S. Supplementary Text to “Contextuality in Canonical Systems
of Random Variables” by Ehtibar N. Dzhafarov, Victor H.
Cervantes, and Janne V. Kujala (Phil. Trans. Roy. Soc. A xxx,
10.1098/rsta.xxxx.xxxx)

Theorem S.1 (Section 4, Remark 4.2). The rank of the system of linear equations (4.4)-(4.6)-(4.7) is

2k —1+ (5).

Proof of Theorem S.1. This system of linear equations can be written as

M x X =P,

where
k k k

et W NN .
pl""7pk’q1’"'7qk’m1n(p1’q1)7"'7m1n(pk’qk)7

(3)

min (p1 + p2,q1 +q2),. .., min (pg_1 + Pr, Gk—1 + &)

X" ={zy:i,5€{1,...,k}},

and M is a Boolean matrix. The (k +k+k+ (g)) rows of matrix M correspond to the elements
of P and can be labeled as

k k k (%)

Tloyeo oy Py gy e ey Py P11 05 TR, T125 - s T—1 K |

whereas the k2 columns of M correspond to the elements of X and can be labeled as

{Cij :i,jE{l,...,k}}.
Thus, if k = 4, the matrix M is

. © 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44
1 1 1 1 1

2- 1 1 1 1

3 1 1 1 1

4. 11 1 1
-1 1 1 1 1

-2 1 1 1 1

-3 1 1 1 1

4 1 1 1 1
11 1

22 1

33 1

44 1
12 1 1 1 1

13 1 1 1 1

14 1 1 1 1
23 1 1 1 1

24 1 1 1 1

34 1 1 1 1
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We will continue to illustrate the steps of the proof using this matrix. We begin by adding to M
the row r,;; with all cells equal to 1, and denote the new matrix M.

. © 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44
1- 1 1 1 1

2- 1 1 1 1

3- 11 1 1

4. 1 1 1 1
-1 1 1 1 1

-2 1 1 1 1

-3 1 1 1 1

4 1 1 1 1
11 1

22 1

33 1

44 1
12 1 1 1 1

13 1 1 1 1

14 1 1 1 1
23 1 1 1 1

24 1 1 1 1
34 1 1 1 1

all $1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

This does not change the rank of the matrix since r;; is the sum of all r.;. Then we observe that the
rowsrg., r., and all r;, with ¢ < k can be deleted as they are linear combinations of the remaining
rows of M. Indeed, it can be checked directly that

k—1
rp. =Tgy — Z r.,
=1

k-1
T =Tq — Z r.,
i=1

I<k
(rig = Tii — Tgr) = (v — 1) + (v —1ii) — Y (v =Ty — i) — Y (v — g — 1) ,
I<i 1>

for all ¢ < k. Moreover, one can also delete r, because

Z (rij —rii —rj5) + Z (it — Tis — Tpi) + Z Ty + Tk =Tal-

i<j<k i<k i<k
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Let the resulting matrix be M"":

. © 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44
1 1 1 1 1
1 1 1 1

3 1 1 1

1 1 1 1 1

-2 1 1 1 1

-3 1 1 1 1
11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1

all 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

This matrix contains

initial all vip,i<k
sb+ (P - 3 — oD 4+ 1 —ok—14(F
2 ~—~ ~ 2
ri.,r.k,Tkk Tail

rows. We prove that this matrix is of full row rank. Consider equation

Z arr =0.

all rin M’

We use the following principle: if a row r intersects a columns whose only nonzero entry is in the
row r, then ar =0, and we can delete the row r from the matrix, decreasing the row rank of the
matrix by 1. The following statements can be directly verified.

I,y can be deleted because column cyy, has its only 1 in rg;.

. © 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44
1 1 1 1 1
1 1 1 1

3 11 1 1

1 1 1 1

2 1 1 1 1

-3 1 1 1 1
11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1
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Then each of r.;can be deleted because the column cy; hasitsonly linr.,; i=1,...,k —1).

. ¢ 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44
1 1 1 1 1
. 1 1 1 1

3 1 1 1 1

11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1

Then each of r;. can be deleted because the column c;; hasitsonly linr;. (i=1,...,k — 1).

. ¢ 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44
11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1

Then each of r;; can be deleted because the column cj;; has its only 1 in r;; (i,5 €
{1,...,k—=1},i<j).

© 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44
r
11 1
22 1
33 1
This leaves only r11,...,T(;_1)x—1) that are obviously linearly independent. O

Theorem (Section 4, Theorem 4.3). In a maximally-connected coupling S of D with k> 5, the
distributions of the 1-splits and 2-splits uniquely determine the probabilities of all higher-order splits.
Specifically, for any 2<m <k/2, and any W ={i1,...,im} C{1,...,k}, the probability that the
corresponding m-split equals 1 is

min (pi, + Piy + -+ Piyy s Giy + Gin + oo+ Gi,,) = D jog min (pi, gi;)

- . . . (S.1)
+ E}n:f =it [mln (pi,- + Dy iy + qz‘j,) — min (p;;, ¢;;) — min (pij, ) qz'j,)] .
Proof of Theorem 4.3. From (4.6) and (4.7),
12 + 721 = min (p1 + p2,q1 + g2) — min (p1,q1) — min (p2, g2)
Tij + i = min (p; + pj, ¢; + qj) — min (p;, ¢;) — min (p;, ¢5) (i <g)-

Th—1)k T Th(k—1) = min(pg_1 +pr,qe—1 + qx) — min (pg_1,gx—1) — min (px, qx)
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Consider an m-split with 2 < m < k/2, and assume without loss of generality that W = (1, ..., m).
We have

m m
ZZrij:min(pl+...+pm,q1+...+qm). (5.2)
i=1j=1
The left-hand-side sum can be presented as
-1
Sy i+ 0 i (rij + 1)
=S min (pi, q;) + S0 S [min (p; +pj, g + ¢;) — min (p;, ¢;) — min (pj, q5)]

whence we get (4.8). O

Example S.2 (showing that the relation (4.8) may be violated, see Section 4.). If
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Ri= R3= 12374
prob. mass p = prob. mass ¢ = 3141
then
8
min (p1 + p2 + p3,q1 + g2 + g3)
min (p1,q1) 2
+ min (p2, g2) 1 O
+ min (p3aq3) 1 -5
+min (p1 + p2,q1 + g2) — min (p1,q1) — min (p2, g2) b5—.2-1
+min (p1 + p3, g1 + ¢3) — min (p1,¢1) — min (ps, g3) 6—-.2-1
+ min (p2 + p3, g2 + ¢3) — min (p2, g2) — min (p3, ¢3) 2—-1-.1

Theorem (Section 4, Theorem 4.4). A maximally-connected coupling for a 1-2 system is unique if it
exists. In this coupling, the only pairs of ij in (4.3) that may have nonzero probabilities assigned to them
are the diagonal states {11,22, ..., kk} and either the states {i1,i2, ..., ik} for a single fixed i or the
states {15,2j,...,kj} for asingle fixed j (i,j=1,...,k).

Proof of Theorem 4.4. (The matrices illustrating the proof are shown for £ > 6 but the theorem is
valid for all £ > 1.) If the only nonzero entries in the matrix are in the main diagonal, the theorem
is trivially true. Assume therefore that r;; > 0 for some 4 # j. Without loss of generality, we can
assume that r12 >0 and p; + p2 < q1 + g2. Indeed, if some 7;; > 0, we can always rename the
values so that i =1 and j =2; and if p1 + p2 > ¢1 + g2, then we can simply rename all ps into
gs and vice versa. In the following we will use the expression “r;; is p-minimized” if p; + p; <
q; + q;, and “r;; is g¢-minimized” if p; + p; > ¢; + q; (in both cases, i # j).
We have (the empty cells are those whose value is to be determined later)



S T W N =

From (4.6)-(4.7), r11 + 712 + r21 + r22 =min {p1 + p2q1 + g2}, and since 712 is p-minimized,

1 2 3 4 5 6
ri1 | r12>0 p1
791 792 D2
r33
r44
r55
66
q1 q2

711 + 712 + 721 + r22 = p1 + p2. This means

1 2 3 4 5 6 .
1 11 r12 >0 0 0 0 0 0 pP1="11 + 712
2 21 799 0 0 0 0 0 p2 =121 + 1rog
3 r33
4 T44
5 55
6 66
g1 >ri1+ra | g2>2ri2+ 122
We also should have
1 2 3 4 5 6 .
1 11 r12 >0 0 0 0 0 0 p1 =711+ 112
2 0 799 0 0 0 0 0 P2 =722
3 0 33
4 0 T44
5 0 755
6 0 766
0
q =711 | g2 2112+ 722

because 11 =min {p1, ¢ } and r11 < p1.
Generalizing, we have established the following rules:
(R1) If r;; > 0 and it is p-minimized, then all non-diagonal elements in the rows i and j are
zero except for r;;, and all non-diagonal elements in the column i are zero.
(R2) (By symmetry, on exchanging ps and g¢s) If ;; >0 and it is g-minimized, then all non-
diagonal elements in the columns i and j are zero except for r;;, and all non-diagonal elements in

the row j are zero.

Returning to our special arrangement of the rows and columns, let us prove now that all ry;
with j > 2 are g-minimized. Assume the contrary, and with no loss of generality, let 715 =0 be
p-minimized. This would mean that

r15 + 751 =p1 +P5s —T11 — 755 =T12 + p5 — 155 =0,

which could only be true if 712 = 0, which it is not.
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1 2 3 4 5 6

1 r11 r12 >0 0 0 0 0 0 pL="11+T12
g—min qg—min q—min g—min qg—min

2 0 799 0 0 0 0 0 P2 =122
3 0 733
4 0 744
5 0 55 Ps5
6 0 766

0

q1 =711 | @2 2>T12 + 1722

Generalizing, we have established two additional rules:

(R3) If 7;; and 7;; are both p-minimized (for pairwise distinct i, 5, '), then they are both zero
(because if one of them is not, say 7;; > 0, then r;;» = 0 and it must be g-minimized).

(R4) (By symmetry, on exchanging ps and gs) If r;; and r;; are both g-minimized (for pairwise
distinct 4,4, §), then they are both zero.

Returning to our special arrangement of the rows and columns, it follows that nowhere in the
matrix can we have r;; > 0 (i > 2) which is g-minimized. Indeed, if j > 2, then this would have
contradicted R4 (because the zeros in the first row are all ¢-minimized), and if j = 2, it would have
contradicted R2 (because r12 > 0).

Let us prove now that if j > 2 and i > 2 and i # j, then there is no r;; > 0 that is p-minimized.
Assume the contrary: r;; > 0 and ¢-minimized, and consider r;, ;2. With no loss of generality,
let (¢, 7)=(4, 6). In accordance with R1, we fill in the 4th and the 6th rows with zeros, and we fill
in the 4th column with zeros too:

1 2 3 4 5 6
1 r11 r12 >0 0 0 0 0 0 p1=711+T12
2 0 99 0 0 0 0 0 P2 =722
3 0 r33 0
4 0 0 0 T44 0 r46 >0 0 P4 =744 + T46
5 0 0 55
6 0 0 0 rea =0 0 66 0 D6 =T66

0 0

g1=r11 | @2 =>T12 + 122 qa=Ta4 g6 > 146 + 766

Then ra4, r42 are both zero, whence min (p2 + p4, g2 + g4) must equal 22 + r44 to be a maximal
coupling. But

min (p2 + pa, g2 + qa) =min (ro2 + 744 + 746,712 + 722 + Ta4 + T) > 22 + T44,

since both r12 and r46 are positive, a contradiction.
We come to the conclusion that the only positive non-diagonal elements in the matrix can be
in the column 2 (and they are all p-minimized).
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1 2 3 4 5 6 ..
1 r11 r12 >0 0 0 0 0 0 p1=7r11+712
2 0 9292 0 0 0 0 0 P2 =722
3 0 r32 >0 33 0 0 0 0 P3 =132 + 133
4 0 r42 >0 0 T44 0 0 0 || pa=ra2+r4a
5 0 r59 >0 0 55 0 0 P5 =752 + 55
6 0 re2 >0 0 0 766 0 P6 =162 + T66

0 : 0 0 0

q1=T11 | G227r12+722 | G3=7r33 | 4 =7T4a4 | ¢5=T55 | ¢6 =766

Generalizing, let r;; > 0 and i # j. Then, if 7;; is p-minimized, all non-diagonal elements of
the matrix outside column j are zero (and the non-diagonal elements in the jth column are p-
minimized); if r;; is g-minimized, then all non-diagonal elements of the matrix outside row i are
zero (and the non-diagonal elements in the ith row are g-minimized).

It is easy to check that such a construction is always internally consistent.

O

Corollary (Section 4, Corollary 4.5). The 1-2 system for the original rvs R}, R? has a maximally-
connected coupling if and only if either p; > q; for no more than one i (this single possible i being the single
fixed i in the formulation of the theorem), or p; < q; for no more than one j (this single possible j being the
single fixed j in the formulation of the theorem), i,j € {1,..., k}.

Proof of Corollary 4.5. The “only if” part is obvious. To demonstrate the “if” part, consider (without
loss of generality) the arrangement

1 2 3 4 5 6
1 P12>4q1
2 D2
3 P3>3
4 P4 > q4
5 P5 > q5
6 D6 > 46
q1 | 22p2 | 93 | 94 | @5 | g6
and fill it in as
1 2 3 4 5 6 .
llaa |pr—=@n | O] 0] 0]0] 0 |p2>aq
20 D2 0lolo0|o0o]oO P2
310 | p3—q3|g3| 0] 0| 0] 0| p3=gs3
410 | pa—qa | 0| g | 0| 0] 0 ||[p1>qa
510 | ps—gs | 0] 0 g | 0] 0 || ps=>gs
610 | ps—gs | 0| 0] 0 |gs| O || pPs=>gs
0 : 0 0 0 0
q1 | 922p2 | 93 | 94 | 95 | 96
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with the empty cells filled in with zeros. Check that (a) all rows sum to the marginals; (b) the

second column sums to
k Kk
> pi- (Z 4 — qz) =q2;
i=1 i=1

(c) the rest of the columns sum to the marginals; (d) all r;; are min (p;, ¢;); and (e) for all pairs
rij (i#j) the sums ry; +7;j +7;; + rj; equal min (p; + pj, ¢ + q;). The latter is proved by
considering first all j # 2, where it is obvious, and then j = 2 where the computation is, for i # 2,

T +1ri2 +1roi + 122 =¢q; + (pi — @) + 0+ p2 =p; + p2,

as it should be because the values in the second column are to be p-minimized. O

Theorem (Section 4, Theorem 4.6). The system D is noncontextual if and only if its 1-2 subsystem is
noncontextual, i.e., if and only if one of the R} and R$ nominally dominates the other.

Proof of Theorem 4.6. The “only if” part is Theorem 4.1. All we need to proof the “if “ part is
to check that the relation (4.8) holds. Assume the arrangement is as in the previous corollary.
Consider first any set i1, . .., %m that does not include 2:

min (pg, + Piy + - A Pips Gy Gy + - F Gi) =Gy F Gin F -+ s

m
Zmin (pij,qz‘j) =qi, +qi, .-+ ¢,
=1

min (pij +pi,,q; + qz'j,) — min (p;;, g;;) — min (Pij/ ; Qi]-/) =0.
So, (4.8) holds. If one of the indices (let it be i1) is 2, then
Q2+ Gyt i, = P2+ D> e — @) | + iy o+ Gy D2+ Pig oo F Pis
T#£2

SO
min (p2 +pi, + ... +Di 02+ Gy + .o+ G,,) =02+ Diy -0

We also have

m
> min (pi;, ¢i;) =p2 + gy + - + i
j=1

and for any j # 2,5’ #2,
min (pij + iy di; + qij/) —min (p;;, ¢;;) — min (pij/ ; qij/) =0,

min (p2 + pi;, g2 + ¢i;) — min (p2, g2) — min (p;;, ¢;) =pi; — i -
Since index i1 = 2 is paired with each of is, ..., im only once, the right-hand side in (4.8) is

P2 + iy + Piy — Gin) + .-+ i, + (Pir, — i) =P2+ iy +...+ D5,
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