro ^R
RPY1385	MATa lys2-801 leu2-Δ1 his3-Δ200 trp1-Δ63 DYN1-
	3XGFP::TRP1, ura3-52::CFP-TUB1::URA3, SPC110-
	tdTomato::SpHIS5, ura3∆::KanMX
RPY1536	W303a pep4Δ::HIS5, prb1Δ, P _{GAL1} -ZZ-TEV-GFP-3XHA-GST-
	DYN1(331kDa) ^{K3116A, K3117A, E3122A, R3124A} -gsDHA-KanR, pac1Δ,
	ndl1∆::cgLEU2
RPY1547	W303a pep4Δ::HIS5, prb1Δ, P _{GAL1} -8HIS-ZZ-Tev-
	$PAC1^{R275A,R301A,R378A,W419A,K437A}, dyn1\Delta::cgLEU2, ndl1\Delta::Hygro^{R}$
RPY1630	W303a pep4Δ::HIS5, prb1Δ, P _{GAL1} -ZZ-TEV-GFP-3XHA-GST-
	DYN1(331kDa) ^{K2424A} -gsDHA-KanR, pac1Δ, ndl1Δ::cgLEU2
RPY1635	W303a pep4Δ::HIS5, prb1Δ, PAC11-13xMYC-TRP1, P _{GAL1} -ZZ-
	Tev-DYN1(331kDa) ^{K2424A} , pac1Δ:: Hygro ^R
RPY1653	W303a pep4Δ::HIS5, prb1Δ, P _{GAL1} -ZZ-TEV-GFP-3XHA-GST-
	DYN1(331kDa) ^{E2488Q} -gsDHA-KanR, pac1Δ, ndl1Δ::cgLEU2
RPY1654	W303a pep4Δ::HIS5, prb1Δ, PAC11-13xMYC-TRP1, P _{GAL1} -ZZ-
	Tev-DYN1(331kDa) ^{E2488Q} , pac1Δ:: Hygro ^R
RPY1705	W303a pep4Δ::HIS5, prb1Δ, P _{GAL1} -ZZ-TEV-GFP-3XHA-GST-
	DYN1(331kDa) ^{E3012A,Q3014A,N3018A} -gsDHA-KanR, pac1Δ,
	ndl1∆::cgLEU2
RPY1707	W303a pep4Δ::HIS5, prb1Δ, P _{GAL1} -ZZ-TEV-GFP-3XHA-GST-
	DYN1(331kDa) ^{E2488Q, E3012A,Q3014A,N3018A} -gsDHA-KanR, pac1∆,
	ndl1∆::cgLEU2
RPY1708	MATa lys2-801 leu2-Δ1 his3-Δ200 trp1-Δ63 DYN1
	^{E3012A,Q3014A,N3018A} -3XGFP::TRP1, ura3-52::CFP-TUB1::URA3,
	SPC110-tdTomato::SpHIS5, ura3∆::KanMX

RPY1713	W303a pep4Δ::HIS5, prb1Δ, PAC11-13xMYC-TRP1, P _{GAL1} -ZZ-
	Tev-DYN1(331kDa) ^{E3012A,Q3014A,N3018A} , pac1Δ:: Hygro ^R
RPY1717	MATa lys2-801 leu2-Δ1 his3-Δ200 trp1-Δ63 DYN1-
	3XGFP::TRP1, ura3-52::CFP-TUB1::URA3, SPC110-
	tdTomato::SpHIS5, ura3∆::KanMX, pac1∆::kIURA3
RPY1725	W303a pep4Δ::HIS5, prb1Δ, P _{GAL1} -ZZ-TEV-GFP-3XHA-GST- DYN1(331kDa) ^{E3012A,Q3014A,N3018A, K3116A, K3117A, E3122A, R3124A} _
	gsDHA-KanR, pac1Δ, ndl1Δ::cgLEU2