Em/B analy/i/ guideline/

Guide to using the EmsB tool and for off-line use

EmsB Website for Echinococcus typing - EWET project

Summary

I.	Int	roduction to the EmsB microsatellite	3
١١.	DN	IA extraction	3
III.	I	EmsB Primers	4
IV.	/	Amplification by PCR	4
V.	Siz	e of polymorphism analysis	4
VI.	I	Example of EmsB electrophoregram and interpretation	4
1.	I	Recording EmsB data on a spreadsheet	5
	a)	EmsB fragment size	5
	b)	Fluorescence intensity	5
VII.	I	Euclidean distance calculation, dendrogram and examples for training	6

I. Introduction to the EmsB microsatellite

The EmsB marker is a microsatellite present in about 40 copies in the *Echinococcus multilocularis* genome, located on chromosome 5 [1]. The flanking regions of EmsB are highly conservative, but the microsatellite pattern (CA)_n(GA)_n present a size polymorphism, with independent mutations occurring in the (CA) and the (GA) repetitions (Figure 1). In order to study the microsatellite polymorphism in *E. multilocularis* specimens, a PCR was performed on these targets and primers were designed in the microsatellite flanking regions [2]. The EmsB marker was used for genotyping *E. multilocularis* on different geographical scales, from a micro-local scale to a regional scale [3–8]. These guidelines will allow researchers to use and analyze EmsB data from their own samples, from DNA extraction to genotyping studies.

Figure 1. Structure of EmsB microsatellites in *E. multilocularis*. (A) Represents schematic structure on chromosome 5. Arrows indicate one repetition of the microsatellite. Dot points between arrows refer to inter-simple sequence repeats; (B) represents alignment of variable regions of the microsatellite. Sequence number corresponds to the order of repetitions in chromosome 5.

II. DNA extraction

Total genomic DNA is isolated and purified from a tissue sample (unique worm, isolated egg or approx. 50 mg of metacestode), using a DNA extraction kit for tissue. The procedure is carried out according to the manufacturer's protocol. Purified DNA is eluted with 200 μ l of elution buffer (provided by the manufacturer) for metacestode samples and unique worm, or 100 μ l for eggs, in order to obtain optimal DNA concentrations. The DNA concentration is checked with a spectrophotometer apparatus. The limit of sensitivity was 1 fg of DNA used for EmsB-PCR [2]. Theoretically, DNA purified from one egg can be used as a matrix for PCR. The DNA samples have to be stored at -20°C until use in PCR.

III. EmsB Primers

Primers were designed in the highly conservative flanking region of the microsatellite (Figure 1). The EmsB A primer is 5'-labeled with a fluorochrome (ex. FAM), and is 20-bp long. The EmsB A primer can be ordered as a "modified" oligonucleotide. The EmsB C, 20-bp long primer can be ordered as an "unmodified" primer.

Table 1. EmsB primers: description and reference.

Primer name	Primer sequence	Size of amplicons	Microsatellite repetition	Annealing temp (°C)	Genbank Reference
EmsB A	5'(FAM)-GTGTGGATGAGTGTGCCATC-3'	200 241 bp		60	47680860
EmsB C	5'-CCACCTTCCCTACTGCAATC-3'	209-241 00	(CA)n(OA)n	00	A1080800

IV. Amplification by PCR

The EmsB-PCR is performed in a 30 μ l reaction mixture containing 50 to 100 ng of DNA, 200 μ M of each deoxynucleoside triphosphate, 0.4 μ M of fluorescent forward primer, 5-labeled specific fluorescence dye, 0.7 μ M of classical reverse primers, and 0.5 U of enzyme, e.g. *Taq* DNA polymerase enzyme associated with the corresponding PCR buffer. The PCR amplification is achieved in a thermocycler under the following conditions: an initial denaturation step at 94°C for 5 min and 30 cycles with denaturation at 94°C for 30 s, annealing 60°C for 30 s, extension at 72°C for 1 min and a final extension step at 72°C for 10 min (minimum). One PCR is enough to obtain an EmsB profile. It is possible (but not essential) to control the size of the PCR products by electrophoresis on 1% agarose gel.

V. <u>Size polymorphism analysis</u>

PCR products are studied in fragment size analysis. To assess the polymorphism of size, an automatic sequencer can be used, such as ABI Prism 3100 or 3500 automatic sequencer (Life Technologies, Foster City, CA) or Beckman CEQ 8000 (Beckman Coulter, Fullerton, CA). A molecular-weight size marker is used to specify the size of the PCR fragments. The fluorescence signal generated by the labeled primer is detected by colorimetric reading. Correspondences are established to assess the size of the amplified fragments using dedicated software (e.g. Genotyper 3.7 for the ABI apparatus or Genetic Analysis System 8.0.52 for the Beckman apparatus).

VI. Example of EmsB electrophoregram and interpretation

After the fragment size analysis is performed, an EmsB electrophoregram is obtained (Figure 2). We can observe size standard (1) and a series of peaks (2) with different sizes (from 209 to 241 bp observed in *E. multilocularis* samples from endemic regions worldwide). The height of peaks is different from one peak to another and refer to the number of EmsB fragment copies for a given size. The size and fluorescence intensity for each peak are recorded in a spreadsheet (Table 2).

Figure 2. Electrophoregram of EmsB-PCR products performed on a 3100 automatic sequencer (Life Technologies, Foster City, CA). (1): size standard in orange (GS 5000 Gene Scan 500 LYZ), (2): the EmsB fragments classified by size in blue (in base pair) and (3) peaks under 10% of the highest peak to be removed from the analysis.

1. Recording EmsB data on a spreadsheet:

a) EmsB fragment size

On the electrophoregram, the size of the fragments has to be adjusted (see the "raw peak size" and "adjusted peak size" lines in Table 2 - Step 1). Because the EmsB variations are due to the addition or suppression of 2 nucleotides (CA) and (GA), the minimum distance between two peaks is 2 bp.

b) Fluorescence intensity

For each peak, the fluorescence intensity (FI) is recorded (Table 2 – Step 2). This intensity depends on the initial quantity of DNA used for the PCR. First the lowest peak values (under 10% of the highest peak) have to be removed. Second the FI values are thus normalized: for each peak the FI is divided by the sum of the entire FI for a given sample (e.g. for the peak at 215 bp \rightarrow 6185/21797 = 0.28). The sum of the normalized values is equal to 1. The distance between samples will be calculated according to these normalized values. NB. substitute coma by point. Fragment sizes and normalized FI (Table 2 – Step 3) are saved in a text file in tab format (*.txt) (Figure 3).

Table 2. Information on an EmsB fragment size analysis to be recorded for genotyping studies

Raw peak size (size standard)	214.99	216.92	218.75	220.78	222.72	224.56	226.51	228.45	230.41	232.46	234.42	236.39	238.35	240.38	242.32
Adjusted peak size	215	217	219	221	223	225	227	229	231	233	235	237	239	241	243

Step 1: Adjust the peak size

Step 2: Normalize the fluorescence intensity

Adjusted peak size	215	217	219	221	223	225	227	229	231	233	235	237	239	241	243	_
Original Fluorescence intensity (FI)	6185	0	0	300	831	1985	2210	2368	2252	1741	1716	1642	867	455	450	Sum
FI without peak 10%	6185	0	0	0	831	1985	2210	2368	2252	1741	1716	1642	867	0	0	21797
Normalized FI values	0.28	0	0	0	0.038	0.091	0.101	0.108	0.103	0.079	0.078	0.075	0.039	0	0	1

Step 3: Values retained for calculation

Adjusted peak size	215	217	219	221	223	225	227	229	231	233	235	237	239
Normalized FI values	0.28	0	0	0	0.038	0.091	0.101	0.108	0.103	0.079	0.078	0.075	0.039

😑 EmsE	EmsB_World-Collection.txt 🗵]																			
1	a 2	215	217	219	221	223	225	227	229 2	31 233	235	237	239	241	260	276	280	282	284	286	288	290	292	294	296	298	300 3	302	305 3	307 30	09 🔺	ł
2	JAVA		0.23	2644	45321	1569	54	0.04	66101	694915	254	0	0	0.03	31112	21430	02298	58	0.10	4945	4376	55962	24	0.0	59089	8537	26493	18	0.095	64260	506:	I
3	R0413	38_1	L	0	0	0	0	0.03	06298	533218	292	0.0	8412	42450	3882	266	0.09	3615	51855	60474	155	0.22	4331	320	10353	8	0.190	681	62208	88007	1.1	I
4	R0413	38_	5	0	0	0	0	0.03	61445	783132	53	0.0	6024	09638	35542	217	0.09	0361	14457	8313	325	0.25	3012	048	19277	1	0.204	819	27710	8434	1.1	I
5	R0413	38_1	7	0	0	0	0	0.04	72412	976556	95	0.0	8654	98460	08098	351	0.11	1058	34892	2566	59	0.22	5195	358	74970	4	0.199	9857	92090	9306	1.1	I
6	R0413	38_1	11	0	0	0	0	0.02	28161	668839	635	0.0	8800	52151	12385	92	0.11	6688	33963	84941	.3	0.22	2294	654	49804	4	0.18	5440	67796	56102	1.1	I
7	R0413	38_1	12	0	0	0	0	0.04	62724	935732	648	0.0	8740	35989	97172	224	0.10	4113	31105	3984	6	0.23	9074	550	12853	5	0.214	1652	95629	8201	1.1	I
8	R0514	47_9	Э	0	0	0	0	0.03	68926	5994024	422	0.0	9288	12678	36178	323	0.08	7425	53052	7409	72	0.26	53445	050	66251		0.158	3352	81891	4004	1.1	I
9	R0514	47_1	10	0	0	0	0	0.03	13353	456949	835	0.0	7043	26577	75477	794	0.08	5956	55904	8440)42	0.22	8115	567	05476	5	0.20	7416	99008	31932	1.1	I
10	R0514	49-2	2	0	0	0	0	0.05	32350	532350	532	0.0	9418	50941	18509	942	0.12	9402	21294	0212	29	0.24	1605	241	60524	2	0.15	3153	15315	53153	1.1	I
11	R0514	49_1	11	0	0	0	0	0.03	72093	023255	814	0.0	7720	93023	32558	314	0.11	1627	79069	7674	4	0.27	3488	372	09302	3	0.15	627	90691	6744	1.1	I
12	R051	51_1	1-2-5		0	0	0	0	0.026	223509	68135	39	0.0	79432	28403	37200	079	0.09	99100	4726	53302	233	0.27	656	65497	7893	6 (0.14	68211	6176	246 +	I
•		_		_		III																									P.	
Normal	text file									length	: 2716	73 li	nes : 1	191		Ln : 1	Col :	1 S	el : 0 (0				Dos	Windo	WS	UTI	-8 w	o BON	1	INS	

VII. Euclidean distance calculation, dendrogram and examples for training

Similarities or differences between isolates is tested by the Euclidean distance calculation. Thanks to Knapp and co-workers (2007), two samples are considered similar if the distance between the two samples is under 0.08.

The relationships between samples are represented by generating dendrograms of distance, using the Unweighted Pair Group Method with Arithmetic mean (UPGMA), which is a simple agglomerative hierarchical clustering method, based on pairwise similarity between units. The algorithm allows us to build a phylogenetic tree reflecting the structure present in a pairwise similarity matrix. Here the tree is considered as a dendrogram, not as a phylogenetic tree, because the homozygosis or heterozygosis origins of the EmsB loci are unknown. For each successive iteration the nearest two clusters are combined into a higher-level cluster. The arithmetic average distance between two isolates is calculated for each cluster constituted.

Because of the UPGMA method, the representation of the relationships between samples could change according to the isolates included in the model.

For training, download the file "EmsB_text_file_example.txt" and copy the script on Tinn-R or R-studio (in a new script file) and use R software for analysis.

1. Generate a distance matrix

Distance matrix on normalized EmsB profiles

```
#read the table with EmsB data
bdd2<-read.table("EmsB_text_file_example.txt", header=T, row.names=1)
#to see the first line of the table
head(bdd2)
#calculation of Euclidean distance amongst samples
dist2<-dist(bdd2, method="euclidian")
head(dist2)
#to obtain the distance matrix
as.matrix(dist2)
#save as a text file
write.table(as.matrix(dist2),file="distances_samples.txt", sep="\t", dec=",")</pre>
```

R R Co	onsole ((64-bit)		-	1			_											-		-	-	100				23		
Fichier	Editi	on M	isc Pac	kages	Fenètres	Aide																							
> hea	ad (bd	d2)																											-
			X215		X217	X219	X221	X223	X225	X2.	27	X229	X23	1 X.	233	X235	X23	7 X23	9 X241	X260	X276	X280 X	282 X2	84 X	286 X	288 X2	290 X2	92 X29	14
JAVA		0.23	26445	0.046	61017	0	0	0.03111214	0.10494544	0.059089	B5 0.	09542605	0.118411	9 0.06373	346	0.09118876	0.0863129	8 0.0705247:	з с	0 0	0	0	0	0	0	0	0	0	0
R0413	38_1	0.00	00000	0.000	00000	0	0	0.03062985	0.08412425	0.093615	19 0.	22433132	0.190681	6 0.18636	756	0.19025022	0.0000000	0 0.0000000	0	0 0	0	0	0	0	0	0	0	0	0
R0413	38_5	0.00	00000	0.000	00000	0	0	0.03514458	0.06024096	0.090361	45 0.	25301205	0.204819	3 0.18072	289	0.17959880	0.0000000	0 0.00000000			0	0	0	0	0	0	0	0	0
R0413	38 11	0.00	00000	0.000	00000	0	0	0.02281617	0.08800522	0.116688	40 0	22319336	0.199657	7 0 17275	196	0.19100391	0.0000000	0 0.00000000			0	0	0	0	0	0	0	0	0
R0413	38 12	0.00	00000	0.000	00000	õ	0	0.04627249	0.08740360	0.104113	11 0.	23907455	0.214653	0.13110	540	0.17737789	0.0000000	0 0.00000000		0 0	0	0	0	0	0	0	0	0	ő
	_	X296	X298	X300	X302 X	305 X	307 3	x309																					
JAVA		0	0	0	0	0	0	0																					
R0413	38_1	0	0	0	0	0	0	0																					
R0413	38_5	0	0	0	0	0	0	0																					-
R0413	38_7	0	0	0	0	0	0	0																					-
R0413	38_11	0	0	0	0	0	0	0																					
R0413	38_12	0	0	0	0	0	0	0																					- 100
31																													-
																													 *
	-		-		-						21	100				and the second second		-			-		-	-		6 (2)	4		
					3 1		P .				a l	R									. 🕛 🍕	🎽 🖬 🖡	2 🚾 2		*	🗑 📲 -	()) 🚹	16:	26

Figure 4. Print screen of the "head (bdd2)" control on R.

R Console (64-bit)	1
Fichier Edition Misc Packages Fenêtres Aide	Ē
> head(dist2)	
[1] 0.3421070 0.3531026 0.3331377 0.3390641 0.3363764 0.3510868	
> as.matrix(dist2)	
JAVA R04138_1 R04138_5 R04138_7 R04138_11 R04138_12 R05147_9 R05147_10 R05149-2 R05149_11 R05151_1-2-5	
JAVA 0.0000000 0.34210698 0.35310256 0.33313766 0.33906413 0.33637639 0.35108684 0.35194555 0.33633781 0.35235974 0.35797439	
R04138_1 0.3421070 0.00000000 0.04367581 0.04212474 0.02857624 0.06616074 0.06294674 0.04543584 0.07140818 0.06887196 0.07108855	
R04138_5 0.3531026 0.04367581 0.00000000 0.04997902 0.05702936 0.06155908 0.06364987 0.04501027 0.07913253 0.06378543 0.07221025	
R04138_7 0.3331377 0.04212474 0.04997902 0.00000000 0.03762905 0.03657514 0.07622086 0.06482295 0.05841155 0.07098444 0.08446324	
R04138_11 0.3390641 0.02857624 0.05702936 0.03762905 0.00000000 0.06087873 0.07386555 0.06560420 0.06360112 0.06622553 0.07072082	
R04138_12 0.3363764 0.06616074 0.06155908 0.03657514 0.06087873 0.0000000 0.09770927 0.09002563 0.08402168 0.08413912 0.09301902	
R05147_9 0.3510868 0.06294674 0.06364987 0.07622086 0.07386555 0.09770927 0.00000000 0.06594528 0.05735188 0.04689578 0.05843245	-
R05147_10 0.3519455 0.04543584 0.045501027 0.06482295 0.06560420 0.09002563 0.06594528 0.00000000 0.08747452 0.08869068 0.09770428	
R05149-2 0.3363378 0.07140818 0.07913253 0.05841155 0.06360112 0.08402168 0.05735188 0.08747452 0.00000000 0.04946101 0.07337306	
R05149_11 0.3523597 0.06887196 0.06378543 0.07098444 0.06622553 0.08413912 0.04689578 0.08869068 0.04946101 0.00000000 0.02965531	1
R05151_1-2-5 0.3579744 0.07108855 0.07221025 0.08446324 0.07072082 0.09301902 0.05843245 0.09770428 0.07337306 0.02965531 0.00000000	
	-
4 B	

Figure 5. Print screen of the "as.matrix (distance2)" control on R, the distance matrix

2. Generate a dendrogram

```
### Dendrogram building on normalized profiles
```

```
#read the table with EmsB data
bdd2<-read.table("EmsB_text_file_example.txt", header=T, row.names=1)</pre>
```

```
#hierarchical clustering analysis with average method
clust2<-hclust(dist2, method="average")</pre>
```

```
#obtain the dendrogram with Euclidean distance
plot(clust2,cex=0.5, main="ratio somme", hang=-1)
```

```
## Test the robustness of the clusters
```

#load the 'pvclust' package and perform 1000 bootstrap resampling
pv2<-pvclust(t(bdd2), method.hclust="average", method.dist="euclidian", nboot=1000)</pre>

#obtain the dendrogram with Euclidean distance
plot(pv2,cex=0.7, main="ratio somme", hang=-1)

Figure 6. Print screen of the dendrogram generated associated with the bootstrap analysis (pvclust) (au for approx. unbiased value, bp for bootstrap).

3. Compare one isolate to the data collection

For training download the files "R05149 2.txt" and "EmsB text file example.txt".

Comparison between a single isolate and a data collection

```
#read the table with EmsB data containing the data collection
bdd2<-read.table("EmsB_text_file_example.txt", header=T)</pre>
```

#read the table with EmsB data containing the single isolate to test ind.supp<-read.table("R05149_2.txt", header=T)</pre>

#to see the first line of the table
head(bdd2)

head(ind.supp)

Euclidean distance calculation between the tested sample "R05149_2" and the collection samples "EmsB_text_file_example"

bdd3=bdd2[,-1] #colomn with sample names removed

```
#same for " R05149_2"
ind.supp2 <- ind.supp[,-1]
fac <- function(x) {sqrt(sum((ind.supp2[1,]-bdd3[x,])^2))}
dist.eucl <- sapply(1:length(bdd3[,1]),fac)
bdd2$dist.eucl <- dist.eucl
head(bdd2)</pre>
```

#classification of samples according to the distance with the tested samples
tab.order <- bdd2[order(dist.eucl),]</pre>

```
#extraction of table lines where the "dist.eucl" < 0.08
ind.proches <- tab.order[tab.order$dist.eucl<0.08,]
ind.proches[1,1]</pre>
```

#sample names and Euclidean distance for which " dist.eucl " with the tested sample is <0.08
ind.proches[,which(colnames(ind.proches) %in% c("a", "dist.eucl"))]</pre>

```
#to get the top 5 of the samples the most similar to the tested sample
ind.proches[1:5,which(colnames(ind.proches) %in% c("a", "dist.eucl"))]
```

#find a sample and its dist.eucl with the tested sample for ex. " R05149_11 "
ind.proches[ind.proches\$a=="R05149_11",which(colnames(ind.proches) %in% c("a", "dist.eucl"))]

#to get the top 5 of the samples the most similar to the tested sample

\Rightarrow Result:

```
> ind.proches[1:5,which(colnames(ind.proches) %in% c("a", "dist.eucl"))]
                     a dist.eucl
                   0.00000000
9
     R05149 2
10
     R05149_11
                  0.04946101
     R05147_9
                    0.05735188
7
     R04138_7
                   0.05841155
4
     R04138 11
5
                    0.06360112
```

⇒ Interpretation: the list of the 5 closest samples to R05149_2 isolate. All are under 0.08 in distance and are thus considered similar to the tested sample.

#find a sample and its dist.eucl with the tested sample for ex. " ${\tt R05149_11}$ "

 \Rightarrow Result:

> ind.proches[ind.proches\$a=="R05149_11",which(colnames(ind.proches) %in% c("a", "dist.eucl"))]

a dist.eucl

10 R05149_11 0.04946101

Interpretation: sample R04149_11 is distant from R04149_2 with a distance of 0.049. They are considered similar to each other.

References

- 1. Valot B, Knapp J, Umhang G, Grenouillet F, Millon L. Genomic characterization of EmsB microsatellite loci in *Echinococcus multilocularis*. Infect Genet Evol. 2015;32: 338–341.
- 2. Bart JM, Knapp J, Gottstein B, El-Garch F, Giraudoux P, Glowatzki ML, et al. EmsB, a tandem repeated multi-loci microsatellite, new tool to investigate the genetic diversity of *Echinococcus multilocularis*. Infect Genet Evol. 2006;6: 390–400.
- 3. Knapp J, Bart JM, Glowatzki ML, Ito A, Gerard S, Maillard S, et al. Assessment of use of microsatellite polymorphism analysis for improving spatial distribution tracking of *Echinococcus multilocularis*. J Clin Microbiol. 2007;45: 2943–2950.
- 4. Knapp J, Guislain M-H, Bart JM, Raoul F, Gottstein B, Giraudoux P, et al. Genetic diversity of *Echinococcus multilocularis* on a local scale. Infect Genet Evol. 2008;8: 367–373.
- 5. Casulli A, Bart JM, Knapp J, La Rosa G, Dusher G, Gottstein B, et al. Multi-locus microsatellite analysis supports the hypothesis of an autochthonous focus of *Echinococcus multilocularis* in northern Italy. Int J Parasitol. 2009;39: 837–842.
- 6. Knapp J, Bart J-M, Giraudoux P, Glowatzki M-L, Breyer I, Raoul F, et al. Genetic diversity of the cestode *Echinococcus multilocularis* in red foxes at a continental scale in Europe. PLoS Negl Trop Dis. 2009;3: e452.
- 7. Knapp J, Staebler S, Bart JM, Stien A, Yoccoz NG, Drögemüller C, et al. *Echinococcus multilocularis* in Svalbard, Norway: microsatellite genotyping to investigate the origin of a highly focal contamination. Infect Genet Evol. 2012;12: 1270–1274.
- 8. Umhang G, Knapp J, Hormaz V, Raoul F, Boué F. Using the genetics of *Echinococcus multilocularis* to trace the history of expansion from an endemic area. Infect Genet Evol. 2014;22: 142–149.