
S1 Supplementary model information

S1.1 Model equations

Equations for tissue growth and reaction-di↵usion of the chemoattractant were used as previously described (McLennan

et al. 2015a,b, Supplementary Information), and are reproduced below.

S1.1.1 Domain growth

Tissue growth was modelled as uniform, with the length of the migratory domain at any time between t = 0 and

t = 24 hours given by the logistic equation
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with parameters L
0

= 300µm, a = 0.08h�1µm�1, t
s

= 16 hours, L1 = 870, determined by least-squares fitting to

experimental domain length measurements (McLennan et al. 2012).

S1.1.2 Chemoattractant reaction-di↵usion

To model the change in chemoattractant concentration on a growing domain with (x, y) 2 [0, L
x

(t)]⇥ [0, L
y

], we rescale

the growing domain to a stationary domain of unit length in x. To maintain numerical accuracy as the e↵ective lattice

spacing increases due to the rescaling, we use a solver with automatic grid refinement (d03ra from the Numerical

Algorithms Group (NAG)), as was done is studies using the previous model (McLennan et al. 2012). Omitting the

explicit time dependence of L
x

, the change of chemoattractant concentration at a point (x, y) 2 [0, 1]⇥ [0, L
y

] of the

stationary domain is given by the RDE
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where the terms on the right-hand side describe di↵usion, internalisation, production and dilution (by tissue growth,

the dot denoting time derivative), respectively. Scaling factors of L
x

are introduced by rescaling to a stationary

domain to solve numerically on a grid of unit length (McLennan et al. 2012). Parameter names and values are given

in Table 1.

S1.2 Sensing accuracy

Berg & Purcell (1977) derive a fundamental biophysical limit to the accuracy with which a cell can sense a chemical

gradient. We briefly outline their derivation here before commenting on parameterisation. For a more detailed

derivation, see the original work (Berg & Purcell 1977).

The fundamental limit in the accuracy of concentration measurements is due to fluctuations in the numbers of

molecules measured. Fluctuations in particle number, N , are proportional to

p
N . To proceed with the derivation,

consider a sensor counting N molecules in a volume V with background (or average) concentration c̄. The inaccuracy

in a single concentration measurement is

�c

c̄
⇡ 1p

N
=

1p
V c̄

, (3)

in three dimensions, or 1/
p
Ac̄ in two dimensions, where A is the measurement area. The count of molecules can be

improved by repeated measurements. A sensor counting molecules in a volume can make n = TD/V 2/3

independent

measurements in a time T , based on the timescale of a molecule di↵using through the measurement volume V . This

improves the (root mean square) measurement error by 1/
p
n (Berg & Purcell 1977). Thus, with V ⇠ R3

, the

measurement uncertainty reduces to

�c

c̄
⇡ 1p

DT c̄R
=: ⇣, (4)

in three dimensions, or �c/c̄ ⇡ 1/
p
DT c̄ in two dimensions. Here we have introduced the dimensionless parameter

⇣, which depends on the background concentration, c. To account for the dynamically changing background concen-

tration, we explicitly scale ⇣ in simulations by the current relative concentration, i.e.,

p
c
0

/c, where c
0

is the starting
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background concentration (see Section S1.5 for pseudocode). The exact derivation of the sensing accuracy introduces

a numerical factor of order unity, but since we can only parameterise the sensing accuracy to orders of magnitude (see

Section S1.6.2), we ignore this.

S1.3 Integrate & switch mechanism

In McLennan et al. (2015b) a variable that records for how long each cell has been exposed to the presence of a

chemoattractant. This variable increases at a fixed rate when a chemoattractant gradient above the sensing accuracy

threshold is sensed, and decreases otherwise at another fixed rate. These rates are inversely proportional to the

parameters ‘leader-to-follower switching time’, ⌧
LF

, and ‘follower-to-leader switching time’, ⌧
FL

, respectively. Thus,

this variable e↵ectively integrates the time spent in a chemoattractant gradient (with a decaying “memory”), though

this could be easily modified to instead record the magnitude of the gradient or absolute value of the concentration.

Once the net time spent in a chemoattractant gradient (with time in the absence of an increasing gradient counting

negatively) reaches a threshold, follower cells switch state to adopt leader behaviour, i.e., begin to undergo chemotaxis.

Once cells are in a leader state and remain in a positive chemotaxis gradient, they do not increase their signal sensed

further, that is, they do not become further entrained to stay in leader state, which would increase the time taken to

switch back to a follower state in the absence of the gradient. Similarly, the intracellular signal decays with time spent

in the absence of a positive gradient, until it becomes low enough for cells to switch to a follower state, and then does

not decrease further (unless a gradient is found again). As a consequence, cells that have just switched state cannot

switch back immediately, as long as the directional signal is lost/gained on timescales shorter than the switching time.

S1.4 Reduced cell speed in DAN-zone

The DAN-zone extends over the left third of the migratory domain, and stretches as the domain grows. Within the

DAN-zone, cells move at reduced speed, and the reduction in speed is proportional to the relative concentration of

DAN. To model the dynamic expression of DAN, its concentration was modelled to linearly increase from 0 to 1

(relative units) in the first 12 hours, the linearly decrease to half of the maximum concentration over the following

6 hours. Thus, if the speed in the DAN-zone at peak concentration is 10µm/hr, it increases (as DAN concentration

decreases) to 25µm/hr at t=18 hours (half the reduction in speed).

S1.5 Pseudocode

For model simulations, this code was implemented in Mathwork’s Matlab, and the chemoattractant profile was solved

using the Numerical Algorithms Group’s (NAG) d03ra, as previously described (McLennan et al. 2012, 2015a,b). In

the interest of reproducibility, rather than just repeatability, we give the pseudocode to be implemented in the reader’s

programming language of choice.

main function

main function

1: initialise model parameters and first cells . see Table 1

2: for t = 6 to 24 do

3: if t = insertion time then

4: if there is space to insert a cell then

5: insert a new cell at start of domain

6: end if

7: end if

8: solve chemoattractant profile . see Eq. (2)

9: grow domain, update cell positions . see Eq. (1)

10: move cells

11: integrate-and-switch
12: end for

move cells

1: for i = 1 to number of cells do

2: pick a cell at random without replacement

3: pick n
filo

random directions
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4: if cell is a leader then

5: measure chemoattractant concentration at cell position,

c
old

=

Z
c(x, y) exp


�x2

+ y2

2R2

�
dx dy

6: measure chemoattractant concentration in random direction(s) at distance l
filo

away (pick highest), c
new

7: if

c

new

�c

old

c

old

� ⇣
q

c

0

c

old

then . gradient is above (scaled) sensing accuracy

8: move in chosen direction

9: else . cell has not found a favourable chemoattractant gradient

10: move in random direction

11: end if

12: else if the cell is attached then . cell is following another cell

13: if other cell is within l
filo

then

14: move in same direction as other cell

15: else . other cell is out of reach

16: detach cell

17: end if

18: else . the cell is a detached follower

19: check if there is another cell in random direction(s) at distance l
filo

(pick closest)

20: if a cell was found and is a leader (or part of a chain in contact with a leader) then

21: move in same direction as other cell

22: else

23: move in a random direction

24: end if

25: end if

26: end for

integrate-and-switch

1: increase signal sensed for cells that have sensed a chemoattractant gradient (but not beyond the upper threshold)

2: decrease signal sensed for cells that have not sensed a chemoattractant gradient (but not below the lower threshold)

3: followers whose signal sensed is at the upper threshold switch to become leaders

4: leaders whose signal sensed is at the lower threshold switch to become followers

Note on volume exclusion: Any attempted movement is aborted if it would lead to overlap with another cell or the

domain boundary.

S1.6 Parameterisation

See Table 1 for values of parameters used in model simulations, and below for explanations of selected parameters.

S1.6.1 Notes and further references

Experimental time Cell migration is assumed to start approximately six hours after electroporation (t = 0).

Directions sampled per time-step, n
filo

This cannot be directly related to the number of filopodia, which are

greater in number, but sample at a lower speed (McLennan et al. 2012).

Sensing radius, l
filo

This was calculated as the sum of the cell radius (7.5µm) and the mean filopodial length

(which was directly measured from the cell body to be 9µm and estimated from total cell size to be circa 20µm).

Since we have only implemented contact between filopodium and cell body, but not between two filopodia, which does

occur in vivo (Teddy & Kulesa 2004), we allow for a greater e↵ective length.

Maximum cell separation before contact is lost, lmax

filo

The maximum cell size including filopodia was measured

to be 86.3µm, half of which gives an estimate of maximum cell separation of 43.15µm. Independent measurements of

filopodial lengths gave a maximum of 30.4µm (from the cell body), which, together with the cell radius R = 7.5µm
and the average filopodial length (allowing for interfilopodial contact) of 9µm, gives an estimate of 46.5µm.
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Table 1: Model parameters

Parameter values listed were used as a default, unless otherwise stated. Where a range is given, the model gives

qualitatively similar results within that range, and the value in parentheses is the one used as a default. The

chemoattractant concentration is implemented in relative units, such that the starting value c
0

= 1.

Description Value Reference

n
filo

directions sampled per time-step 2 n/a, Section S1.6.1

�t simulation time-step 1 min n/a

R cell radius (nuclear) 7.5µm McLennan & Kulesa (2010)

v
lead

cell speed (leader cells) 41.6µm/h Kulesa et al. (2008)
v
follow

cell speed (follower cells) 49.9µm/h Kulesa et al. (2008)
L
y

height of domain 120µm McLennan et al. (2012)
L
x

length of domain (grows, Eq. (1)) 300 to 1100µm McLennan et al. (2012)
l
filo

sensing radius 27.5µm Section S1.6.1

lmax

filo

max. separation of cells in contact 45µm Section S1.6.1

D di↵usivity of chemoattractant 0.1 to 10

5µm2

/h (0.1) Section S1.6.1

� production rate of chemoattractant 10

�8

to 1/h (10

�4

) Section S1.6.1

� chemoattractant internalisation rate 10

2

to 10

4

(10

3

) µm2

/h Section S1.6.1

k
in

rate at which cells enter the domain 10/h Section S1.6.1

⇣ sensing accuracy 0.001 to 0.25 (0.1) Section S1.2

Di↵usion coe�cient of chemoattractant, D The primary identified chemoattractant in chick cranial neural crest

migration is VEGF

165

(McLennan et al. 2010). Its related isoform VEGF

164

is known to bind to ECM, and studies

in angiogenesis estimate as little as 1% may be freely di↵using, the rest bound to ECM and cellular receptors (Mac

Gabhann et al. 2006). Hence, we choose a low e↵ective di↵usivity. For freely di↵using VEGF in vivo, angiogenesis

modelling studies have used much higher values of 10

5 µm2

/h (Mac Gabhann et al. 2006, Jain & Jackson 2013).

However, with di↵usivities of that order of magnitude our model simulations still give qualitatively similar results.

Production rate of chemottractant, � In other tissues, VEGF production, or estimates thereof, range from

0.01-0.20 molecules/cell/s (Yen et al. 2011), or 4.39-5.27·10�5

molecules/µm�
2/s (Vempati et al. 2011) to 0.25 ·

10

�17

pmol/µm2

/s(Mac Gabhann et al. 2006). In our system, the rate of VEGF production is unknown and di�cult

to measure. However, it is outweighed by internalisation through migrating neural crest cells, as VEGF is not seen to

be replenished in trailing portions of the stream (McLennan et al. 2010). Thus, we assume � to be low.

Chemoattractant internalisation rate, � To our knowledge, no estimates or measurements of VEGF internal-

isation rate of chick cranial neural crest exist. Angiogenesis studies have used values of k
VEGFR2

= O(10

�4

)/s per

receptor (Mac Gabhann & Popel 2005, Yen et al. 2011). Berg & Purcell (1977) estimate the number of receptors

needed for a near-optimal sensing accuracy as N
R

= R/s, where R is the cell radius and s the receptor size. With

s = O(nm), we can estimate the near-optimal number of receptors to be N
R

� 10

4

. If receptor internalisation rates are

comparable to other tissues, a lower bound for the total internalisation rate would be given by k
VEGFR2

N
R

� 1/s (per
cell). From this we estimate the chemoattractant consumption, as defined in (2), to be � � O(10

3

)µm2/h. However,

the concentration of VEGF in our system is unknown, and hence the units of c, and therefore �, in our model are

arbitrary. We assume a high � to ensure quick consumption of chemoattractant by cells.

Rate at which cells enter the domain, k
in

This is the rate of attempted cell insertions, and not the e↵ective rate

seen in vivo. In a typical simulation, on the order of 10% of insertions are unsuccessful. Greater values of the insertion

rate thus result in equal or only slightly increased cell numbers. It should be noted here again that our simulations are

a two-dimensional abstraction of the three-dimensional migratory stream, which may contain 4-5 times as many cells

in vivo in the transverse (z) direction. Thus, cell numbers in (unperturbed) simulations are approximately correct for

a section of the migratory stream, to within the accuracy that total cell numbers are known in vivo.

S1.6.2 Parameterisation of the sensing accuracy

Most of the variables upon which the sensing accuracy depends are underdetermined in the case of chick cranial

neural crest migration, such as VEGF di↵usivity, D, VEGF background concentration, c̄, and the sensing time, T .
Nevertheless, we can proceed to estimate order of magnitudes, which can serve as bounds for our model simulations.
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Background concentration,

¯C The concentration of VEGF used in in vitro experiments is 1µg/ml (McLennan

et al. 2010), which, at a molecular weight of 19.2 kDa ⇡ 20kg/mol, leads us to estimate c̄ ⇡ 3 · 107/µm3

(50mM).

Sensing time, T The time-step of our simulations is �t = 1 minute, and we assume that a cell takes up only a

fraction of this time with sensing, and most of it with movement. We could therefore estimate T  0.1 · �t = 0.1
minutes. If we relax our assumptions, this estimate might change by an order of magnitude. This would only change

the sensing accuracy by a factor of roughly 1/3, which gives qualitatively similar results in typical model simulations.

Lower bounds on gradient measurement accuracy For the measurement of a gradient, i.e., the di↵erence

between two concentration measurements, the Berg-Purcell limit (4) increases by a factor of

p
2.With the estimates

for c̄ and T as above, and the parameter values D = 0.1µm2

/h and R = 7.5µm (Table 1), we obtain an estimate of

the sensing accuracy (4) of ⇣
d=3

⇡ 0.002 in three dimensions, or ⇣
d=2

⇡ 0.01 in two dimensions. These can be taken

as a lower bound for the (order of magnitude of) sensing accuracy of neural crest cells in our model. Note that the

sensing accuracy rescales with changing background concentration, which has to be taken care of in the computational

implementation (see Section S1.5).
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