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Figure S1. Mass spectra of boron oxide cation clusters in the m/z range of 40-250
produced by pulsed laser evaporation of a °B-enriched boron target in expansion of

(@) helium seeded with 1% O> (red line), and (b) helium seeded with 10% argon and

1% O (black line).
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Figure S2. Plots of the photodisssociation yields of [ArBzO4]* and [ArB4O¢]" as a

function of IR laser energy.
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Figure S3. Infrared photodissociation spectra of mass-selected cation complexes in

the 1150-2300 cm™ region measured by monitoring the argon photodissociation

channel. (a) [Art°B;04]*, (b) [Art°Bs0s]*, (c) [Ar°B406]*, and (d) [Ar’BsO7]".
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Figure S4. Optimized structures of the [ArBzO4]" isomers at the B3LYP / aug-cc-
pVTZ level. The symmetry, electronic states, and relative energies with zero-point

energy corrected (kcal/mol) are shown in the figure.
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Figure S5. Optimized structures of the [ArBszOs]", [ArB4Os]", and [ArBsO7]" isomers
at the B3LYP / aug-cc-pVTZ level. The symmetry, electronic states, and relative

energies with zero-point energy corrected (kcal/mol) are shown in the figure.
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Figure S6. Optimized structures of the most stable structure of the [ArBs0a]",
[ArBs0s]*, [ArB4O¢]" and [ArBsO7]" cation complexes and the bare [BsO4]", [B3Os]*,
[B4O¢]" and [BsO-]" cations at the B3LYP-D3/aug-cc-pVTZ level of theory. The bond

lengths are given in angstroms and bond angles in degrees.
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Figure S7. Experimental (red) and simulated vibrational spectra of [Ar!'Bsz04]* in the
1090-2300 cm'! region. The simulated spectra are obtained from unscaled harmonic
vibrational frequencies and intensities calculated at the B3LYP-D3/aug-cc-pVTZ level

for the structures shown in Figure S3.
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Figure S8. Experimental (red) and simulated vibrational spectra of [Ar}'Bs;Os]* in the
1150-2300 cm* region. The simulated spectra are obtained from unscaled harmonic
vibrational frequencies and intensities calculated at the B3LYP-D3/aug-cc-pVTZ level

for the structures shown in Figure S4.
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Figure S9. Experimental (red) and simulated vibrational spectra of [Ar!'B4Os]* in the
1150-2300 cm® region. The simulated spectra are obtained from unscaled harmonic
vibrational frequencies and intensities calculated at the B3LYP-D3/aug-cc-pVTZ level

for the structures shown in Figure S4.
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Figure S10. Experimental (red) and simulated vibrational spectra of [Ar!BsO7]" in
the 1150-2300 cm™ region. The simulated spectra are obtained from unscaled
harmonic vibrational frequencies and intensities calculated at the B3LYP-D3/aug-cc-

pVTZ level for the structures shown in Figure S4.



[ArB,0,]" [ArB,0,]" [ArB,O ]

Top View

Side View

Figure S11. Contour diagrams of the Laplacian of the electron density (V2p(r)) of
[ArBsOs]*, [ArBsOs]* and [ArBsO7]" in the top view (molecular plane) and side view.
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Figure S12. Plots of deformation densities Ap of the pairwise o and = orbital interactions

between Ar and boron oxide cation fragments in [ArB3Os]", [ArB4O¢]", and [ArBsO7]". The

direction of charge flow is red to blue.



