Supplemental Materials For:

2	Removal of soluble strontium into biogenic carbonate minerals from a highly saline				
3	solution using halophilic bacterium, <i>Bacillus</i> sp. TK2d.				
4	Takumi Horiike ¹ , Yuma Dotsuta ¹ , Yuriko Nakano ² , Asumi Ochiai ² , Satoshi Utsunomiya ² ,				
5	Toshihiko Ohnuki ^{3, 4} and Mitsuo Yamashita ^{1*}				
6					
7	¹ Rare Metal Bioresearch Center, Research Organization for Advanced Engineering,				
8	Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-city, Saitama				
9	337-8570, Japan				
10	² Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city,				
11	Fukuoka, 819-0395, Japan				
12	³ Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo				
13	Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan				
14	⁴ Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata,				
15	Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan				
16					
17	*Address correspondence to M. Yamashita				
18	Tel: +81-3-5859-8156				
19	Fax: +81-3-5859-8101				
20	Email: <u>yamashi@sic.shibaura-it.ac.jp</u>				

23 Supplemental figures and table

24

25 Fig. S1. Phylogenetic tree inferred from the 16S rRNA gene sequences of *Bacillaceae*.

26

- 27
- Fig. S2. Gram-stained cells of the TK2d strain. Bar = $10 \mu m$.

31 Fig. S3. HAADF-STEM image of precipitates in culture of the TK2d strain after 1.3 d (32

- 32 h) cultivation. HAADF-STEM image, bar = $2.0 \mu m$. EDS spectra at spots (i) and (ii).
- 33

35 Fig. S4. HAADF-STEM image of precipitates in culture of the TK2d strain after 2 d

- 36 cultivation. HAADF-STEM image, bar = $0.5 \mu m$. EDS spectra at spots i, ii, iii, and iv.
- 37

38

39 Fig. S5. HAADF-STEM images (same as Fig. 4f) and elemental mappings (O, Sr and Ca)

40 of precipitates in culture of the TK2d strain after and 8 d cultivation.

42 Fig. S6. BFTEM images of (a) abiotic Sr containing Ca-carbonate and (b) the associated

44


```
47 Back-scattered electron image (BSE), elemental mappings (Sr, Ca and Mg) and EDS
```

```
48 spectrum. Bar = 10 \mu m.
```

49

45

52 Fig. S8. The conceptual mechanism of Sr removal by the TK2d strain.

Table S1. Key characteristics that differentiate the TK2d strain from strains of closely

55 related bacterial species $^{1-3}$.

Characteristics	Strain TK2d	B. humi strain DSM16317	<i>B. luteolus</i> strain YIM 93174	<i>B. andreesenii</i> strain DSM23947
Cell shape	rod	rod	rod	rod
Cell size (µm)	0.9-1.0×1.5-2.5	0.7-0.9×4.0-7.0	0.7-0.9×2.0-5.0	0.5-0.9×1.5-3.6
Spore	+	+	+	+
Spore shape	Ellipsoidal	Ellipsoidal	Spherical	Ellipsoidal
Spore position	(Sub) Terminal	(Sub) Terminal	Terminal	Terminal
Gram stain	+	+	+	+
Motility	+	+	+	+
Catalase	+	+	+	+
Oxidase	+	+		
Nitrate reduction		+		+
Anaerobic growth	+w	-	-	-
Growth in:				
0% (w/v) NaCl	+	ND	+	
3% (w/v) NaCl	+	+	+	+
5% (w/v) NaCl	+	+	+	+
10% (w/v) NaCl	+	-	+	+
Growth at:				
30 °C	+	+	+	+
37 °C	+	ND	+	+
45 ℃	-	-	+	+
Hydolysis of:				
Aesculin		+		$+_{W}$
Gelatin	-	-		-
Tween 80	+	ND		
Urea	+	-	+	
Growth on:				
D-Galactose	-	-	-	+
Cellobiose	-	-	-	+
D-Mannose	-	-		-
Sucrose	+	-	+	
Maltose	+	-		+
Acid production from:				
Lactose	+	+w	ND	-
D-Mannitol	+	-	-	-
D-Xylose	+	-	+	-
Trehalose	+	-	-	+
L-Arabinose	+	-	-	-
Glycerol			+w	+

56

+: positive, +w: wealy positive, -: negative, ND: no data available

58 **References in supplemental materials**

- 59 (1) Heyrman J, Rodríguez-Díaz M, Devos J, Felske A, Logan NA, De Vos P. 2005.
- 60 Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated
- 61 from soil. Int J Syst Evol Microbiol 55:111–117.
- 62 (2) Shi R, Yin M, Tang SK, Lee JC, Park DJ, Zhang YJ, Kim CJ, Li WJ. 2011. *Bacillus*63 *luteolus* sp. nov., a halotolerant bacterium isolated from a salt field. Int J Syst Evol
 64 Microbiol 61:1344–1349.
- 65 (3) Kosowski K, Schmidt M, Pukall R, Hause G, Kämpfer P, Lechner U. 2014. Bacillus
- 66 *pervagus* sp. nov. and *Bacillus andreesenii* sp. nov., isolated from a composting
- 67 reactor. Int J Syst Evol Microbiol 64:88–94.