S5 Fig. Summary of elicitor-triggered responses and amplification settings used for microscopic analysis. (a) Overview of inductive and suppressive responses of promoter:: YFP_N constructs expressed in 7-days old seedlings following treatment with 100 nM flg22, chi7, AtPep1 or 0.5x MS as control. Numbers represent the factors calculated as fold-change for 2 independent transformation lines per construct. A third line was analysed for $ACS6::YFP_N$ and $HEL::YFP_N$ constructs to confirm whether or not chi7 can cause a suppression of these markers. Black colour of a field indicates induction, white colour suppression and grey colour non-significant changes. (b) Table summarizing the amplification settings (gain) used for confocal microscopic analysis of promoter:: YFP_N constructs listed as an indicator for the expression level of the respective construct.

(a)	■ induction > 1.5 ☐ suppression < 0.67 ☐ no change											
fold- change	flg22				chi7			Pep1				
	RC	TZ	DZ	MZ	RC	TZ	DZ	MZ	RC	TZ	DZ	MZ
WRKY11	0.60/	4.72/	2.03/	1.46/	0.80/	2.86/	1.34/	1.59/	0.85/	3.27/	3.73/	3.06/
	1.26	3.30	1.83	0.72	1.01	2.64	1.25	0.81	0.92	1.84	1.47	1.14
MYB51	0.88/	1.38/	1.72/	0.50/	1.24/	1.86/	1.53/	0.69/	3.34/	3.54/	6.31/	1.77/
	1.00/	6.44/	0.72/	1.47/	1.00/	1.00/	0.35/	3.61/	1.20/	1.68/	2.19/	7.30/
ACS6	1.00/	1.00/	10.83/	0.67/	1.00/	1.00/	6.02/	0.48/	1.00/	4.61/	29.41/	1.50/
	1.00/	0.88/	4.70/	0.70/	1.00/	0.86/	7.35/	1.24/	1.00/	2.86/	39.08/	1.21/
	1.24	1.98	1.19	0.71	1.90	1.52	1.97	0.59	1.89	2.01	9.19	1.10
AOS	0.13/	1.00/	1.00/	1.00/	0.17/	1.00/	1.00/	1.00/	0.13/	1.00/	4.30/	1.00/
	1.00	1.00	1.00	1.00	1.25	1.00	1.00	1.00	1.00	1.24	1.76	1.00
HEL	3.39/	7.04/	7.56/	0.73/	0.70/	4.38/	1.00/	0.85/	3.34/	260.97/	764.64/	12.14/
	1.18/	2.94/	1.00/	3.92/	0.37/	1.21/	1.00/	1.00/	1.66/	21.58/	216.70/	12.48/
	0.57	1.98	2.05	1.29	0.24	0.95	0.39	0.42	1.09	4.91	6.79	1.44
ZAT12	0.70/	1.76/	1.89/	0.92/	0.48/	1.24/	1.51/	1.97/	3.13/	4.88/	5.33/	1.65/
	1.08	12.59	2.50	0.73	0.73	3.00	2.98	1.31	0.44	61.52	12.60	1.40
PER5	9.66/	21.14/	21.34/	2.73/	2.76/	1.00/	2.10/	1.17/	8.87/	10.99/	11.08/	35.35/
	1.10	8.85	17.35	1.62	1.00	1.00	1.76	0.81	1.00	1.00	3.08	2.34
ICS1	1.00/	1.00/	1.00/	1.83/	1.00/	1.00/	1.00/	1.17/	1.00/	63.04/	27.70/	2.03/
	1.00	1.00	1.00	0.65	1.00	1.00	1.00	0.81	1.00	3.26	42.11	1.37
PR1	1.00/	1.00/	1.00/	1.94/	1.00/	1.00/	1.00/	1.24/	1.00/	2.03/	1.00/	3.93/
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.55	1.00	1.00	1.00	2.13

(b)					
` ,	Amplification	RC	TZ	DZ	MZ
	WRKY11	700/ 800	750/ 800	800/ 800	800/ 800
	MYB51	1000/ 1100	1100/ 1200	1100/ 1200	950/ 1200
	ACS6	1000/ 950/ 950	1000/ 950/ 950	900/ 775/ 950	700/ 650/ 720
	AOS	1000/ 1200	1000/ 1200	1100/ 1200	1100/ 1200
	HEL	850/ 850/ 750	1100/ 950/ 900	1100/ 950/ 900	850/ 800/ 750
	ZAT12	750/ 750	750/ 850	700/ 750	700/ 800
	PER5	950/ 1100	950/ 1100	950/ 1100	1100/ 1100
	ICS1	1200/ 1200	1200/ 1200	1200/ 1200	1200/ 1200
	PR1	1200/ 1200	1200/ 1200	1200/ 1200	1200/ 1200