
 

Supplementary Materials: 

 
 

Genome-wide host-microbiota association analysis of 1,812 individuals 5 
identifies vitamin D receptor genetic variation and other host factors shaping 

the gut microbiota 

 
Jun Wang1,2,#, Louise B. Thingholm3,#, Jurgita Skiecevičienė3,#, Philipp Rausch1,2, Martin Kummen4,5,6, Johannes 
R. Hov4,5,6,7, Frauke Degenhardt3, Femke-Anouska Heinsen3, Malte C. Rühlemann3, Silke Szymczak3,†, Kristian 10 
Holm4,5,6, Tönu Esko8, Jun Sun9, Mihaela Pricop-Jeckstadt10, Samer Al-Dury11, Pavol Bohov12, Jörn Bethune3, Felix 
Sommer3, David Ellinghaus3, Rolf K. Berge12,13, Matthias Hübenthal3, Manja Koch14, Karin Schwarz15, Gerald 
Rimbach15, Patricia Hübbe15, Wei-Hung Pan3, Raheleh Sheibani3, Robert Häsler3, Philipp Rosenstiel3, Mauro 
D’Amato16,17, Katja Cloppenborg-Schmidt2, Sven Künzel1, Matthias Laudes18, Hanns-Ulrich Marschall11, Wolfgang 
Lieb14, Ute Nöthlings10, Tom H. Karlsen4,5,6,7,19, ‡, John F. Baines1,2, ‡, Andre Franke3, ‡* 15 
 
 
 



Materials and Methods:  

Study subjects and sample collection 20 

Two population-based cohorts from Schleswig-Holstein (Germany) were included in the study. 
Nine hundred and fourteen individuals from the PopGen- and 1115 individuals from the FoCus 
(Food Chain Plus) cohort were included. These two study cohorts were recruited independently 
from each other, and maximum number of individuals available was included to increase 
statistical power for various analyses. All samples, as well as corresponding phenotypic and 25 
dietary behavior were obtained from the PopGen biobank (Schleswig-Holstein, Germany)20. 
Study participants collected fecal samples at home in standard fecal tubes. Samples were shipped 
immediately at room temperature (RT) or brought to the collection center by the participants. 
Upon arrival into the study center (within 24 hours), they were stored at -80oC until processing. 
Studies exploring the impact of storage conditions on sample quality and stability of the 30 
microbial communities indicate that storage at RT for up to 24 hour is a recommended procedure 
for preservation55,56. Written, informed consent was obtained from all study participants and all 
protocols were approved by the institutional ethical review committee in adherence with the 
Declaration of Helsinki Principles, whereas the sample identities are blinded from investigators. 
Sequence data of the 16S rRNA gene, genotype, nutritional, and phenotype data used for the 35 
herein described study has been made available to other scientists through PopGen’s biobank 
general data transfer agreement. A summary of phenotypes used in this paper is given in Table 
S1.  

Genotyping data  

Samples of the PopGen and FOCUS cohorts were genotyped on different genotyping arrays. The 40 
PopGen samples were typed on the Affymetrix 6.0, Affymetrix Axiom, Illumina 550k, the 
custom Illumina Immunochip and Illumina Metabochip with sample pre-quality control (QC) 
sizes ranging from 678 to 1,218 and a variant coverage of 196,524 to 934,968 variants. The 
FoCus samples were typed on the custom Illumina Immunochip and the Omni Express Exome, 
with overall 1024 and 1713 pre-QC samples and a variant coverage of 195,732 to 964,193 45 
variants. For each cohort, genotype data of each array were quality controlled separately and then 
merged and imputed. In total 17,017,474 single nucleotide variants (SNVs) were included for the 
PopGen cohort and 17,340,550 for the FoCus cohort. 

Quality control 

First, a sample QC was conducted followed by a SNP QC and identification of population 50 
outliers by PCA, as well as a batch PCA to identify outliers within each batch. (I) Individuals 
with missingness >10 %, excessive heterozygosity (not within interval [mean + 3*sd, mean -
3*sd]) (sd: standard deviation), with a kinship coefficient (identity by descent; IBD) > 0.185 and 
those failing a gender check were removed from the dataset. The IBD was estimated using the R-
package SNPRelate (vs. 0.9.19) and a maximum likelihood (MLE) approach. This has proven to 55 



be especially useful for custom arrays, for which moment estimators in this analysis 
overestimated relatedness.  

The gender check was performed either with PLINK (v1.07)57 or assessed by plotting the 
average X- and Y-chromosomal variant intensities. In the latter approach samples were gender 
classified using k-means clustering with two centers and 10 iterations (R package kmeans). 60 
Samples with incorrect genders were thus detected by non-equality of expected and observed 
gender. SNPs with missingness of > 5% and a deviation from Hardy-Weinberg equilibrium P < 
0.00001 were excluded. At this step no MAF-threshold was applied. Population outliers were 
identified by PCA-based mapping against the HapMap III CEU, CHB, JPT and YRI population 
and excluded from the dataset. The PCA was performed using flashpca (git version f16ac44-65 
dirty)58. Finally, a batch PCA was performed. All samples lying outside the rectangle 
[median(PC1) - 3*IQR(PC1),median(PC1) + 3*IQR(PC1)] x [median(PC2) - 3*IQR(PC1), 
median(PC2)+ 3*IQR(PC2)] were excluded. For estimation of relatedness and both the 
population and batch PCAs, a dataset pruned to remove linkage disequilibrium (LD) was used, 
leaving only SNPs with r2 < 0.2) and a MAF > 0.05. Additionally, regions of high linkage 70 
disequilibrium (chromosome 5: 51.5 Mb – 55 Mb, chromosome 6: 25 Mb – 33.5 Mb, 
chromosome 8: 8 Mb – 12 Mb and chromosome 11: 45 Mb to 57 Mb) were removed. Next, 
samples from the different chips were merged, excluding one of the related samples (relatedness: 
IBD > 0.185; exclusion criteria: genotyping quality) across the different chips. For the PCA, only 
variants with a MAF > 0.05 were included. After quality control, the PopGen dataset comprised 75 
1198 samples and 1,313,548 autosomal variants with MAF > 5%. Between 2 – 15 % of all 
samples were excluded during sample and population QC and 1 - 20 % of variants during SNP 
QC (not including the MAF criterion). The FoCus dataset comprised 1182 samples and 684,690 
autosomal variants with MAF > 5 %. Between 8 – 13 % of all samples were excluded during 
sample and population QC and 3 – 6 % of all variants during SNP QC (not including the MAF 80 
criterion). In total, 37 % of all variants in the FoCus and 25 % of all variants in the PopGen 
cohort had MAF < 5 %. 

Phasing and Imputation 

Before imputation, all variants with a MAF < 0.05 were excluded. The data were phased using 
SHAPEIT (v2.r727.linux.x64)59 with default parameters (input-thr 0.9, states 100, windows 2, 85 
effective-size 11418, burn 7, prune 8, main 20) without a reference panel. The coordinates 
published with the 1000 Genome Phase I variant set of March 2012 were used as the genetic 
map. The imputation was carried out using IMPUTE2 (vs.3.0_x86_64_static)60 and the 1000 
Genome Phase I variant set of March 2012 in 5 - 10 Mb chunks. Each chunk contained at least 
200 variants. Again, default parameters were used (Ne 20000, buffer 250, burnin 10, k 80, k_hap 90 
500). Three genotype probabilities were obtained. Only variants with an IMPUTE2-Info Score of 
more than 0.3 were further analyzed. After imputation, 17,017,474 with IMPUTE2-Info Score > 
0.3 were present for the PopGen cohort and 17,340,550 for the FoCus cohort. 

HLA alleles were imputed via SNP2HLA (v1.0)61 using the T1DGCreference panel. Imputation 
was based on the pre-imputated SNP sets for each respective cohort. SNPs were mapped to the 95 



chromosome 6 (25-34 Mb) of the snp142 set 
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/), ATCG variants were excluded, 
minus strand variants were transformed to plus strand variants, and rsIDs were derived and used 
for the imputation of HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
DQB1, and HLADRB1. Only alleles with a posterior probability of at least 0.7 were considered 100 
in the following analyses.  

Sequencing and processing of bacterial 16S rRNA sequences  

Bacterial genomic DNA was extracted using the QIAamp DNA Stool Mini Kit from QIAGEN 
on a QIAcube system. For all samples, the V1-V2 region of 16S rRNA gene was sequenced on 
the MiSeq platform, using the 27F/338R primer pair and dual MID indexing (8-nt each on the 105 
forward- and reverse primer) as described by Kozich et al.62. Sequencing was performed with 
MiSeq Reagent Kits v2. After sequencing, MiSeq fastq files were derived from base calls for 
read one and two (R1/R2), as well as both indices (I1/I2), using the Bcl2fastq module in 
CASAVA 1.8.2 (http://support.illumina.com/sequencing/sequencing_software/casava). Stringent 
demultiplexing was carried out by allowing no mismatches in either index sequence (instead of 110 
the default of one mismatch allowed by the MiSeq). Forward and reverse reads were merged 
with the FLASH software (v1.2)63 and quality filtering was subsequently performed with the 
fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), excluding those sequences with >5% 
nucleotides of quality score <30. Chimeras in sequences were removed using UCHIME (v6.0)64. 
After randomly selecting 10,000 reads for each sample, taxonomical classification and 115 
compositional matrices for each taxonomical level were carried out using RDP classifier65 with 
the latest reference database (RDP14), where classifications with low confidence at the genus 
level (<0.8) were organized in an arbitrary taxon of "unclassified_family". Species-level 
operational taxonomical units (97% similarity, OTUs) were created using the UPARSE routine66.  

Bile acids and fatty acids measurements on human serum samples 120 

Serum bile acids were analyzed for 551 PopGen samples by HPLC-MSMS as recently 
described67. Five bile acids (cholic acid, CA; chenodeoxycholic acid, CDCA; lithocholic acid, 
LCA; deoxycholic acid, DCA and ursodeoxycholic acid, UDCA) including their Taurinated (T) 
and glycinated (G) conjugates were measured.  
 125 
Polyunsaturated fatty acid composition in plasma was analyzed for the same 551 PopGen 
samples as above as described previously68. The following fatty acids were measured: C18:2n-6 
(Linoleic acid), C18:3n-3 (Alpha-linolenic acid), C18:3n-6 (Gamma-linolenic acid), C18:4n-3 
(Stearidonic acid), C20:2n-6 (Eicosadienoic acid), C20:3n-6 (Dihomo-gamma-linolenic acid), 
C20:4n-3 (Eicosatetraenoic acid), C20:4n-6 (Arachidonic acid), C20:5n-3 (Eicosapentaenoic 130 
acid), C21:5n-3 (Heneicosapentaenoic acid), C22:2n-6 (Docosadienoic acid), C22:4n-6 (Adrenic 
acid), C22:5n-3(Docosapentaenoic acid), C22:5n-6 (Docosapentaenoic acid), C22:6n-3 
(Docosahexaenoic acid). 



Cis- and trans-eQTL analysis on human data 

For SNPs identified as associated with beta-diversity and/or single bacterial traits, a cis- and 135 
trans-eQTL analysis was performed using data on 2,360 individuals. The analysis design and 
recourse are described in detail in previous studies69,70. In summary, cis-eQTL analysis was 
performed on SNP-probe pairs for cases where the distance was less than 1 Mb. To consider 
effects of SNPs in LD with disease-associated SNP (trait-SNP), a conditioned analysis was 
performed by first adjusting the probe expression level for the effect of the strongest associated 140 
local SNPs (eSNP), and then repeating the eQTL analysis. Likewise, the p-value for the local 
best SNP was calculated conditioned on the trait SNP. In order to control for FDR, sample labels 
were permuted 100 times to obtain a p-value distribution. Expression probes with a significant 
association (FDR < 5%; two-way conditional analysis for cis-eQTL analysis) to a trait SNP are 
given in Table S6. 145 
 

Statistical analysis 

Correlation between microbiome and metadata 

In both cohorts, beta-diversity measures based on genus-level composition were generated using 
the “vegdist” function (Bray-Curtis and Jaccard dissimilarities). Community ordination was 150 
performed using principle coordinates analysis (PCoA) based on the calculated dissimilarities 
using the “capscale” function in “vegan” (v2.3)71. The "envfit" function in “vegan” was used to 
correlate either categorical data, for which it performs multi-dimensional ANOVA on the 
ordination, or continuous variables, for which the function tests linear correlations between a 
given variable and the coordinates of microbial communities.  155 

We considered a range of reported confounding variables that could shape the human gut 
microbiome: age, gender, body mass index (BMI), smoking and major nutritional components or 
food groups derived from diet patterns. Dietary patterns were collected via a validated, self-
administered, 112-item food-frequency questionnaire established for German populations72. All 
participants were given the option of completing the questionnaire preferably as a web-based 160 
version and, optionally, on paper. Macro- and micronutrient intakes were obtained by using the 
German Food Code and Nutrient Database (vII.3) and provided by the Department of 
Epidemiology of the German Institute of Human Nutrition Potsdam-Rehbruecke73.	Prior  to 
association analysis, all individuals who took antibiotics less than 6 weeks before the stool 
collection were excluded, in order to remove the possible influences of antibiotic medication.	165 
The effect size and significances of the mentioned variables were estimated using "envfit", and 
the variables with significant effects (p<0.05) were further used in the GWAS analysis as co-
variates (water, alcohol and all other highly correlated nutritional variables, which were 
collectively joined under the umbrella 'Total Energy'). The combined effect of host metadata was 
estimated further using the “bioenv” function in the “vegan” package, which calculates the 170 



maximum Pearson correlation of microbial variation (Bray-Curtis dissimilarity) and combined 
dissimilarity in the selected subset of metadata (denoted by Gower distances). In order to reduce 
random errors in the lowly abundant taxa, the analysis focused on the “core-measurable-
microbiota”, which was determined using technical replicates according to Benson et al.38. Only 
those taxa with an average >40 reads per sample (thus less error introduce by random processes) 175 
were included (Figure S12). 

Association of individual bacterial traits with human genetic variation 

In order to identify human genetic variation associated with the abundance of individual gut 
bacteria, a statistical test for each combination of SNP and taxon was performed. The abundance 
of bacteria in the human gut is characterized by increasing number of zeros at lower taxonomic 180 
levels, a right screwed distribution often with a long tail and only positive values. Thus, a model 
assuming a normal distribution of dependent variables could not be fitted to our data. The 
generalized linear model (GLM) with a negative binomial (negbin) distribution and log link was 
selected for the statistical analysis as the best fitting model across all bacteria. The hurdle model 
with a negbin distribution showed an increasingly good fit with increasing number of zeros. The 185 
GLM negbin model was therefore selected as a consistent model across all bacteria, while the 
analysis of species (97% similarity threshold OTUs) was supported with the hurdle model74 . 

Our identified “core measurable microbiota” 38, consists of 64 taxa across five levels (phylum, 
class, order, family and genus) and 42 species-level OTUs. Taxa with >90% of their counts 
within the first 5% of range of counts or with >90% of above-zero counts within the first 5% of 190 
the above-zero range were excluded, as they performed badly with the selected model(s). Forty 
OTUs and 58 taxa were used for association study with human SNPs. The analyses were 
preformed on both cohorts separately (986 samples in FoCus and 826 samples in PopGen). In the 
analyses, outliers defined as 5*standard deviation (SD) were removed, genetic variants not 
overlapping between FoCus and PopGen were discarded, while variants with MAF > 0.05 and 195 
IMPUTE2 INFO criteria > 0.8 were included. No population stratification is observed between 
the two cohorts (λGC=1.00, Figure S18)75.The covariates BMI, age, gender, genetic principal 
components 1-3 and nutritional variables alcohol, water and 'total energy' intake were used. The 
analyses were performed using R Project version 3.2 and the GLM.nb function in the “MASS”76 
package version 7.3 for GLM negbin, and the hurdle function in the package “pscl” (v1.4)77. 200 

A meta-analysis of GLM negbin hits across the two cohorts was performed using PLINK (v1.9 
64-bit)57, with the command “–meta-analysis +qt”, including information on beta coefficients 
and standard errors. Clumping was performed using PLINK v1.9 with the “–clump” command 
on SNPs meeting the following filtering criteria: meta-study fixed-effect p-value < 5×10-8, 
single cohort p-value < 5×10-4, the same beta-value sign (same direction of association) and AIC 205 
(model fit parameter) < 50k. Clumps with at least two SNPs of which at least one SNP was 
genotyped were selected. For each selected clump, the SNP with the lowest meta-analysis p-
value was selected as the tag SNP and for bacteria containing zero counts the hurdle model was 



applied as described above. All hits were confirmed to be supported by the count- or zero part of 
the hurdle model with a p-value < 0.05 in both studies.  210 

Annotation and enrichment 

DEPICT39 was used to annotate and perform tissue and gene set enrichment analyses among the 
significant associations between human genetic variation and both individual bacteria traits and 
beta-diversity. DEPICT was used with the following settings a) association_pvalue_cutoff: 1x10-

5, b) nr_repititions: 20, and c) nr_permutations: 500, and all available analysis steps were 215 
performed.  

For genotype data we used 
1000_genomes_project_phase3_CEU/ALL.chr_merged.phase3_shapeit2_mvncall_integrated_v5
.2 0130502.genotypes, for the collection file we specified ld0.5_collection_depict_150315.txt.gz 
and for the reconstituted gene sets file we specified GPL570-GPL96-GPL1261-220 
GPL1355TermGeneZScores-MGI_MF_CC_RT_IW_BP_KEGG_z_z.binary. 

Genetic variation correlated with overall community differences 

In addition to taxon-oriented association analysis, we also performed analyses aimed at 
identifying genetic variation that may not necessarily associate with individual bacterial taxa 
with genome-wide significance, but rather correlate with overall community differences (beta-225 
diversity), by e.g. simultaneously influencing numerous taxa. We performed a simulation and 
treated genotype at each locus as categorical variables (the distribution of each genotype follows 
Hardy-Weinberg equilibrium), and measured the genotype association using the “envfit” function 
in the “vegan” R package (v2.3)71. This approach calculates the community differences 
associated with different factor levels (in this case, three different genotypes), by comparing the 230 
difference in centroids of each group relative to the total variation based on the main axes of the 
PCoA based on the Bray-Curtis dissimilarity. By shuffling the simulated genotype >2x107 times, 
we effectively obtained a large-enough null distribution of effect size. This was performed for 
six categories of MAF to represent loci with MAF of 5%, 10%, 20%, 30%, 40% and 50% 
(whereas in case of a real SNP, it is compared to its closest MAF category, Figure S19), and if a 235 
certain locus displays greater effect sizes than the simulated maximum, they are extremely 
unlikely to be observed by chance (p<5×10-8) and can be considered genome-wide significant. 
We have filtered SNPs in a similar fashion as taxa-association mentioned above, that a SNP is 
considered significant when 1) its effect size surpasses the significance threshold in both cohorts; 
2) its effect size surpasses the significance threshold in combined cohort; 3) such SNP is 240 
included in a clump with at least two SNPs, and at least one SNP was genotyped. 

The additive effect of the significant loci from this analysis was then determined using 
redundancy analysis based on genus-level composition (“rda” in “vegan” package), and the 
“ordiR2step” function in “vegan” package, which optimizes the order of loci in a linear model 
and sums up the variation of the ordination explained by each additional locus. 245 



HLA analyses were conducted on the respective HLA haplotypes within each locus, coded as 
carrier or non-carrier of each specific allele. We performed distance based redundancy analysis 
after correction for host characteristics (see association analysis for factors). These models were 
then tested using a permutative ANOVA approach (5000 permutations) as implemented in the 
“vegan” function “anova.cca”, and the coefficients of determination were extracted via 250 
“RsquareAdj”. 

 

Analysis of gut microbiome data from Vdr KO mice  

Gut microbiome data from Jin et al.25 was kindly provided by Dr. Jun Sun from the University of 
Illinois at Chicago, which includes fecal samples from three wild type and five Vdr knockout 255 
mice for which the V4-V6 region of the 16S rRNA gene was sequenced on the 454 GS-FLX 
platform. Quality filtering, removing chimeras and classification were performed according to 
the same procedure as described  in the previous section. Statistical tests for the effect of Vdr 
genotype on the microbiome were carried out with “envfit” function in “vegan” as described for 
the analysis with respect to human SNPs (see above). Comparison of specific taxa was carried 260 
out by the Wilcoxon test. Results are shown in Figure S5-6. 

Analysis of association between bile- and fatty acids and the microbiome 

In order to identify bacteria associated with the concentration of measured bile acids, including 
total LCA (the sum of LCA, G.LCA and T.LCA) and total BA (sum of all 15 bile acids), a 
generalized linear model with an inverse Gaussian distribution and log link was applied, 265 
excluding 5*SD outliers of bacteria and bile acids and including the covariates age, gender, BMI, 
‘total energy’ intake, water, alcohol and bile acid batch number. To evaluate significance levels, 
the Benjamini–Hochberg (BH) correction method was applied for each bile acid analysis (Table 
S3). To identify bacteria associated with omega-3 and -6 fatty acids, a linear regression model 
was applied with a square root transformation of fatty acids, excluding 5*SD outliers of bacteria 270 
and including the covariates age, gender, BMI, total energy intake, water and alcohol. To 
evaluate significance levels, the BH corrected p-values were calculated (Table S4). Association 
with beta-diversity was carried out using “envfit” function as described above. 
 
Shotgun metagenomic analysis 275 
HiSeq sequencing  
For a subset of 122 individuals, the same DNA extracts used in 16S rRNA gene sequencing were 
subjected to shotgun metagenomic sequencing. Samples were prepared following the Illumina 
Nextera DNA Library Preparation Kit and sequenced on the HiSeq Platform as 2×125 bp paired-
end reads. Nextera adapter sequences were trimmed using Trimmomatic (v0.32)78. Quality 280 
control of the sequencing reads was performed with sickle (v1.330, 
https://github.com/najoshi/sickle) and parameters set to a sliding-window quality threshold of 20 
and a minimum length of 60 after quality trimming. DeconSeq79 was run to identify and remove 



human reads from the sequencing file, using the hg19 human genome sequence as reference 
database. If one of the reads belonging to a read pair was removed at any of the QC steps, the 285 
respective paired read was discarded, as well.  
 
HUMAnN2analysis.  
The 189 samples that passed QC and for which genetic data is available were analyzed using 
HUMAnN2 (https://bitbucket.org/biobakery/humann2/) with default settings except ‘--bt2_ps 290 
sensitive’ for the analysis of pathway and gene family abundance. Gene families including the 
term 'bile acid' were selected and four pathways relevant for bile acid metabolism were selected 
(bile acids degradation, iso-bile acids biosynthesis I + II, bile acid biosynthesis, neutral pathway 
and glycocholate metabolism (bacteria)). Association with VDR genotype (rs7974353) was 
evaluated using GLM with an inverse Gaussian distribution, the covariates BMI, age, gender, 295 
alcohol, water and total energy intake and removal of 5*SD outliers.  
 
Replication in FoCus obesity cohort 
 
SNPs found to be significantly associated with beta-diversity in this study were consequently 300 
replicated in an additional “FoCus obesity cohort”. The FoCus obesity cohort was recruited from 
the Obesity Outpatient Centre at the University Hospital in Kiel, which offers both non-surgical 
and surgical obesity therapies. The pheno- and genotyping profile was similar to the one applied 
for the FoCus control cohort.  The recruitment of the FoCus obesity cohort was approved by the 
local Ethics Committee (A156/03) and each patient gave their informed consent. To replicate 305 
associations of lead SNPs with beta-diversity, the effect size of each SNP was calculated with 
“envfit” and consequent p-values were calculated based on the same empirical null distributions 
as described above; successful replications are defined as having p-values <0.05/42 (in total 42 
SNPs included in the test).  
 310 
Transcriptome analysis of human colon biopsies 
 
RNAseq was conducted on biopsies obtained from four groups of individuals (59 samples) that 
were retrieved from the local hospital biobank in Kiel. The individual groups are composed of 
healthy individuals without significant pathological findings, patients with acute non-315 
inflammatory bowel disease  intestinal inflammation (Disease controls), Crohn's disease patients 
and ulcerative colitis patients. The samples were taken either from the sigmoidal colon or the 
terminal ileum in two inflammatory stages (inflamed or non-inflamed). Total RNA was extracted 
using the RNeasy kit (Qiagen, Germany) according to the manufacturer’s protocol and 
sequenced on an Illumina HiSeq2000 using the Illumina total RNA stranded TruSeq protocol. 320 
Pre-processed reads were aligned to the hg19/CRCh37 reference genome with TopHat280. Gene 
expression levels were computed by HTSeq81 and analyzed with the Bioconductor package 
DESeq282.  
To gain insight into the nature of differentially expressed genes in pair-wise comparisons 
between inflamed versus non-inflamed samples, transcription factor binding sites (TFBS) were 325 
obtained using the InnateDB database (www.innatedb.com)83, integrating predicted transcription 
factor binding site data from the CisRED database (www.cisred.org) 84. Genes related to VDR 



transcription factor binding sites were subjected to further analysis. Correlations were calculated 
employing the Spearman rank correlation coefficient while differences between correlations 
were assessed using the Mann-Whitney U test. Functions associated to VDR related transcripts 330 
were obtained from Geneontology.org and further summarized into meta-terms. Bacterial 
abundances from the corresponding samples were generated as previously described15. 
 



Supplementary Figures: 
 335 

 
Figure S1: Microbiome composition in both cohorts at the phylum level. The three most 
abundant phyla are shown, and samples are ordered in ascending relative abundance of the 
overall most abundant phylum (Firmicutes).  



 340 
 

 
Figure S2: Overview of microbiome composition in both cohorts at the genus level. The 
seven most abundant genera are shown, and samples are ordered in ascending relative abundance 
of most abundant genus (Bacteroides). uc: unclassified.  345 
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Figure S3: Cumulative effect for host parameters (first row), nutrients (second row), food 
groups (third row) and all factors combined (bottom row). For each number of incrementing 
variables included, all possible subsets were used, and the cumulative effects were calculated 350 
with “bioenv” function, which calculates the association between dissimilarity of the metadata 
(Gower dissimilarity) and beta-diversity (Bray-Curtis dissimilarity). The largest effect size is 
usually observed with an optimal combination of several variables instead of all variables. Since 
nutrients are derived from food groups and both have a similar cumulative effect size, only 
nutrients were included with anthropometric parameters to calculate the overall cumulative 355 
effect.  
 



 
 
 360 
 

Figure S4: Significant associations between food groups and beta-diversity (PCoA based on 
Bray-Curtis dissimilarity) in combined cohorts. The ordination of the microbial communities 
is identical to Figure 1, with arrows denoting the effect size (variation explained using “envfit” 
function, see Methods).  365 
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Figure S5: Vdr knockout in mice significantly changes the gut microbiome. Ordination 
shows the fecal microbiome of eight mice based on Bray-Curtis dissimilarity, and lines connect 370 
samples of the same genotype (Vdr-/- , n= 5, and WT, n=3). Data (V4-V6 region of the 16S 
rRNA gene) were obtained from Jin et al.25. 
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 375 
Figure S6: Replication of VDR genotype and specific taxa associations. The left panels show 
three most significant taxa associations of VDR gene after Parabacteroides in humans, with p 
values derived from meta-analysis using a GLM (see Methods). For uc_Enterocococaceae, both 
the percentage of non-zero values for each genotype as well as the mean values are shown (see 
also Figure 3), while the other two taxa are present in nearly all samples, thus boxplots are 380 
shown. Right panels display taxa in wild type (WT, n=3) and Vdr knockout mice (KO, n=5) for 
which significant differences exist based on the Wilcoxon test. uc: unclassified. 



 
 

Figure S7: Top 50 interactions between VDR-disease transcripts and Parabacteroides.  385 
Transcripts from the sigmoidal colon which share a VDR binding motif and are differentially 
expressed in response to inflammation are shown with their correlation to Parabacteroides: 
unique correlation pairs with the 50 strongest Spearman rho correlation coefficents are shown. 
Several transcripts are represented in more than one group. Each dot corresponds to a correlation 
pair between a transcript and one of the two most abundant Parabacteroides signals (#1 present 390 
in 87% of all individuals, #2 present in 67% of all individuals), colour coded by Spearman rank 
correlation coefficient. The different groups are shown separately: healthy individuals, disease 
controls, Crohn's disease patients and ulcerative colitis patients. The significance of the 
differences between the Spearman rank correlation coefficients of the individual groups are 
indicated by stars (* p<5x10-2; ** p<5x10-4). Two transcripts functionally associated to bile 395 



acid metabolism were highlighted separately(CYP27A1: Cytochrome P450 Family 27 Subfamily 
A Member 1; NR5A2: Nuclear Receptor Subfamily 5 Group A Member 2). Biological processes 
indicated to the left refer to: chemotaxis, migration and adhesion (chemotaxis); inflammation, 
immune process, stress defense, response to bacteria (inflammation); ion transport, vitamin and 
nutrition process (vitamin); metabolism and energy process (metabolism); proliferation, cell 400 
cycle and apoptosis (cell cycle); RNA transcription and splicing (transcription); translation and 
phosphorylation(translation). 
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Figure S8: Overview of beta-diversity (Bray-Curtis dissimilarity, A) and significantly 
associated bile acids (B). Panel (A) shows the principle coordinate analysis of a subset of the 
PopGen cohort (n=551). Samples are shown in different colors according to VDR genotype 410 
(blue=CC, orange=CT, green=TT), with circles containing 50% of the samples for each group 
(for visualization). Panel (B) displays bile acids with a significant correlation to beta-diversity, 
with arrows denoting the effect size (variation explained as calculated by “envfit” function, see 
Methods). 



0.62 0.64 0.66 0.68 0.70

0.
0e

+0
0

5.
0e

-0
7

1.
0e

-0
6

1.
5e

-0
6

Bile acid transporter family 

Percentage of none-zero values

R
el

at
iv

e 
ab

un
da

nc
e

TT
mean= 2.70e-07

CT
mean= 3.51e-07

CC
mean= 5.21e-07

0.00 0.05 0.10 0.15 0.20

0e
+0

0
2e

-0
7

4e
-0

7
6e

-0
7

8e
-0

7

Bile acid 7-dehydroxylation protein

Percentage of none-zero values
R

el
at

iv
e 

ab
un

da
nc

e

TT
mean= 2.60e-7

CT
mean= 3.38e-08CC

all absent

A B

 415 
 
Figure S9: Association between VDR genotype (rs7974353) and specific gene-family 
abundances derived from shotgun metagenomic data. Associations were tested with 
generalized linear models and two gene families with p<0.05 are shown. For each association, 
both the percentage of non-zero values of each genotype as well as mean values are shown (see 420 
also Figure 3).  

 



 
Figure S10: In silico prediction of VDR affinity affected by SNP rs66589178. The VDR 
binding matrix was retrieved from the Homoco database 425 
(http://autosome.ru/HOCOMOCO/browseTFs.php, VDR-f1, 8nt), and prediction was carried out 
using the TRAP algorithm (http://trap.molgen.mpg.de/cgi-bin/trap_pers_receiver.cgi) for 
different nucleotides at this locus.  
 



 430 

 
 
 

Figure S11: Consistent influences of HLA haplotypes on the beta-diversity (Bray-Curtis 
dissimilarity) in the two independent cohorts: HLA-B-5201 and –C-1202 alleles display a 435 
consistent and significant influence in the PopGen (left panels) and FoCus cohort (right panels). 
Analyses were carried out to incorporate the influence of anthropometric variables (see 
methods). Other HLA haplotypes show cohort-specific influences on the microbial community 
(see Table S7). 

 440 



 
 
 

 
Figure S12: Correlation of taxon bins between technical replicates and determination of the 445 
core-measurable-microbiota (CMM). Taxon abundances from three technical replicates 
generated for the same sample (ten in total) are plotted against each other (log10 transformed) 
according to Benson et al.38. Highly reproducible taxa (r2>0.97) can be found for those with 
higher than 40 reads per replicate (in 10,000 reads, Table S8). One color denotes technical 
replicates from one biological sample.  450 
 
 
 
 



 455 
Figure S13: SLC2A9 and LINC01192 as examples of genes associated with individual taxa. 
(A) LocusZoom plot showing meta analysis p-values for SLC2A9 associated with unclassified 
Porphyromonadaceae (Species), which is a locus containing genes enriched for response to 
vitamin D (see results). (B) LocusZoom plot showing meta analysis p-values of LINC01192 
associated with Lactobacillales (Order). This locus contains genes enriched for response to 460 
vitamin A (see Results). 
 



 
Figure S14: Overview of correlation between measured CMM and 42 loci with significant 
associations to beta-diversity (Bray-Curtis dissimilarity). GLM results for each cohort are 465 
shown separately, and those with significant correlations (p<0.05, grey; p<0.01, dark brown; 
p<1×10-4, black) are shown for each locus represented by the leading SNP.  
 
 
 470 
 
 
 



 
 475 
Figure S15: LocusZoom plot showing other regions of interest. Adjusted effect sizes with 
respect to beta-diversity (actual effect size divided by significance threshold, see Methods) are 
shown for SNPs in each region for four loci: FXR (NR1H4), FUT213,86, NOD218, and LCT19. 
Dashed lines denote the genome-wide significance threshold (maximum effect size from null 
distribution, see methods). No SNP in the region has a large enough effect size to be considered 480 
genome-wide significant in any of these four genes. 
 
 



 
Figure S16: Schematic overview of bile acid and fatty acid signaling within the 485 
enterohepatic circulation. Genome-wide significant associations between VDR and HNF4A 
(highlighted in blue) polymorphisms and gut microbial community composition are prototype 
findings of the current article. To contextualize these results, the figure shows key aspects of gut-
liver interactions relevant to our findings. The intention is not to claim causality, since by nature 
all findings of the study design are correlative, but to provide a simplified context for 490 
interpretation. In addition to 1α,25-dihydroxyvitamin D3, VDR/RXR ligands include secondary 
bile acids (lithocholic acids) and essential fatty acids23. Primary bile acids are produced in the 
liver by CYP7A1. They are actively secreted from hepatocytes into the bile canaliculi and are 
thereafter reabsorbed in the terminal ileum. Through gut bacterial co-metabolism, primary bile 
acids are converted to secondary bile acids. Primary and secondary bile acids, together with fatty 495 
acids (derived both from diet and produced by colonic microbiota from dietary carbohydrates 
and proteins) are absorbed within ileal enterocytes. Here, they bind and activate the nuclear 
receptor FXR86 and other nuclear receptors, the former initiating transcriptional responses 
leading to: (i) stimulation of FGF19 production and (ii) activation of bile acid and fatty acid 
recirculation, thus completing the enterohepatic cycle27. Activation of nuclear VDR with 500 
secondary bile acids or fatty acids, amongst other biological actions, inhibits the activation of 
FXR and thereby suppresses the signal transduction mediated by FXR. In the liver, FGF19 from 
the intestine activates signaling pathways that down-regulate bile acid synthesis. Upon reaching 
the liver, bile acids also activate FXR signaling pathways and other nuclear receptors with broad 
effects on bile acid and lipid biology. Activation of VDR in the liver causes suppression of FXR 505 
signaling amongst other biological effects. HNF4A serves complex biological effects related to 



lipid biology, amongst which is involvement in the constitutive expression of CYP7A1. Multiple 
other findings in the study (see main manuscript) point toward key components of the sterol 
pathway, substantiating the example made by the VDR findings. Arrows indicate the direction of 
the processes, green lines indicate stimulatory effects and red lines indicate suppressive effects 510 
on target genes. Abbreviations: BA, bile acid; FA, fatty acid; CDCA, chenodeoxycholic acid; 
LCA, lithocholic acid; FXR, farnesoid X receptor, VDR, vitamin D receptor; RXR, retinoid X 
receptor; HNF4A, hepatocyte nuclear factor 4, Alpha, FGF19, fibroblast growth factor 19. 



 
 515 
 

0.865 0.870 0.875 0.880 0.885

0.
00

0.
01

0.
02

0.
03

0.
04

rs601338 vs Clostridium IV, p=0.039

Percentage of none-zero values

R
el

at
iv

e 
ab

un
da

nc
e

GG
mean= 0.005

AG
mean= 0.004

AA
mean= 0.003

0.94 0.95 0.96 0.97 0.98

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

rs601338 vs uc_Clostridiales, p=0.023

Percentage of none-zero values

R
el

at
iv

e 
ab

un
da

nc
e

GG
mean= 0.0099

AG
mean= 0.008

AA
mean= 0.007

0.45 0.50 0.55 0.60

0.
00

0
0.

00
2

0.
00

4
0.

00
6

rs4988235 vs Bifidobacterium, p=1.46e-5

Percentage of none-zero values

R
el

at
iv

e 
ab

un
da

nc
e

GG
mean= 0.0015

AG
mean= 0.0007

AA
mean= 0.0006

 
Figure S17: Replication of specific gene-taxon associations for FUT2 (A, B) and LCT (C). 
Associations were tested with spearman correlations between relative abundances of the taxa and 
genotype. Weak associations were discovered for FUT2 with Clostridium IV and unclassified 520 
Clostridiales, partially agreeing with Wacklin et al.85. A strong association was found between 
LCT and Bifidobacterium (p=1.46×10−5), similar to the results reported by Blekhman et al.19 
(p=1.16×10−5), but still not reaching the genome-wide significance threshold, both with- and 
without correcting for other confounders. For each association, both the percentage of non-zero 
values of each genotype as well as mean values are shown (see also Figure 3).  525 
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Figure S18: Principle component analysis that shows dense clustering of the PopGen and 
FoCus cohorts together with the HapMap CEU (Utah residents with Northern and 
Western European ancestry from the CEPH collection) samples. This suggests a large degree 
of genetic homogeneity in our study panels. 530 
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 535 
Figure S19: Null distribution of effect sizes for loci with MAF between 5%-50%. For each 
MAF category, a set of genotypes following Hardy-Weinberg equilibrium were simulated for the 
whole cohort and then permutated >2×107 times to reach a maximum effect size observed by 
random chance. A real effect size higher than the determined maximum effect size is considered 
to pass the significance threshold and have p<5×10-8.  540 
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Supplementary Tables  



Table S6: Significant microbial community differences according to HLA alleles. Results 
highlighted in bold indicate a significant influence of this allele on microbial communities after 550 
correction for anthropogenic confounding factors in distance based redundancy analyses of Bray-
Curtis dissimilarity. HLA alleles highlighted with * show significant associations in both 
cohorts. 

    PopGen       FoCus     
HLA-

Haplotype F-Value P-Value r2 adj. r2 F-Value P-Value r2 adj. r2 

A 3001 1.5958 0.0202 0.00192 0.00073 0.88704 0.637 0.00094 -0.00012 
A 6601 0.93014 0.563 0.00112 -0.00009 1.79968 9.60×10-3 0.0019 0.00085 

B 1302 1.59457 0.0170 0.00192 0.00072 0.64995 0.984 0.00069 -0.00037 
B 2705 0.75539 0.903 0.00091 -0.0003 1.46044 0.0462 0.00154 0.00049 

B 5201 * 1.61313 0.0174 0.00194 0.00075 1.48385 0.0410 0.00156 0.00051 

C 0701 1.73167 7.20×10-3 0.00209 0.00089 1.00964 0.404 0.00106 0.00001 
C 1202 * 1.61313 0.0158 0.00194 0.00075 1.54459 0.0282 0.00163 0.00058 
C 1402 0.92538 0.574 0.00112 -0.00009 1.47113 0.0418 0.00155 0.0005 

DPB1 0202 - - - - 1.51547 0.0378 0.0016 0.00055 
DPB1 1601 1.02477 0.384 0.00124 0.00003 1.43189 0.0474 0.00151 0.00046 

DQA1 0201 1.46264 0.0390 0.00176 0.00056 1.11954 0.249 0.00118 0.00013 
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