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In this document we prove the claims of the main text.
Sections 1 to 4 focus on the proofs of the theorem and its corollaries in the main text. We

start by introducing some preliminaries before recapitulating the main facts about Brouwer
degree theory. Then we compute the Brouwer degree for a special class of functions (Theo-
rem 2.3). We proceed to introduce the necessary background on reaction networks and to state
and prove a key result regarding the Brouwer degree of a reaction network with a dissipative
semiflow (Theorem 3.5). In Section 4 we use Theorem 3.5 to prove Theorem 1 of the main
text. The first four sections of the document are self-contained and do not require parallel
reading of the main text. For this reason some parts of the main text are repeated here for
convenience.

Subsequently in Section 5, we provide details on how to check the steps in the procedure
of the main text. In Section 6 we give details of the examples in the main text and apply the
algorithm to an extra network that is monostationary.
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1 Preliminaries

1.1 Convex sets

We let Rn≥0 denote the non-negative orthant of Rn and Rn>0 denote the positive orthant of Rn.
For a subset B of Rn, we let bd(B) denote the boundary of B and cl(B) the closure of B,

such that cl(B) = bd(B) ∪B. If B is open, then bd(B) ∩B = ∅. If B is bounded, then cl(B)
is compact.

A set B is convex if the following holds:

if x1, x2 ∈ B then λx1 + (1− λ)x2 ∈ B for all 0 ≤ λ ≤ 1.

Let B ⊆ Rn be a convex set. We say that v ∈ Rn points inwards B at x ∈ bd(B)
if x + εv ∈ cl(B) for all ε > 0 small enough. In particular, v = 0 points inwards B at all
x ∈ bd(B). If v points inwards B at x ∈ bd(B), then it also points inwards cl(B) at x ∈ bd(B).
The vector v points outwards B at x ∈ bd(B), if it does not point inwards B at x ∈ bd(B).

We will use the following facts about convex sets.

Lemma 1.1. Let B ⊆ Rn be a convex set. Then the following holds:

(i) The closure cl(B) of B is convex.

(ii) Assume B is open and consider x1 ∈ B, x2 ∈ bd(B). Let

[x1, x2) = {tx1 + (1− t)x2 | 0 < t ≤ 1}

be the half-closed line segment between x1 and x2. Then [x1, x2) ∈ B.

(iii) Let x1 ∈ B and x2 ∈ bd(B). Then the vector x1 − x2 points inwards B at x2. If B is
open, then the vector x2 − x1 points outwards B at x2.

Proof. (i) See Theorem 6.2 in [10]. (ii) See Theorems 6.1 in [10]. (iii) Consider x = x2 +
ε(x1 − x2) = (1− ε)x2 + εx1 with 0 < ε < 1. By convexity, x belongs to cl(B), hence x1 − x2
points inwards B at x2 ∈ bd(B). Assume that x2 − x1 also points inwards B at x2 and that
B is open. Then, for small ε we have x = x2 + ε(x1 − x2) ∈ B by (ii) (which is stronger than
x ∈ cl(B)), and x′ = x2 + ε(x2 − x1) ∈ cl(B) by definition of pointing inwards. Again by (ii),
1
2x+ 1

2x
′ = x2 ∈ B, contradicting that x2 ∈ bd(B) (B is open). Hence x2−x1 points outwards

B at x2.

1.2 Functions

Given an open set B ⊆ Rn, we let Ck(B,Rm) denote the set of Ck-functions from B to
Rm. If B is open and bounded, then we let Ck(cl(B),Rm) denote the subset of Ck(B,Rm)-
functions f whose j-th derivative djf , j = 0, . . . , k, extends continuously to the boundary of
B. Equivalently, djf is uniformly continuous in B for j = 0, . . . , k, since cl(B) is compact.

For f ∈ C1(B,Rn) and x∗ ∈ B, we let Jf (x∗) ∈ Rn×n be the Jacobian of f evaluated at
x∗, that is, Jf (x∗) is the matrix with (i, j)-entry ∂fi(x

∗)/∂xj . We say that y ∈ Rn is a regular
value for f if Jf (x) is non-singular for all x ∈ B such that y = f(x). If this is not the case,
then we say that y is a critical value for f .

If B ⊆ Rn is open and bounded, f ∈ C1(cl(B),Rn) and y is a regular value for f such that
y /∈ f(bd(B)), then the set

{x ∈ B|f(x) = y}.
is finite [13, Lemma 1.4].
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2 Brouwer degree and a theorem

2.1 Brouwer degree

We first recall basic facts about the Brouwer degree. We refer to Section 14.2 in [12] for
background and fundamental properties of the Brouwer degree. See also the lecture notes by
Vandervorst [13].

In this section we let B ⊆ Rn be an open bounded set. We use the symbol deg(f,B, y) to
denote the Brouwer degree (which is an integer number) of a function f ∈ C0(cl(B),Rn) with
respect to (B, y), y ∈ Rn \ f(bd(B)).

A main property of the Brouwer degree is that if y /∈ f(cl(B)), then deg(f,B, y) = 0 (but
not vice versa) and if deg(f,B, y) 6= 0, then there exists at least one x ∈ B such that y = f(x).
In particular, the Brouwer degree can be used to study the number of solutions to the equation

f(x) = y, x ∈ B,

provided y /∈ f(bd(B)) and f ∈ C0(cl(B),Rn).
The Brouwer degree deg(f,B, y) is characterized by the following properties:

(A1) Normalization. Let idB denote the identity map from B to itself. If y ∈ B, then

deg(idB, B, y) = 1.

(A2) Additivity. If B1 and B2 are disjoint open subsets of B such that y /∈ f
(

cl(B) \ (B1 ∪
B2)
)
, then

deg(f,B, y) = deg(f,B1, y) + deg(f,B2, y).

(A3) Homotopy invariance. Let f, g : cl(B)→ Rn be two homotopy equivalent C0-functions
via a continuous homotopy H : cl(B) × [0, 1] → Rn such that H(x, 0) = f(x) and
H(x, 1) = g(x). If y /∈ H(bd(B)× [0, 1]), then

deg(f,B, y) = deg(g,B, y).

(A4) Translation invariance. deg(f,B, y) = deg(f − y,B, 0).

To prove our main result (Theorem 4.1 below) we need the following well-known property
of the Brouwer degree, see e.g. [12, Theorem 14.4]:

Theorem 2.1. Let f ∈ C1(cl(B),Rn) with B ⊆ Rn an open bounded set. If y is a regular
value for f and y /∈ f(bd(B)), then

deg(f,B, y) =
∑

{x∈B|f(x)=y}

sign(det(Jf (x))), (1)

where the sum over an empty set is defined to be zero.

Corollary 2.2. Under the assumptions of Theorem 2.1, assume deg(f,B, y) = ±1. Then the
equation f(x) = y has at least one solution x ∈ B and the number of solutions in B is odd.
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2.2 The Brouwer degree for a special class of functions

In this section we use Theorem 2.1 and the homotopy invariance of the Brouwer degree (A3)
to compute the Brouwer degree of certain functions. Specifically, we are concerned with C1-
functions

f : Rn≥0 → Rn, (2)

and matrices W ∈ Rd×n of maximal rank d. A priori there is no relationship between f and
W .

Assume that W is row reduced and let i1, . . . , id be the indices of the first non-zero coor-
dinate of each row, i1 < . . . < id. Let c ∈ Rd and define the C1-function

ϕc : Rn≥0 → Rn

by

ϕc(x)i =

{
fi(x) i /∈ {i1, . . . , id}
(Wx− c)i i ∈ {i1, . . . , id}.

(3)

We say that ϕc is constructed from f and W . The dependence of ϕc on f and W is omitted
in the notation. We will make use of this construction with different choices of f and W .

Define the positive closed and open level sets of W by

Pc = {x ∈ Rn≥0 |Wx = c}, P+
c = {x ∈ Rn>0 |Wx = c}. (4)

It follows readily that the two set are convex. By reordering the columns of W , the vector
(x1, . . . , xn) and the coordinates of f simultaneously, if necessary, we can assume without loss
of generality that {i1, . . . , id} = {1, . . . , d}. In this case, W has the block form

W = (Id Ŵ ), (5)

where Ŵ ∈ Rd×s, s := n− d, and Id is the identity matrix of size d. The last s coordinates of
the function ϕc come from f .

Assuming this reordering, let π : Rn → Rs be the projection onto the last s coordinates.
Using (5), it follows that

Wx = c if and only if (x1, . . . , xd)
T = c− Ŵ (π(x)). (6)

In particular, for x, y ∈ Rn fulfilling Wx = Wy, we have that

x = y if and only if π(x) = π(y). (7)

If Wf(x) = 0, then it follows from (7) that f(x) = 0 if and only if π(f(x)) = 0.
Our first result concerns the Brouwer degree of ϕc. The proof of the theorem is adapted

from the proof of Lemma 2 in [8] in order to account for the reduction in dimension introduced
by Pc.

Theorem 2.3. Let f : Rn≥0 → Rm be a C1-function and W ∈ Rd×n a matrix of rank d. Let

s := n − d, c ∈ Rd, Pc as in (4) and ϕc as in (3). Let Bc be an open, bounded and convex
subset of Rn>0 such that

(i) Bc ∩ Pc 6= ∅.
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(ii) f(x) 6= 0 and Wf(x) = 0 for x ∈ bd(Bc) ∩ Pc.

(iii) for every x ∈ bd(Bc) ∩ Pc, the vector f(x) points inwards Bc at x.

Then
deg(ϕc, Bc, 0) = (−1)s.

Proof. Without loss of generality, we might assume that W has the block form in (5). Choose
an arbitrary point x̄ ∈ Bc ∩ Pc, which exists by assumption (i), and consider the continuous
function G : cl(Bc)→ Rn defined by

G(x) = (Wx− c, π(x̄− x)) ∈ Rd × Rs ∼= Rn,

where π is the projection map onto the last s coordinates of Rn. By (5), the Jacobian of G
has the block form

JG(x) =

(
Id Ŵ
0 −Is

)
.

Therefore, det(JG(x)) = (−1)s for all x. In particular, 0 is a regular value for G. Furthermore,
if G(x) = 0, then x ∈ Pc since Wx = c and π(x̄) = π(x). Using (7), we conclude that x̄ = x.
Since x̄ /∈ bd(Bc), it follows that G does not vanish on the boundary. We apply Theorem 2.1
to compute the degree of G for 0:

deg(G,Bc, 0) = sign(det(JG(x̄))) = (−1)s.

Consider now the following homotopy between the functions ϕc and G:

H : cl(Bc)× [0, 1] → Rn

(x, t) 7→ tϕc(x) + (1− t)G(x).

Clearly, H is continuous. To apply (A3) to find the degree of ϕc, we need to show that
H(bd(Bc)× [0, 1]) 6= 0 for all t ∈ [0, 1]. Since

H(x, t) = (Wx− c, tπ(f(x)) + (1− t)π(x̄− x)),

H(x, t) = 0 implies that Wx = c and hence x ∈ Pc. Thus, we need to show that

tπ(f(x)) + (1− t)π(x̄− x) 6= 0 for all x ∈ bd(Bc) ∩ Pc. (8)

For t = 1, (8) follows from (7) using that f(x) 6= 0 and Wf(x) = 0 for x ∈ bd(Bc) ∩ Pc by
assumption (ii). For t = 0, we have already shown that G does not vanish on the boundary
of Bc.

Assume now that for t ∈ (0, 1), (8) does not hold. That is, there exists x′ ∈ bd(Bc) ∩ Pc
such that

π(f(x′)) =
t− 1

t
π(x̄− x′).

Since x′ ∈ bd(Bc) ∩ Pc, we have that Wf(x′) = 0 and W (x̄− x′) = 0. We conclude using (7)
that

f(x′) =
t− 1

t
(x̄− x′). (9)

Since t−1
t < 0, x̄ ∈ Bc and x′ ∈ bd(Bc), it follows from Lemma 1.1(iii) that f(x′) points

outwards Bc at x′, contradicting assumption (iii).
Therefore, H(x, t) 6= 0 for all x ∈ bd(Bc) and t ∈ [0, 1]. As a consequence, the homotopy

invariance of the Brouwer degree (A3), gives the desired result

deg(ϕc, Bc, 0) = deg(G,Bc, 0) = (−1)s.
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3 Chemical reaction networks

3.1 Setting

Consider a chemical reaction network with species set {X1, . . . , Xn} and reactions:

Rj :
n∑
i=1

αijXi →
n∑
i=1

βijXi, j = 1, . . . , `, (10)

where αij , βij are non-negative integers. The left hand side is called the reactant complex and
the right hand side the product complex.

The ODE system associated with the chemical reaction network G (as described in the
main text) takes the form

ẋ = f(x) = Nv(x), f : Rn≥0 → Rn, (11)

where N ∈ Rn×` is the stoichiometric matrix and v(x) is the vector of rate functions, which
are assumed to be C1-functions (e.g. mass-action monomials).

We say that the network has rank s if the rank of the stoichiometric matrix is s and
define d = n − s to be the corank of the network. The stoichiometric compatibility classes
are the convex sets Pc defined in (4), where W is a matrix such that the rows form a basis of
im(N)⊥. By construction, a trajectory of (11) is confined to the stoichiometric compatibility
class where its initial condition belongs to. The positive stoichiometric compatibility classes
P+
c are defined accordingly.

The positive solutions to the system of equations ϕc(x) = 0 with ϕc as in (3), are precisely
the positive equilibria of the network in the stoichiometric compatibility class Pc.

Let φ(x, t) denote the flow of the ODE system and let the semiflow of the ODE system be
the restriction of the flow to t ≥ 0. It is assumed that the choice of rate functions v(x) is such
that

vj(x) = 0 if xi = 0 for some i with αij > 0. (12)

In particular, mass-action kinetics fulfil this condition. Under this assumption, the non-
negative and the positive orthants, Rn≥0 and Rn>0, are forward invariant under the ODE system
(11), cf. [1, Section 16]. That is, if x0 ∈ Rn≥0 (resp. Rn>0), then the solution to the ODE
system (11) with initial condition x0 is confined to Rn≥0 (resp. Rn>0):

x0 ∈ Rn≥0 ⇒ φ(x0, t) ∈ Rn≥0, ∀t ≥ 0 in the interval of definition. (13)

Forward invariance implies that the semiflow φ(x, t) maps Rn≥0 to itself for any fixed t ≥ 0 for
which the solution is defined.

Since the dynamics is confined to the stoichiometric compatibility classes, this implies that
for a point x′ at the relative boundary of Pc, the vector f(x′) points inwards Pc. Further,
both Pc and P+

c are also forward invariant sets. Recall that these are convex sets.

3.2 Conservative and dissipative networks

Definition 3.1. A chemical reaction network is conservative if im(N)⊥ contains a positive
vector, that is, if Rn>0 ∩ im(N)⊥ 6= ∅.

A network is conservative if and only if the stoichiometric compatibility classes Pc are
compact subsets of Rn≥0 [2].
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Definition 3.2. Consider a network with associated ODE system ẋ = Nv(x). The semiflow
of the network is dissipative if for all c ∈ Rd such that P+

c 6= ∅, there exists a compact set
Kc ⊆ Pc such that φ(x, t) ∈ Kc for all x ∈ Pc and t ≥ t(x), for some t(x) ≥ 0. That is, all
trajectories in Pc enter Kc at some point.

The set Kc is called attracting (and sometimes absorbing) [6]. Equivalently, the semiflow
of a network is dissipative if all trajectories are eventually uniformly bounded, that is, there
exists a constant k > 0 such that

lim sup
t→+∞

xi(t) ≤ k

for all i = 1, . . . , n and all initial conditions in Pc, provided that P+
c 6= ∅ for c arbitrary.

If the semiflow of the network is dissipative, then the unique solution to the ODE system
(11) for a given initial condition is defined for all t ≥ 0, in which case the semiflow is said to
be forward complete.

Lemma 3.3. Consider a network with a dissipative semiflow and let c ∈ Rd such that P+
c 6= ∅.

Then the following holds:

(i) An attracting set Kc can be chosen such that Kc ∩ Rn>0 is non-empty, that is, Kc 6⊆
bd(Rn≥0).

(ii) All ω-limit points in Pc of the system are contained in Kc. In particular, all positive
equilibria in Pc belong to Kc.

(iii) There exists an attracting set K ′c such that Kc ⊆ K ′c, K
′
c is forward invariant and all

ω-limit points outside the boundary of Rn≥0 are in the interior of K ′c (relatively to Pc).

Proof. (i) Consider an attracting set K ′′c ⊆ Pc and assume that K ′′c ⊆ bd(Rn≥0). Since P+
c 6= ∅,

there exists a compact set Kc ⊆ Pc that includes K ′′c and such that Kc ∩ Rn>0 is non-empty.
This set is also an attracting set.

(ii) If it were not the case, there would exist an ω-limit point x′ ∈ Pc\Kc, a trajectory φ(x, t)
and a sequence of time points ti such that limi→∞ ti =∞ and limi→∞ φ(x, ti) = x′. As Kc is
closed, there exists an open ball Bε(x

′) in Rn such that Bε(x
′) ∩Kc = ∅ and φ(x, t) ∈ Bε(x′)

for arbitrary many time points. However, this contradicts that Kc is an attracting set.
(iii) By (ii) and choosing Kc potentially larger, all ω-limit points outside the boundary of

Rn≥0 are in the interior of Kc (relatively to Pc). The existence of an attracting set K ′c that
includes Kc and is forward-invariant is proven in the first part of the proof of Lemma 2 in [6].
In the notation of [6], K ′c = K+.

The semiflow of a conservative network is dissipative. Indeed, it is sufficient to take
Kc = Pc, since Pc is compact. If the network is not conservative, then the semiflow associated
with the network might still be dissipative (see Example “Gene transcription network” in the
main text). However, in general, it is not straightforward to show that. In some cases it is
possible to prove dissipativity by constructing a suitable Lyapunov function. It is the idea
underlying the proof of the next proposition.

Proposition 3.4. Assume that for all c ∈ Rd such that P+
c 6= ∅, there exists a vector ω ∈ Rn>0

and a real number r > 0 such that ω · f(x) < 0 for all x ∈ Pc with ||x|| ≥ r, where || · ||
is any norm. (Note that ω and r might depend on c.) Then the semiflow of the network is
dissipative.
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Proof. Let c ∈ Rd with P+
c 6= ∅ and let ω be as given in the statement. Define

V (x) =
n∑
i=1

ωixi for x ∈ Rn≥0.

The function V (x) satisfies V (0) = 0 and V (x) > 0 for all x ∈ Rn≥0, different from 0. Further,

for ||x|| ≥ r and x ∈ Pc, V̇ (x) = ∇V · f(x) = ω · f(x) < 0 by assumption. Thus, V (x) is a
strict Lyapunov function and V (φ(x, t)) is strictly decreasing along trajectories φ(x, t) in Pc
as long as ||φ(x, t)|| ≥ r. Choose R > 0 such that

{x ∈ Rn≥0 | ||x|| ≤ r} ⊆ {x ∈ Rn≥0 | V (x) ≤ R},

and define Kc = {x ∈ Rn≥0 | V (x) ≤ R} ∩ Pc. The set Kc is compact by construction and

forward invariant since V̇ (x) < 0 for all ||x|| ≥ r. Further, all trajectories eventually enter
Kc within finite time, that is, Kc is attracting. Indeed, if this were not the case, then there
would exist x ∈ Pc, x /∈ Kc (hence ||x|| > r) such that V (φ(x, t)) is decreasing for all t ≥ 0
in the interval of definition and bounded below by R. As a consequence, the trajectory is
defined for all t ≥ 0 and (∗) limt→∞ V (φ(x, t)) = R′ ≥ R for some R′. Hence φ(x, t) is in
Bε := {x | V (x) ≤ R′ + ε} for large t (and any ε > 0). Since Bε is compact it follows that the
semiflow φ(x, t) has at least one ω-limit point in Bε. By virtue of (∗), all ω-limit points x′ of
φ(x, t) must fulfil V (x′) = R′. Further, the set of ω-limit points is forward invariant and since
V (x′) = R′ it must be that V̇ ′(x′) = 0. This contradicts the assumption that V̇ ′(x) < 0 for all
x with ||x|| ≥ r. We conclude that there exists t(x) ≥ 0 such that φ(x, t) ∈ Kc for all x ∈ Pc
and t ≥ t(x). Hence, the semiflow is dissipative.

3.3 Degree for dissipative semiflows

The main results to establish a characterization of regions of multistationarity (Theorem 4.1)
are Theorem 2.1 and the theorem below. The proof of the theorem relies on Theorem 2.3 and
ideas developed in [6].

Theorem 3.5. Consider a network of rank s with an associated ODE system ẋ = f(x) where
f(x) = Nv(x) as in (11). Assume (12) holds on the rate functions and let W ∈ Rd×n,
d = n − s, be a row reduced matrix such that the rows of W form a basis of im(N)⊥. Let
c ∈ Rd such that P+

c 6= ∅. Further, assume that:

• The semiflow of the network is dissipative, and that

• f(x) 6= 0 for all x ∈ bd(Rn≥0) ∩ Pc. That is, there are no boundary equilibria in Pc.

Then there exists an open bounded and convex set Bc ⊆ Rn>0 that contains all positive equilibria
of the network in the stoichiometric compatibility class Pc, and such that

deg(ϕc, Bc, 0) = (−1)s,

where ϕc is defined in (3) from f and W .
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B
Bc

KcU1

Pc

Figure 1: Step (A). The set Pc is the straight line connecting the two axis. The compact attracting set Kc

is depicted in blue. The set B ⊆ Rn is an open set containing Kc and Bc = B ∩ Rn
>0 is the restriction of B to

the positive orthant (shown in orange), such that Bc is open. Hence Kc is contained in Bc, except for points
on the boundary Kc ∩ bd(Rn

≥0), hence also Bc ∩ Pc 6= ∅. Step (B). The open set U1 ⊆ Rn (in green) is chosen
such that Kc ⊆ U1 ⊆ B. In the C1-partition of unit, the support of ψ1 is in U1 and that of ψ2 is in Rn \Kc.

Proof. The idea of the proof is to construct a function g defined on Rn≥0 and a set Bc ⊆ Rn>0

such that the conditions of Theorem 2.3 are fulfilled for g,W and Bc. If we let ϕgc be the
function ϕc in (3) constructed from the function g and W , this will imply that deg(ϕgc , Bc, 0) =
(−1)s. Subsequently, we will use homotopy invariance to conclude that also deg(ϕc, Bc, 0) =
(−1)s.

The function g will be defined as

g(x) =
1

T
(φ(x, T )− x) + Tρ(x),

where φ(x, t) is the semiflow of ẋ = f(x), Kc is a suitably chosen attracting set, T is the
maximum entrance time into Kc from a specific set, and ρ(x) is an auxiliary function with
certain useful properties (see below).

The proof is divided into four steps. In step (A) we define the set Bc, choose Kc and
find basic properties of Bc and Kc. In step (B), we construct the function ρ. In step (C),
we properly define g and show that g, Bc and W have the required properties to apply
Theorem 2.3. In step (D) we show that ϕgc and ϕc are homotopy equivalent and conclude the
proof of the theorem using the homotopy invariance of the Brouwer degree.

(A) Let Kc ⊆ Pc be as in Definition 3.2, that is, a compact attracting set of all trajectories
with initial condition in Pc. According to Lemma 3.3, Kc can be chosen such that Kc is forward
invariant, Kc ∩ Rn>0 6= ∅, and all ω-limit points in P+

c are interior points of Kc (relatively to
Pc).

Let B ⊆ Rn be an open, bounded and convex set containing Kc, that is, Kc ⊆ B. Let
Bc = Rn>0 ∩ B. Then Bc is also open, bounded and convex. Since Kc ⊆ Rn≥0 ∩ B, then Bc
contains all points in Kc except those on the boundary Kc ∩ bd(Rn≥0). Further,

Kc ⊆ cl(Bc) ⊆ Rn≥0, and Kc ∩ bd(Bc) = Kc ∩ bd(Rn≥0),

see Figure 1. Since ∅ 6= Kc ∩ Rn>0 = B ∩Kc ∩ Rn>0 = Bc ∩Kc ⊆ Bc ∩ Pc, then

Bc ∩ Pc 6= ∅.

9
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Since f(x) 6= 0 for all x ∈ bd(Rn≥0) ∩ Pc by assumption and Kc contains all zeros of f in Pc,
then Bc contains all zeros of f in Pc, that is

{x ∈ Pc | f(x) = 0} ⊆ Bc. (14)

(B) The function ρ : Rn≥0 → Rn in the definition of g is defined such that it has the
following properties:

(i) ρ(x) points inwards Bc for all x ∈ bd(Bc) ∩ Pc.

(ii) ρ(x) = 0 for x ∈ Rn>0 ∩ bd(Bc) ∩ Pc.

(iii) ρ(x) 6= 0 for x ∈ Kc ∩ bd(Bc).

(iv) Wρ(x) = 0 for all x ∈ bd(Bc) ∩ Pc.

We first construct two other functions ρ̃ and ψ1, and subsequently define ρ : Rn≥0 → Rn as the
product ρ = ρ̃ ψ1. Let x̃ ∈ Kc ∩ Rn>0 and define ρ̃ : Rn → Rn as ρ̃(x) := x̃ − x. Let U1 ( B
be an open set containing Kc (which exists since B is open), see Figure 1. Consider the open
cover of Rn given by U1 and U2 = Rn \Kc, such that U1 ∩ U2 6= ∅ and U1 ∪ U2 = Rn. Choose
a C1-partition of unit ψ1, ψ2 : Rn → [0, 1] associated with this open cover. This implies in
particular that the support of ψi is included in Ui and ψ1(x) + ψ2(x) = 1 for all x.

Define ρ : Rn≥0 → Rn by ρ(x) = ψ1(x)ρ̃(x), x ∈ Rn≥0 (note the restriction to Rn≥0). This
function fulfils properties (i)-(iv) above. Property (i): Follows by definition of ρ(x) = ψ1(x)(x̃−
x), ψ1(x) ≥ 0 and Lemma 1.1(iii), using that x̃ ∈ Bc and x ∈ bd(Bc). Property (ii): Since
the support of ψ1 is contained in U1, ψ1(x) = 0 for all x /∈ U1, in particular for all x ∈
Rn>0∩bd(Bc)∩Pc, since Rn>0∩bd(Bc) ⊆ bd(B) and bd(B)∩U1 = ∅. Property (iii): Similarly,
ψ1(x) = 1 (since ψ2(x) = 0) for all x /∈ U2 = Rn\Kc, that is, for all x ∈ Kc; hence ρ(x) 6= 0 for
x ∈ Kc ∩ bd(Bc) since x̃ 6∈ bd(Bc). Property (iv): Wρ(x) = ψ1(x)W (x̃− x) = 0 as x, x̃ ∈ Pc.

(C) Let T be defined as the maximum of the entry times to Kc from any x ∈ cl(Bc)∩Pc.
The time T is finite because cl(Bc)∩Pc is compact and the semiflow is dissipative with respect
to Kc. Note that once a trajectory is in Kc, it stays there since Kc is forward invariant Redefine
T to be any positive number if T = 0.

We define

g : Rn≥0 → Rn, g(x) :=
1

T
(φ(x, T )− x) + Tρ(x),

Observe that Wg(x) = 0 for all x ∈ bd(Bc) ∩ Pc, using property (iv) in step (B) and
that φ(x, T ), x ∈ Pc. By definition of T , φ(x, T ) ∈ cl(Bc) ∩ Pc if x ∈ cl(Bc) ∩ Pc and hence
1
T (φ(x, T )−x) points inwards Bc at x ∈ bd(Bc)∩Pc by convexity of cl(Bc). Also Tρ(x) points
inwards Bc at x by property (i) in step (B). Hence, g(x) points inwards Bc at x ∈ bd(Bc)∩Pc
by convexity again.

Therefore, the function g, together with Bc and W , fulfil the conditions of Theorem 2.3.
By letting ϕgc be the function ϕc in (3) constructed from g and W , we conclude that

deg(ϕgc , Bc, 0) = (−1)s.

(D) We define a homotopy between ϕc and ϕgc on cl(Bc)× [0, T ] by

H(x, t) =

{
ϕc(x) if t = 0(

Wx− c, 1tπ(φ(x, t)− x) + tπ(ρ(x))
)

if 0 < t ≤ T.

10
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The function H(x, t) is continuous since φ(x, t) is differentiable and is the semiflow of ẋ = f(x).
Note that H(x, 0) = ϕc(x) and H(x, T ) = (Wx − c, π(g(x))) = ϕgc(x). Thus H(x, t) is a
homotopy between ϕc(x) and ϕgc(x). We need to show that H(x, t) does not vanish on the
boundary bd(Bc).

If H(x, 0) = ϕc(x) = 0, then x ∈ Pc is an equilibrium of the ODE system. Hence H(x, 0)
does not vanish on bd(Bc) since Bc contains all zeros of f in Pc, see (14). Now let x′ ∈ bd(Bc)
and assume that H(x′, t) = 0 for some t ∈ (0, T ]. It follows that x′ ∈ Pc, hence

x′ ∈ bd(Bc) ∩ Pc, and π(φ(x′, t)− x′) = −t2π(ρ(x′)). (15)

Using (7) and property (iv) in step (B) we have that

φ(x′, t) = x′ − t2ρ(x′). (16)

By construction of Kc, all fixed points and periodic orbits are contained in Kc. If ρ(x′) = 0,
then (16) implies x′ ∈ Kc ∩ bd(Bc) as x′ ∈ bd(Bc) by assumption. However, this contradicts
property (iii) in step (B). Hence, it must be the case that ρ(x′) 6= 0.

Using that x′ ∈ bd(Bc) ∩ Pc from (15) and ρ(x′) 6= 0, we conclude that x′ ∈ bd(Rn≥0) by
property (ii) in step (B), since x′ 6∈ Rn>0 ∩ bd(Bc)∩Pc. It follows that there exists i such that
x′i = 0 and we have

φ(x′, t)i = x′i − t2ρ(x′)i = x′i − t2ψ1(x
′)ρ̃(x′)i = −t2ψ1(x

′)x̃i < 0.

Here we have used that ψ1(x
′) 6= 0, since ρ(x′) = ψ1(x

′)ρ̃(x′) 6= 0 and ψ1(x
′) is a scalar. Now,

by the inequality above, φ(x′, t) does not belong to Rn≥0. However, this contradicts the forward
invariance of Rn≥0 with respect to the flow. Therefore, H does not vanish on bd(Bc)× [0, T ].

With this in place, homotopy invariance of the Brouwer degree implies that

deg(ϕc, Bc, 0) = deg(H(x, 0), Bc, 0) = deg(H(x, T ), Bc, 0) = deg(ϕgc , Bc, 0) = (−1)s.

Remark 3.6. The statement and proof of the theorem focus exclusively on one stoichiometric
compatibility class, that is, on a fixed value c ∈ Rd. Therefore, if a semiflow admits an
attracting set in one specific stoichiometric compatibility class (and not necessarily in all),
then the theorem and computation of the Brouwer degree holds for this specific class.

4 Multistationarity in dissipative networks

In this section we prove the theorem and corollaries stated in the main text, which are conse-
quences of Theorem 3.5 from the previous section.

Consider the Jacobian of the map ϕc(x). Because ϕc(x) is independent of c, we denote the
Jacobian by M(x). The i-th row of this matrix is given as

M(x)i := Jϕc(x)i =

{
Jfi(x) i /∈ {i1, . . . , id}
Wi i ∈ {i1, . . . , id},

where Wi is the i-th row of W . That is, one can think of M(x) as being the matrix obtained
from the Jacobian of f(x), with the ij-th row, j = 1, . . . , d, replaced by the j-th row of W .

An equilibrium x∗ is said to be non-degenerate ifM(x∗) has rank n, that is, if det(M(x∗)) 6=
0.
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Theorem 4.1. Assume the reaction rate functions fulfil (12), let s = rank(N) and let Pc be
a stoichiometric compatibility class such that P+

c 6= ∅ (where c ∈ Rd). Further, assume that

(i) The semiflow of the network is dissipative.
(ii) There are no boundary equilibria in Pc.
Then the following holds:

(A’) Uniqueness of equilibria. If

sign(det(M(x))) = (−1)s for all equilibria x ∈ V ∩ P+
c ,

then there is exactly one positive equilibrium in Pc. Further, this equilibrium is non-degenerate.

(B’) Multiple equilibria. If

sign(det(M(x))) = (−1)s+1 for some equilibrium x ∈ V ∩ P+
c ,

then there are at least two positive equilibria in Pc, at least one of which is non-degenerate.
If all positive equilibria in Pc are non-degenerate, then there are at least three and always an
odd number.

Proof. The hypotheses ensure that we can apply Theorem 3.5. Therefore choose an open
bounded convex set Bc ⊂ Rn>0 that contains all positive equilibria of the network in the
stoichiometric compatibility class Pc and such that

deg(ϕc, Bc, 0) = (−1)s.

Let Vc be the set of positive equilibria in the stoichiometric compatibility class Pc. Note that

Vc = {x ∈ Bc | ϕc(x) = 0}.

(A’) Since sign(det(M(x))) = (−1)s 6= 0 for all equilibria in Pc, 0 is a regular value for ϕc.
We can therefore apply Theorem 2.1 and obtain

(−1)s =
∑
x∈Vc

sign(det(M(x))) = (−1)s(#Vc),

where #Vc is the cardinality of Vc. We conclude that #Vc = 1 and therefore that there exists
a unique positive equilibrium in the stoichiometric compatibility class. Furthermore, since
sign(det(M(x))) 6= 0 for all equilibria, the equilibrium is non-degenerate.

(B’) Let x∗ ∈ Vc be such that sign(det(M(x∗))) = (−1)s+1. If 0 is a regular value for ϕc(·),
then the equality

(−1)s =
∑
x∈Vc

sign(det(M(x))) = (−1)s+1 +
∑

x∈Vc, x 6=x∗
sign(det(M(x)))

implies that there must exist at least two other points x′, x′′ ∈ Vc, such that

sign(det(M(x′))) = sign(det(M(x′′)) = (−1)s,

that is, there are at least three positive equilibria in Pc, all of which are non-degenerate. In this
case by Corollary 2.2, there is an odd number of equilibria and they are all non-degenerate.

Assume now that 0 is not a regular value for ϕc. Then there must exist another positive
equilibrium x′ in Pc for which the Jacobian of ϕc(x

′) is singular. This implies that there are
at least two positive equilibria in Pc, x∗ and x′, one of which is non-degenerate.

12
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In typical applications we find an odd number of equilibria (≥ 3), all of which are non-
degenerate. Observe that the hypothesis for Part (A) holds if the sign of det(M(x)) is (−1)s

for all x in a set containing the positive equilibria. In particular, this is the case if det(M(x)) =
(−1)s for all x ∈ Rn>0.

We assume now that the positive solutions to the system f(x) = 0 (with f(x) as in (11))
admit a parameterization

Φ: Rm>0 → Rn>0 (17)

x̂ = (x̂1, . . . , x̂m) 7→ (Φ1(x̂), . . . ,Φn(x̂)),

for some m < n. That is, we assume that we can express x1, . . . , xn at equilibrium as functions
of x̂1, . . . , x̂m:

xi = Φi(x̂1, . . . , x̂m), i = 1, . . . , n,

such that x1, . . . , xn are positive if x̂1, . . . , x̂m are positive.
For mass-action kinetics, the equation f(x) = 0 results in s = n− d polynomial equations

in n unknowns, which generically would lead to a d-dimensional parameterization and m = d
(if such a parameterization exists).

When such a parameterization exists, then positive values of x̂1, . . . , x̂m determine uniquely
a positive equilibrium. This equilibrium then belongs to the stoichiometric compatibility class
given by

c := WΦ(x̂).

Reciprocally, given c, the positive solutions to ϕc(x) = 0 are in one-to-one correspondence
with the positive solutions to the equation c = WΦ(x̂).

As before, we let W ∈ Rd×n be a row-reduced matrix whose rows form a basis of im(N)⊥.
Let i1, . . . , id be the indices of the first non-zero coordinate of each row. Let π : Rn → Rs
denote the projection onto the coordinates with indices different from i1, . . . , id. We do not
reorder the coordinates now to ensure that {i1, . . . , id} = {1, . . . , d}, because we have already
chosen a convenient order of the free variables of the parameterization.

We next consider the determinant of M(x) and use the parameterization (17) to substitute
the values of x1, . . . , xn by their expressions as functions of x̂1, . . . , x̂m. We define

a(x̂) = det(M(Φ(x̂))). (18)

Corollary 4.2. Assume the reaction rate functions fulfil (12) and let s = rank(N). Further,
assume that

(i) The semiflow of the network is dissipative.
(ii) The set of positive equilibria admits a positive parameterization as in (17).
(iii) There are no boundary equilibria in Pc, for all c ∈ Rd such that P+

c 6= ∅.
Then the following holds.

(A) Uniqueness of equilibria. If sign(a(x̂)) = (−1)s for all x̂ ∈ Rm>0, then there is exactly
one positive equilibrium in each Pc with P+

c 6= ∅. Further, this equilibrium is non-degenerate.

(B) Multiple equilibria. If sign(a(x̂)) = (−1)s+1 for some x̂ ∈ Rm>0, then there are at least
two positive equilibria in Pc, at least one of which is non-degenerate, where c := WΦ(x̂). If all
positive equilibria in Pc are non-degenerate, then there are at least three equilibria and always
an odd number.
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Proof. Given c, note that Φ induces a bijection between the sets

Vc and Sc := {x̂ ∈ Rm>0 | c = WΦ(x̂)}.

An element of Sc corresponds to a positive equilibrium in the stoichiometric compatibility
class Pc.

(A) Consider a stoichiometric compatibility class Pc defined by c such that P+
c 6= ∅. Let

x ∈ Vc and x̂ such that x = Φ(x̂). Then

det(M(x)) = det(M(Φ(x̂))) = a(x̂).

By hypothesis sign(det(M(x))) = sign(a(x̂)) = (−1)s. Since this holds for all equilibria in
Vc, Theorem 4.1(A’) gives that there is exactly one positive equilibrium in Pc, which is non-
degenerate.

(B) Let x̂ be such that sign(a(x̂)) = (−1)s+1 and let c be defined as in the statement of
the theorem. Then x = Φ(x̂) is a positive equilibrium in Vc for which the sign of det(M(x))
is (−1)s+1. Theorem 4.1(B’) gives the desired conclusion.

5 Details on the steps of the procedure

In this section we expand further on how to check step 3 and 7 of the algorithm.

5.1 On siphons and boundary equilibria

A proof of Proposition 2 in the main text for mass-action kinetics can be found in [11], where
strategies to find siphons are also detailed. The proof in [11] is however valid for general
kinetics fulfilling assumption (12) (see [9, Prop. 2]). Different algorithms developed in Petri
Net theory can be applied to find the siphons of a reaction network.

For large networks, the task of finding the siphons can be daunting. A way to reduce the
complexity of the computation is by the removal of intermediate species and catalysts [9]. We
explain the key aspects of this reduction method here. The method is used in the examples
below.

The first reduction concerns removal of intermediates. Intermediates are species in
the network that do not appear interacting with any other species, are produced in at least
one reaction, and consumed in at least one reaction. For example the species ES0 in the
reaction network

S0 + E −−⇀↽−− ES0 −−⇀↽−− S1 + E (19)

is an intermediate.
Given a network, we obtain a reduced network by “removing” some intermediates, one at

a time. This is done in the following way. Say we want to remove an intermediate Y from the
network. We remove all reactions of the original network that involve Y and add a reaction

y → y′ whenever y → Y → y′ with y 6= y′

belongs to the original network. Here y and y′ are the reactant complex of a reaction y → Y
and product complex of a reaction Y → y′, respectively.

14
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To illustrate this, we consider the removal of the intermediate ES0 in the network (19).
The reactions of the reduced network are obtained by considering all length 2 paths of the
original network that go through ES0. We have two such paths:

S0 + E −−→ ES0 −−→ S1 + E and S1 + E −−→ ES0 −−→ S0 + E.

By “collapsing” these paths we obtain the reactions

S0 + E −−→ S1 + E and S1 + E −−→ S0 + E. (20)

Clearly the process could be repeated now by choosing other intermediates of the network
(if any). In this way we can obtain reduced networks by removing several intermediates.

The second reduction concerns removal of catalysts. Catalysts are species that when-
ever they appear in a reaction, then they appear at both sides and with the same stoichiometric
coefficient. For example, E in the reaction network (20) is a catalyst. Catalysts are actually
defined in more generality in [9], but we restrict to this scenario to keep the discussion simple.
Catalysts are removed from a network by literally removing them from the reactions where
they appear. Removal of E in the reaction network (20) yields the reaction network

S0 −−⇀↽−− S1. (21)

This network has one minimal siphon, namely {S0, S1}, and s0 + s1 = c is a conservation
relation. By Proposition 2 in the main text it does not admit boundary equilibria in stoichio-
metric compatibility classes with non-empty positive part. The next proposition allows us to
conclude that the original network in (19) neither admits boundary equilibria in stoichiometric
compatibility classes with non-empty positive part.

Proposition 5.1 (Theorems 1 and 2 in [9]). Let G be a network and G′ be a network obtained
after iterative removal of intermediates or catalysts from G as described above. Each minimal
siphon of G contains the support of a positive conservation relation if and only if this is the
case for G′.

In several cases, removal of intermediates and catalysts yields a so-called monomolecular
network. That is, a network whose complexes agree with some species or the complex zero.
For example, the network in (21) is monomolecular. In this case, checking the hypothesis of
Proposition 2 in the main text is straightforward, in view of the next lemma.

Lemma 5.2 (Proposition 3 in [9]). Let G be a monomolecular network. Each minimal siphon
of G contains the support of a positive conservation relation if and only if all connected com-
ponents of G are strongly connected.

The network in (21) is clearly strongly connected. Thus, we do not need to find the siphons
of the network to conclude that each of its minimal siphons contains the support of a positive
conservation relation and thereby conclude that (19) does not admit boundary equilibria in
stoichiometric compatibility classes with non-empty positive part.

Corollary 5.3. Let G be a network and G′ be a network obtained after iterative removal
of intermediates or catalysts from G as described above. If G′ is a monomolecular network
with all connected components strongly connected, then G has no boundary equilibria in any
stoichiometric compatibility class Pc such that P+

c 6= ∅.
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For example, consider the “gene transcription network” of the main text. The species X5

and X7 are intermediates. The reaction network obtained upon their removal is:

X1 −−→ X1 +X3 X3 −−→ 0 X2 −−→ X2 +X4 X4 −−→ 0 2X4 −−⇀↽−− X6.

For this network, X6 is an intermediate and X1, X2 are catalysts. Removal of these three
species yields the reaction network

X3 −−⇀↽−− 0 −−⇀↽−− X4.

This is a strongly connected monomolecular network. By Corollary 5.3, there are no boundary
equilibria in any Pc as long as P+

c 6= ∅. We have reached the same conclusion as in the main
text without the need of finding the minimal siphons of the network.

5.2 Newton polytope

We write a multivariate polynomial f(x) ∈ R[x1, . . . , xn] as a sum of monomials:

f(x) =
∑
α∈Nn

cαx
α,

where xα = xα1
1 . . . xαn

n and cα ∈ R, for which only a finite number are non-zero.
The Newton polytope of f(x), denoted by N (f), is a closed convex set in Rn, defined as

the convex hull of the exponents α ∈ Nn for which cα 6= 0 (See [10, Section 2] for a definition
of convex hull). The set of vertices of N (f) is a subset of the set of points α for which cα 6= 0.

The following is a well-known fact about the Newton polytope of a polynomial. The
proof of the fact is constructive and provides an explicit way to find x̂ in Corollary 4.2(B).
Thus it offers a way to find stoichiometric compatibility classes (i.e. values of c) for which
multistationarity exists.

Proposition 5.4. Let f(x) =
∑

α∈Nn cαx
α and let α′ be a vertex of N (f). Then there exists

x′ ∈ Rn>0 such that
sign(f(x′)) = sign(cα′).

Proof. By hypothesis cα′ 6= 0. Since α′ is a vertex in a bounded convex polytope, there
exists a separating hyperplane ω · x = T that intersects the polytope only in α′ and such that
ω · x′ < T for any other point x′ of the polytope (see e.g. Definition 3.5 and Theorem 3.8 in
[7]). In particular, ω · α < ω · α′ for all vertices α 6= α′.

For y = tω =
∏n
i=1 t

ωi , we have

f(y) =
∑
α∈Nn

cα(tω)α =
∑
α∈Nn

cαt
ω·α = cα′t

ω·α′ +
∑

α∈Nn,α 6=α′
cαt

ω·α.

Now f(y) is a well defined function for t ∈ R>0, which tends to +∞ for t tending to infinity
and cα′ > 0 and to −∞ for cα′ < 0 (by assumption cα′ 6= 0). Hence, by letting t be large
enough, the sign of f(y) agrees with the sign of cα′ .

Finding the vertices in practice. In the examples below, we find the vertices of the
Newton polytope of the polynomial of interest as follows. We use Maple (version 2015).
We construct first the polytope using the command PolyhedralSet and subsequently use the
command VerticesAndRays, from the package PolyhedralSets, to find the vertices.

16



Supplementary Information Parameter regions for multistationarity

6 Details on the examples in the main text

6.1 Phosphorylation of two substrates

In this subsection we consider the network in the first row of Table 1 in the main text.
We consider a system in which two substrates can be either unphosphorylated, A,B or

phosphorylated Ap, Bp. Phosphorylation of both substrates is catalyzed by the same kinase
K and dephosphorylation of Ap, Bp is catalyzed by the same phosphatase F . That is, the
system consists of two futile cycles sharing kinase and phosphatase.

The reactions of the system are:

A+K
κ1−−⇀↽−−
κ2

AK
κ3−→ Ap +K B +K

κ7−−⇀↽−−
κ8

BK
κ9−→ Bp +K

Ap + F
κ4−−⇀↽−−
κ5

ApF
κ6−→ A+ F Bp + F

κ10−−⇀↽−−
κ11

BpF
κ12−−→ B + F.

This network is a PTM network with substrates A,B,Ap, Bp, enzymes K,F and intermediates
AK,BK,ApF,BpF . It was shown in [5] that this network with mass-action kinetics is multi-
stationary. Here we find the necessary and sufficient condition on the reaction rate constants
for having multistationarity in some stoichiometric compatibility class. We let

X1 = K, X3 = A, X5 = B, X7 = AK, X9 = ApF,

X2 = F, X4 = Ap, X6 = Bp, X8 = BK, X10 = BpF.

The stoichiometric matrix N of the network and a row reduced matrix W whose rows from
a basis of im(N)⊥ are

N =



−1 1 1 0 0 0 −1 1 1 0 0 0
0 0 0 −1 1 1 0 0 0 −1 1 1
−1 1 0 0 0 1 0 0 0 0 0 0

0 0 1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 1
0 0 0 0 0 0 0 0 1 −1 1 0
1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1


,

W =


1 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 0 0 1 0 1 0
0 0 0 0 1 1 0 1 0 1

 .

The rank of N is s = 6. The matrix W gives rise to the conservation relations

c1 = x1 + x7 + x8, c3 = x3 + x4 + x7 + x9,

c2 = x2 + x9 + x10, c4 = x5 + x6 + x8 + x10,

where c1, c2, c3, c4 correspond to the total amounts of kinase, phosphatase, substrate A and
substrate B, respectively.

With mass-action kinetics, the vector of reaction rates is

v(x) = (κ1x1x3, κ2x7, κ3x7, κ4x2x4, κ5x9, κ6x9, κ7x1x5, κ8x8, κ9x8, κ10x2x6, κ11x10, κ12x10).
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The function f(x) = Nv(x) is thus

f(x) = (−κ1x1x3 − κ7x1x5 + κ2x7 + κ3x7 + κ8x8 + κ9x8,

− κ4x2x4 − κ10x2x6 + κ5x9 + κ6x9 + κ11x10 + κ12x10,−κ1x1x3 + κ2x7 + κ6x9,

− κ7x1x5 + κ8x8 + κ12x10,−κ10x2x6 + κ9x8 + κ11x10, κ1x1x3 − κ2x7 − κ3x7,
κ7x1x5 − κ8x8 − κ9x8, κ4x2x4 − κ5x9 − κ6x9, κ10x2x6 − κ11x10 − κ12x10).

We apply the algorithm to this network with the matrix N and the vector v(x).

Step 1. Mass-action kinetics fulfils assumption (12). The function f(x) and W are given
above and the matrix W is row reduced.

Step 2. The network is a PTM network, hence it is conservative and thus dissipative.

Step 3. We apply the reduction technique from Section 5.1. The network has four inter-
mediates AK,ApF,BK,BpF . After their elimination, we are left with the reaction network

A+K −−→ Ap +K B +K −−→ Bp +K Ap + F −−→ A+ F Bp + F −−→ B + F.

This network has two catalysts: K,F . Their elimination yields the reaction network (the
so-called underlying substrate network in the main text)

A −−⇀↽−− Ap B −−⇀↽−− Bp.

This is a monomolecular network with two strongly connected components. By Corollary 5.3,
there are no boundary equilibria in any Pc for which P+

c 6= ∅.

Step 4. For our choice of W , we have i1 = 1, i2 = 2, i3 = 3, i4 = 5. The function ϕc(x) is
thus

ϕc(x) =
(
x1 + x7 + x8 − c1, x2 + x9 + x10 − c2, x3 + x4 + x7 + x9 − c3,
− κ4x2x4 + κ3x7 + κ5x9, x5 + x6 + x8 + x10 − c4,−κ10x2x6 + κ9x8 + κ11x10,

κ1x1x3 − κ2x7 − κ3x7, κ7x1x5 − κ8x8 − κ9x8, κ4x2x4 − κ5x9 − κ6x9,
κ10x2x6 − κ11x10 − κ12x10

)
.

The Jacobian matrix M(x) = Jϕc(x) is

1 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 0 0 1 0 1 0
0 −κ4x4 0 −κ4x2 0 0 κ3 0 κ5 0
0 0 0 0 1 1 0 1 0 1
0 −κ10x6 0 0 0 −κ10x2 0 κ9 0 κ11

κ1x3 0 κ1x1 0 0 0 −κ2 − κ3 0 0 0
κ7x5 0 0 0 κ7x1 0 0 −κ8 − κ9 0 0

0 κ4x4 0 κ4x2 0 0 0 0 −κ5 − κ6 0
0 κ10x6 0 0 0 κ10x2 0 0 0 −κ11 − κ12


.

The determinant of M(x) is a large polynomial. We omit it here.

Step 5. The determinant of M(x) has terms of sign (−1)s+1 = −1. We postpone the
discussion of the conditions on the reaction rate constants for which all terms have sign (−1)s

to Step 7. We proceed to the next step.
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Step 6. There is a non-interacting set with s = 6 species:

{X4, X6, X7, X8, X9, X10} = {Ap, Bp, AK,BK,ApF,BpF}.

By solving the equilibrium equations f4 = f6 = f7 = f8 = f9 = f10 = 0 in the variables
x4, x6, x7, x8, x9, x10, we find the following positive parameterization of the set of equilibria in
terms of x̂ = (x1, x2, x3, x5):

x4 =
(κ6 + κ5)κ3x3x1κ1
κ6 (κ3 + κ2)x2κ4

, x7 =
κ1x1x3
κ3 + κ2

, x9 =
κ3x3x1κ1
κ6 (κ3 + κ2)

,

x6 =
(κ12 + κ11)κ9x5x1κ7
κ12 (κ9 + κ8)κ10x2

, x8 =
κ7x1x5
κ9 + κ8

, x10 =
κ9x5x1κ7

κ12 (κ9 + κ8)
.

The free variables of the parameterization are the concentrations of the two enzymes and one
substrate per conservation relation involving substrates.

Step 7. The function a(x̂) is a large rational function with positive denominator. Therefore,
the numerator of this function, a polynomial p(x̂), determines the sign of a(x̂). The coefficients
are polynomials in κ1, . . . , κ10. All but one of the coefficients are polynomials in κ1, . . . , κ10
with positive coefficients. Therefore, all coefficients but one are always positive, independently
of the values of the reaction rate constants κ1, . . . , κ10.

The only coefficient with sign depending on the specific values of κ1, . . . , κ10 is

α(κ) = κ1κ7 (κ3κ12 − κ6κ9) (κ1κ3κ5κ8κ10κ12 + κ1κ3κ5κ9κ10κ12 + κ1κ3κ6κ8κ10κ12

+ κ1κ3κ6κ9κ10κ12 − κ2κ4κ6κ7κ9κ11 − κ2κ4κ6κ7κ9κ12 − κ3κ4κ6κ7κ9κ11 − κ3κ4κ6κ7κ9κ12).

If α(κ) ≥ 0, then all coefficients of p(x̂) are positive, and hence a(x̂) is positive for all positive x̂.
Using (−1)s = (−1)6 = 1, Corollary 4.2(A) (Corollary 2(A) in the main text) gives that there
is a unique positive equilibrium in each stoichiometric compatibility class with non-empty
positive relative interior.

When this coefficient is negative, then we need to check whether p(x̂) is negative for some
x̂. We analyse this by finding the Newton polytope and using Proposition 5.4.

The coefficient α(κ) corresponds to the monomial x21x2x3x5. The exponent vectors of the
monomials of p(x̂) are:

(0, 3, 0, 0), (0, 3, 0, 1), (0, 3, 1, 0), (1, 2, 0, 0), (1, 2, 0, 1), (1, 2, 1, 0), (1, 3, 0, 0),
(1, 3, 0, 1) (1, 3, 1, 0), (2, 1, 0, 0), (2, 1, 0, 1), (2, 1, 1, 0), (2, 1, 1, 1), (2, 2, 0, 0),
(2, 3, 0, 0), (3, 0, 0, 1), (3, 0, 1, 0), (3, 1, 0, 1), (3, 1, 1, 0).

We find the vertices of the convex hull of the exponent vectors, and find that they are

(0, 3, 0, 1), (0, 3, 1, 0), (2,1,1,1), (0, 3, 0, 0), (2, 1, 0, 0), (3, 0, 0, 1),
(3, 0, 1, 0), (1, 3, 0, 1), (1, 3, 1, 0), (2, 3, 0, 0), (3, 1, 0, 1), (3, 1, 1, 0).

Thus the exponent vector of the monomial of interest, (2, 1, 1, 1) (highlighted in bold), is a
vertex of the Newton polytope. Therefore, by Proposition 5.4, there exists x̂ such that p(x̂) is
negative. Corollary 4.2(B) (Corollary 2(B) in the main text) gives that there is a stoichiometric
compatibility class with multiple positive equilibria.

The condition α(κ) < 0 can be rewritten as:

(κ3κ12 − κ6κ9)(κ3κ12κ1κ10(κ5 + κ6)(κ8 + κ9)− κ6κ9κ4κ7(κ2 + κ3)(κ11 + κ12)) < 0,

19



Supplementary Information Parameter regions for multistationarity

which in turn can be written as

(κ3κ12 − κ6κ9)
(
κ3κ12 ·

κ1
κ2 + κ3

· κ10
κ11 + κ12

− κ6κ9 ·
κ4

κ5 + κ6
· κ7
κ8 + κ9

)
< 0,

Note that κ3, κ6, κ9, κ12 are the catalytic constants of phosphorylation/dephosphorylation of
A and B (kc1, kc2, kc3, kc4 in the main text), and

k−1M1 =
κ1

κ2 + κ3
, k−1M2 =

κ4
κ5 + κ6

, k−1M3 =
κ7

κ8 + κ9
, k−1M4 =

κ10
κ11 + κ12

are the inverses of the Michaelis-Menten constants of K and F for each substrate. Therefore,
the necessary and sufficient condition for multistationarity can be written in terms of the
catalytic constants and the Michaelis-Menten constants,

(κ3κ12 − κ6κ9)
(

κ3κ12
kM1kM4

− κ6κ9
kM2kM3

)
< 0.

This proves the condition for multiple and unique equilibria given in the first row of Table 1
in the main text, by letting

kc1 = κ3, kc2 = κ6, kc3 = κ9, kc4 = k12.

In particular, we have that

• If κ3κ12 > κ6κ9, then we need κ3κ12
kM1kM4

< κ6κ9
kM2kM3

for multiple equilibria to occur.

• If κ3κ12 < κ6κ9, then we need κ3κ12
kM1kM4

> κ6κ9
kM2kM3

for multiple equilibria to occur.

6.2 Two-site phosphorylation system

In this subsection we consider the network in the second row of Table 1 in the main text.
The conditions given here were also found in [3], the paper that lay the foundations of this
algorithm. In this work we consider a direct route using the function ϕc and avoiding changes
of variables. We explain here how to find the conditions using the algorithm in the main text.

We consider a system in which one substrate undergoes sequential and distributive phos-
phorylation by a kinase K and sequential and distributive dephosphorylation by a phosphatase
F . The three phosphoforms of the substrate are A,Ap, App. The reactions of the system are:

A+K
κ1−−⇀↽−−
κ2

AK
κ3−→ Ap +K

κ7−−⇀↽−−
κ8

ApK
κ9−→ App +K

App + F
κ10−−⇀↽−−
κ11

AppF
κ12−−→ Ap + F

κ4−−⇀↽−−
κ5

ApF
κ6−→ A+ F

This network is a PTM network with substrates A,Ap, App, enzymes K,F and intermediates
AK,ApK,ApF,AppF . We let

X1 = K, X3 = A, X5 = App, X6 = AK, X7 = ApF,

X2 = F, X4 = Ap, X8 = ApK, X9 = AppF.
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The stoichiometric matrix N of the network and a row reduced matrix W whose rows from
a basis of im(N)⊥ are

N =



−1 1 1 0 0 0 −1 1 1 0 0 0
0 0 0 −1 1 1 0 0 0 −1 1 1
−1 1 0 0 0 1 0 0 0 0 0 0

0 0 1 −1 1 0 −1 1 0 0 0 1
0 0 0 0 0 0 0 0 1 −1 1 0
1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1


,

W =

1 0 0 0 0 1 0 1 0
0 1 0 0 0 0 1 0 1
0 0 1 1 1 1 1 1 1

 .

The rank of N is s = 6. The matrix W gives rise to the conservation relations

c1 = x1 + x6 + x8, c2 = x2 + x7 + x9, c3 = x3 + x4 + x5 + x6 + x7 + x8 + x9,

where c1, c2, c3 correspond to the total amounts of kinase, phosphatase and substrate A, re-
spectively.

With mass-action kinetics, the vector of reaction rates is

v(x) = (κ1x1x3, κ2x6, κ3x6, κ4x2x4, κ5x7, κ6x7, κ7x1x4, κ8x8, κ9x8, κ10x2x5, κ11x9, κ12x9).

The function f(x) = Nv(x) is thus

f(x) = (−κ1x1x3 − κ7x1x4 + κ2x6 + κ3x6 + κ8x8 + κ9x8,

− κ4x2x4 − κ10x2x5 + κ5x7 + κ6x7 + κ11x9 + κ12x9,−κ1x1x3 + κ2x6 + κ6x7,

− κ4x2x4 − κ7x1x4 + κ3x6 + κ5x7 + κ8x8 + κ12x9,−κ10x2x5 + κ9x8 + κ11x9,

κ1x1x3 − κ2x6 − κ3x6, κ4x2x4 − κ5x7 − κ6x7, κ7x1x4 − κ8x8 − κ9x8,
κ10x2x5 − κ11x9 − κ12x9).

We apply the algorithm to this network with the matrix N and the vector v(x).

Step 1. Mass-action kinetics fulfils assumption (12). The function f(x) and W are given
above and the matrix W is row reduced.

Step 2. This network is dissipative since it is a PTM network.

Step 3. The network has four intermediates AK,ApK,ApF,AppF . After their elimination,
we are left with a reaction network with two catalysts: K,F . Their elimination yields the
following underlying substrate network

A −−⇀↽−− Ap −−⇀↽−− App.

This is a monomolecular network with two strongly connected components. By Corollary 5.3,
there are no boundary equilibria in any Pc for which P+

c 6= ∅.
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Step 4. For our choice of W , we have i1 = 1, i2 = 2, i3 = 3. The function ϕc(x) is thus

ϕc(x) =
(
x1 + x6 + x8 − c1, x2 + x7 + x9 − c2, x3 + x4 + x5 + x6 + x7 + x8 + x9 − c3,
− κ4x2x4 − κ7x1x4 + κ3x6 + κ5x7 + κ8x8 + κ12x9,−κ10x2x5 + κ9x8 + κ11x9,

κ1x1x3 − κ2x6 − κ3x6, κ4x2x4 − κ5x7 − κ6x7, κ7x1x4 − κ8x8 − κ9x8,
κ10x2x5 − κ11x9 − κ12x9

)
.

The Jacobian matrix M(x) = Jϕc(x) is

1 0 0 0 0 1 0 1 0
0 1 0 0 0 0 1 0 1
0 0 1 1 1 1 1 1 1

−κ7x4 −κ4x4 0 −κ4x2 − κ7x1 0 κ3 κ5 κ8 κ12
0 −κ10x5 0 0 −κ10x2 0 0 κ9 κ11

κ1x3 0 κ1x1 0 0 −κ2 − κ3 0 0 0
0 κ4x4 0 κ4x2 0 0 −κ5 − κ6 0 0

κ7x4 0 0 κ7x1 0 0 0 −κ8 − κ9 0
0 κ10x5 0 0 κ10x2 0 0 0 −κ11 − κ12


.

The determinant of M(x) is a large polynomial. We omit it here.

Step 5. The determinant of M(x) has terms of sign (−1)s+1 = −1. We postpone the
discussion of the conditions on the reaction rate constants for which all terms have sign (−1)s

to Step 7. We proceed to the next step.

Step 6. This network is a PTM network and has a non-interacting set with s = 6 species:

{X4, X5, X6, X7, X8, X9} = {Ap, App, AK,ApF,ApK,AppF}.

By solving the equilibrium equations f4 = f5 = f6 = f7 = f8 = f9 = 0 in the variables
x4, . . . , x9, we find the following positive parameterization of the set of equilibria in terms of
x̂ = (x1, x2, x3):

x4 =
κ1κ3(κ5 + κ6)x1x3
(κ2 + κ3)κ4κ6x2

, x5 =
κ1κ3(κ5 + κ6)κ7κ9(κ11 + κ12)x

2
1x3

(κ2 + κ3)κ4κ6(κ8 + κ9)κ10κ12x22
,

x6 =
κ1x1x3
κ2 + κ3

, x7 =
κ1κ3x1x3

(κ2 + κ3)κ6
,

x8 =
κ1κ3(κ5 + κ6)κ7x

2
1x3

κ2 + κ3)κ4κ6(κ8 + κ9)x2
, x9 =

κ1κ3(κ5 + κ6)κ7κ9x
2
1x3

κ2 + κ3)κ4κ6(κ8 + κ9)κ12x2
.

The free variables of this parameterization are the concentrations of the two enzymes and
one of the substrates. We substitute x4, . . . , x9 with their expressions in the parameteriza-
tion in det(M(x)) to find a(x̂). The function a(x̂) is a large rational function with positive
denominator which we do not include here.

Step 7. The numerator of a(x̂), the polynomial p(x̂), determines therefore the sign of a(x̂).
The coefficients are polynomials in κ1, . . . , κ10.

The polynomial has 15 terms, 9 of which are positive for all values of the reaction rate
constants. The remaining 6 coefficients are polynomials in κ1, . . . , κ10 that can either be
positive or negative.

Five of the six coefficients are of the form β(κ)b1(κ), where β(κ) is a positive polynomial
in κ and

b1(κ) = κ3κ12 − κ6κ9
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(thus b1(κ) is the same for all five coefficients). These five coefficients correspond to the
monomials x31x

2
2x3, x

2
1x

2
2x

2
3, x

3
1x2x

2
3, x

2
1x

3
2x3 and x41x

2
3.

The remaining coefficient is of the form γ(κ)α(κ), where γ(κ) is a positive polynomial in
κ and

α(κ) = κ1κ3κ4κ8κ10κ12 + κ1κ3κ4κ9κ10κ12 + κ1κ3κ5κ7κ10κ12 + κ1κ3κ6κ7κ10κ12

− κ1κ4κ6κ7κ9κ11 − κ1κ4κ6κ7κ9κ12 − κ2κ4κ6κ7κ9κ10 − κ3κ4κ6κ7κ9κ10.

It corresponds to the monomial x21x
2
2x3.

Since (−1)6 = 1, part Corollary 4.2(A) (Corollary 2(A) in the main text) tells us that
there is a unique positive equilibrium in each stoichiometric compatibility class with non-
empty positive part, if

b1(κ) ≥ 0 and α(κ) ≥ 0.

The condition α(κ) ≥ 0 can be rewritten as:

κ1κ3κ10κ12
(
κ4(κ9 + κ8) + κ7(κ6 + κ5)

)
− κ4κ6κ7κ9

(
κ1(κ12 + κ11) + κ10(κ3 + κ2)

)
≥ 0.

Dividing the expression by κ1κ4κ7κ10, the condition can be rewritten as

κ3κ12
(
kM2 + kM3

)
− κ6κ9

(
kM1 + kM4

)
≥ 0,

where

kM1 =
κ2 + κ3
κ1

, kM2 =
κ5 + κ6
κ4

, kM3 =
κ8 + κ9
κ7

, kM4 =
κ11 + κ12

κ10

are the Michaelis-Menten constants of K and F for each site. Note that κ3, κ6, κ9, κ12 are
the catalytic constants of phosphorylation of A, dephosphorylation of Ap, phosphorylation of
Ap and dephosphorylation of App. These are denoted by kc1, kc2, kc3, kc4 in the main text by
letting

kc1 = κ3, kc2 = κ6, kc3 = κ9, kc4 = k12.

By letting
b2(κ) = κ3κ12

(
kM2 + kM3

)
− κ6κ9

(
kM1 + kM4

)
,

α(κ) ≥ 0 if and only if b2(κ) ≥ 0. Thus we have proven the condition for unique equilibria
given in the second row of Table 1 in the main text.

Let us consider whether Corollary 4.2(B) (Corollary 2(B) in the main text) applies if
b1(κ) < 0 and/or α(κ) < 0. The exponent vectors of the monomials of p(x̂) are:

(3, 1, 1) (1, 3, 1) (2, 2, 1) (2, 2, 2) (2, 3, 0) (2, 2, 0) (1, 3, 0) (3, 1, 2)
(2, 3, 1) (3, 2, 1) (4, 0, 2) (4, 0, 1) (0, 4, 1) (1, 4, 0) (0, 4, 0)

The vertices of the convex hull of the exponent vectors are

(2, 3, 0) (4, 0, 1) (2, 2, 0) (0, 4, 0) (1, 4, 0) (3,2,1) (4, 0, 2) (0, 4, 1) (2, 3, 1) (2, 2, 2).

The vertex highlighted in bold corresponds to the monomial x31x
2
2x3, whose sign depends on

b1(κ). By Proposition 5.4, if b1(κ) < 0, then there exists x̂ such that p(x̂) is negative. Corollary
4.2(B) (Corollary 2(B) in the main text) gives that there is a stoichiometric compatibility class
that admits positive multiple equilibria. This proves the condition for multistationarity given
in the second row of Table 1 in the main text.

The exponent vector of the monomial corresponding to the coefficient α(κ), (2, 2, 1), is not
a vertex of the Newton polytope. In this case it is uncertain whether the condition α(κ) < 0
is sufficient for multistationarity.
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6.3 Two-substrate enzyme catalysis

This section contains an additional example to illustrate the application of the algorithm to a
monostationary network for which a parameterization is required to reach the conclusion.

We consider a mechanism in which an enzyme E binds two substrates, S1, S2, in an un-
ordered manner in order to catalyze the reversible conversion to the product P . A variation
of this system was considered in [4]. The reactions of the system are:

E + S1
κ1−−⇀↽−−
κ2

ES1 S2 + ES1
κ5−−⇀↽−−
κ6

ES1S2 ES1S2
κ7−−⇀↽−−
κ8

E + P

E + S2
κ3−−⇀↽−−
κ4

ES2 S1 + ES2
κ9−−⇀↽−−
κ10

ES1S2.

We let

X1 = E, X2 = S1, X3 = ES1, X4 = S2, X5 = ES2, X6 = ES1S2, X7 = P.

The stoichiometric matrix N of the network and a row reduced matrix W whose rows from a
basis of im(N)⊥ are

N =



−1 1 −1 1 0 0 0 0 1 −1
−1 1 0 0 0 0 1 −1 0 0

1 −1 0 0 −1 1 0 0 0 0
0 0 −1 1 −1 1 0 0 0 0
0 0 1 −1 0 0 1 −1 0 0
0 0 0 0 1 −1 −1 1 −1 1
0 0 0 0 0 0 0 0 1 −1



W =

1 0 1 0 1 1 0
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

The rank of N is s = 4. The matrix W gives rise to the conservation relations

c1 = x1 + x3 + x5 + x6, c2 = x2 + x3 + x6 + x7 c3 = x4 + x5 + x6 + x7,

where c1, c2, c3, c4 correspond to the total amounts of kinase, substrate S1 and substrate S2,
respectively.

With mass-action kinetics, the vector of reaction rates is

v(x) = (κ1x1x2, κ2x3, κ3x1x4, κ4x5, κ5x4x3, κ6x6, κ7x6, κ8x2x5, κ9x6, κ10x1x7).

The function f(x) = Nv(x) is

f(x) = (−κ1x1x2 − κ3x1x4 − κ10x1x7 + κ2x3 + κ4x5 + κ9x6,

− κ1x1x2 − κ8x2x5 + κ2x3 + κ7x6, κ1x1x2 − κ5x4x3 − κ2x3 + κ6x6

− κ3x1x4 − κ5x4x3 + κ4x5 + κ6x6, κ3x1x4 − κ8x2x5 − κ4x5 + κ7x6,

κ5x4x3 + κ8x2x5 + κ10x1x7 − κ6x6 − κ7x6 − κ9x6,−κ10x1x7 + κ9x6).

We apply the algorithm to this network with the matrix N and the vector v(x).

Step 1. Mass-action kinetics fulfils assumption (12). The function f(x) and W are given
above and the matrix W is row reduced.
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Step 2. The network is conservative since the concentration of every species is in the support
of a conservation relation with positive coefficients. Therefore the network is dissipative.

Step 3. This network has only one intermediate ES1S2. Its removal yields the reaction
network

E + S1 −−⇀↽−− ES1 S2 + ES1 −−⇀↽−− E + P S2 + ES1 −−⇀↽−− S1 + ES2

E + S2 −−⇀↽−− ES2 S1 + ES2 −−⇀↽−− E + P.

The conservation relations of this new network are (with the notation above):

c1 = x1 + x3 + x5, c2 = x2 + x3 + x7 c3 = x4 + x5 + x7.

The minimal siphons of the network are

{E,ES1, ES2}, {S1, ES1, P}, {S2, ES2, P}.

These siphons contain the support of the conservation relations for c1, c2, c3 respectively. Thus,
by Proposition 2 in the main text and Proposition 5.1, the original network does not have
boundary equilibria in any stoichiometric compatibility class that intersects the positive or-
thant.

Step 4. For our choice of W , we have i1 = 1, i2 = 2, i3 = 4. The function ϕc(x) is thus

ϕc(x) =
(
x1 + x3 + x5 + x6 − c1, x2 + x3 + x6 + x7 − c2, κ1x1x2 − κ5x4x3 − κ2x3 + κ6x6,

x4 + x5 + x6 + x7 − c3, κ3x1x4 − κ8x2x5 − κ4x5 + κ7x6,

κ5x4x3 + κ8x2x5 + κ10x1x7 − κ6x6 − κ7x6 − κ9x6,−κ10x1x7 + κ9x6

)
.

The Jacobian matrix M(x) = Jϕc(x) is

1 0 1 0 1 1 0
0 1 1 0 0 1 1

κ1x2 κ1x1 −κ5x4 − κ2 −κ5x3 0 κ6 0
0 0 0 1 1 1 1

κ3x4 −κ8x5 0 κ3x1 −κ8x2 − κ4 κ7 0
κ10x7 κ8x5 κ5x4 κ5x3 κ8x2 −κ6 − κ7 − κ9 κ10x1
−κ10x7 0 0 0 0 κ9 −κ10x1


.

The determinant of M(x) is a large polynomial. We omit it here.

Step 5. The determinant of M(x) has terms of sign (−1)s+1 = −1. We postpone the
discussion of the conditions on the reaction rate constants for which all terms have sign (−1)s

to Step 7. We proceed to the next step.

Step 6. This network is not a PTM system, but has a non-interacting set with s = 4 species:

{X3, X5, X6, X7} = {ES1, ES2, ES1S2, P}.

By solving the equilibrium equations f3 = f5 = f6 = f7 = 0 in the variables x3, x5, x6, x7, we
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find the following positive parameterization of the set of equilibria in terms of x̂ = (x1, x2, x4):

x3 =
x2x1 (κ1κ6κ8x2 + κ3κ6κ8x4 + κ1κ4κ6 + κ1κ4κ7)

κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7
,

x5 =
x1x4 (κ1κ5κ7x2 + κ3κ5κ7x4 + κ2κ3κ6 + κ2κ3κ7)

κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7
,

x6 =
x2x4 (κ1κ5κ8x2 + κ3κ5κ8x4 + κ1κ4κ5 + κ2κ3κ8)x1

κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7
,

x7 =
κ9x2x4 (κ1κ5κ8x2 + κ3κ5κ8x4 + κ1κ4κ5 + κ2κ3κ8)

(κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7)κ10
.

We substitute x3, x5, x6, x7 with their expressions in the parameterization in det(M(x)) to
find a(x̂). The function a(x̂) is a large rational function.

Step 7. The numerator and denominator of a(x̂) are polynomials in x and κ with all
coefficients positive. By Corollary 4.2(A) (Corollary 2(A) in the main text) using s = 4, there
is a unique positive equilibrium in each stoichiometric compatibility class that intersects the
positive orthant.
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