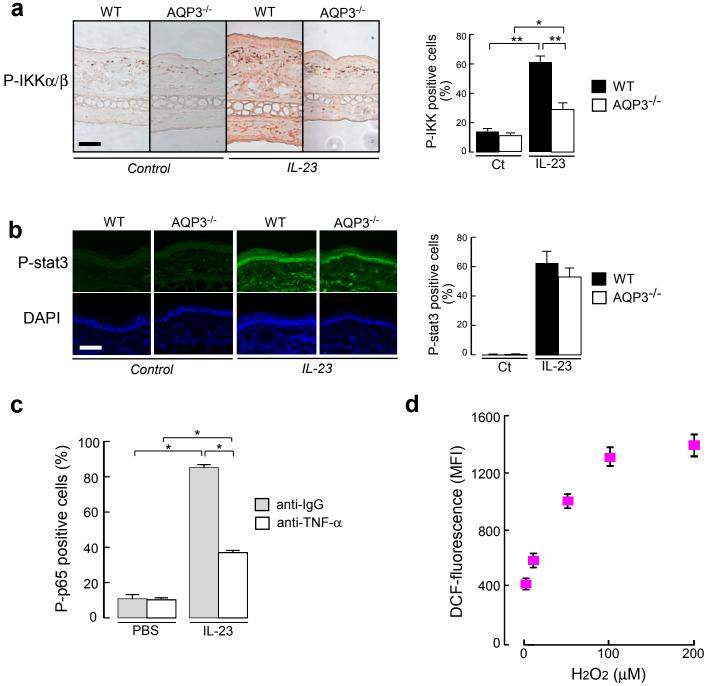
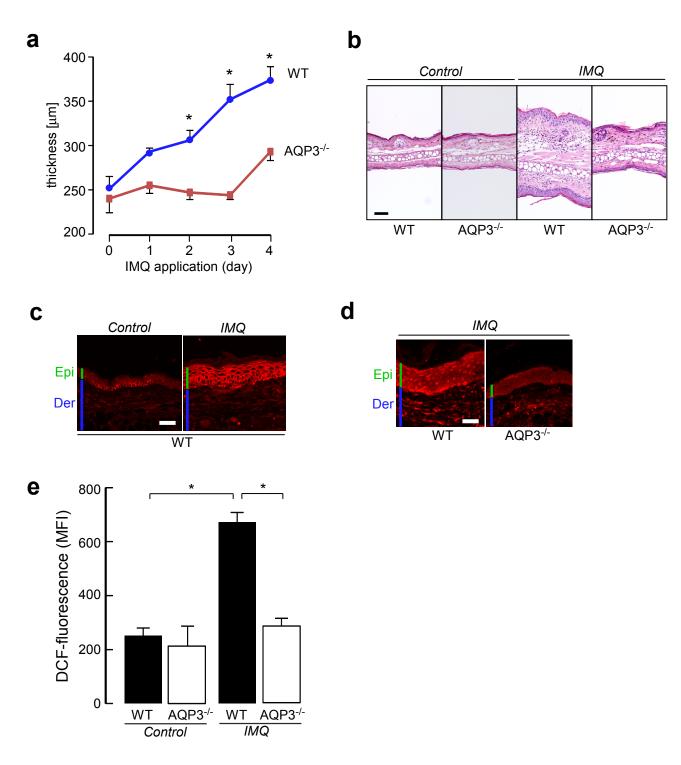
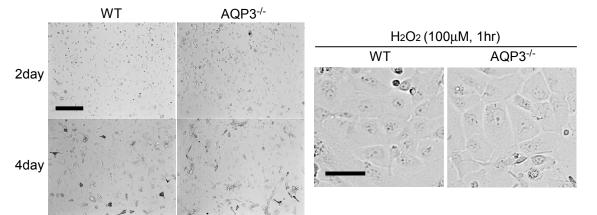
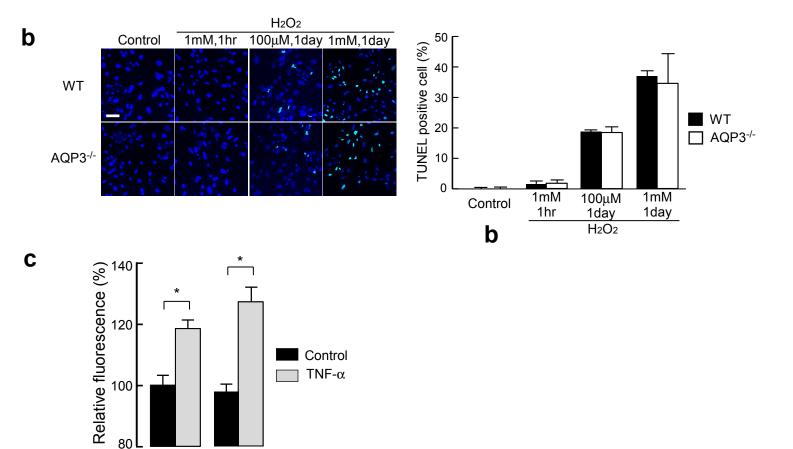

а


b

Supplementary Figure 1

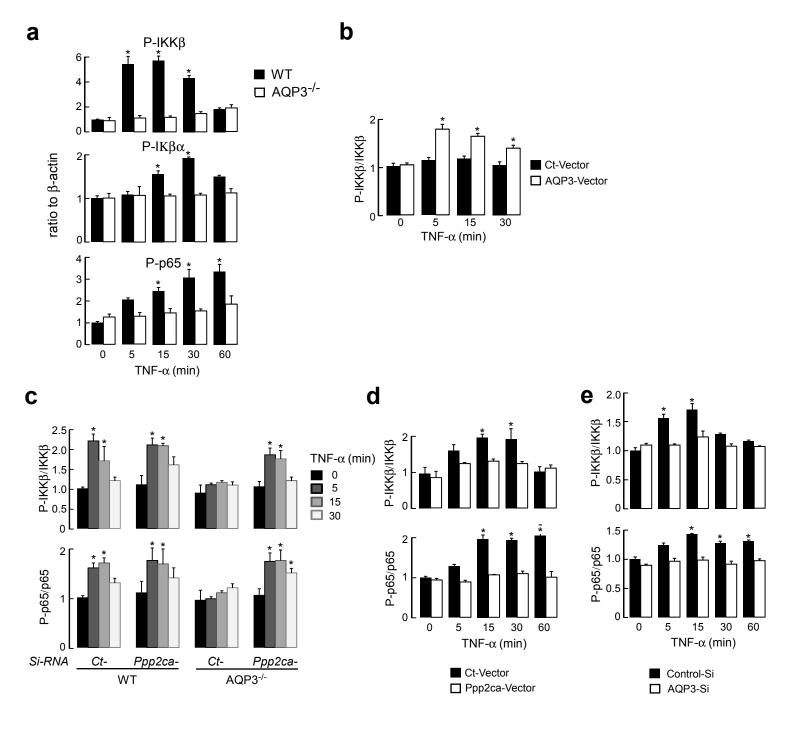

a. AQP3 mRNA expression in sorted CD3⁺ T cells, primary keratinocytes, kidney and brain tissues from C57BL/6 WT mice was measured by real-time RT-PCR. Data are expressed as the AQP3/GAPDH ratio (SE; n=3). **b-d.** IL-23 (500 ng) or vehicle control (PBS) were injected daily into the ear skin intradermally of WT mice for 4 days. **b.** AQP3 mRNA expression in epidermal cells from control and IL-23 treated skin (SE; n=6). **c.** (left) Representative immunoblot of epidermal homogenates with anti-AQP3, keratin 5, keratin 14, or β -actin antibodies. (right) Data are expressed as the indicated protein/ β -actin ratio (SE, n=4, *p < 0.01). **d.** Representative immunostaining with anti-CD3 and $\gamma\delta$ TCR antibodies in WT mouse skin following IL-23 treatment (red; CD3, green; $\gamma\delta$ TCR, blue; DAPI). Bar, 50µm. Arrow; CD3⁺ $\gamma\delta$ TCR⁺ cell.


a. Mice (WT or AQP3^{-/-}, 8-10 weeks old) were gamma-irradiated with two doses of 600rad, 3 hours apart. The irradiated mice received intravenous injection of bone marrow from WT or AOP3^{-/-} mice. The chimerism was checked using C57BL/6 CD45.1 congenic mice. 60 days after of bone marrow transfer spleen cells were stained with CD45.1-pacific blue and CD45.2-APC, and analyzed by FACS. More than 95% cells of the recipient cells were replaced by donor cells. b. IL-23 (500 ng) or vehicle control (PBS) was daily intradermally injected into the ear skin of WT and AQP3^{-/-} mice for 4 days. The skin samples were excised at 24 hours after the final IL-23 application. The mRNA was extracted from separated epidermis and dermis, and analyzed by quantitative RT-PCR. The expression levels of chemokines in epidermis and dermis of IL-23-treated WT skin. The relative expression ratio is calculated as the mRNA levels in IL-23 applied skin to vehicle control skin (SE, n=5, *p < 0.01, IL-23-treated skin vs. control skin by t-test). c. Skindraining lymph node cells from IL-23-treated mice were stimulated with IL-23, and intracellular IL-17 expression was determined by flow cytometry. Left panels are representative dot plots gated on the total cells. The right panels are representative dot plots gated on the CD3⁺ T cells.



a, b. IL-23 (500 ng) or vehicle control (PBS) was daily injected into the ear skin of WT and AQP3^{-/-} mice intradermally for 4 days. The skin samples were excised at 24 hours after the final IL-23 injection. **a.** (left) Representative immunostaining with anti-phospho-IKK α/β and DAB. Bar, 100 µm. (right) The ratio of p-IKK α/β positive cells in the epidermis (SE, n=3, **p < 0.01, *p<0.05 by t-test). **b.** (left) Representative immunofluoresence of phospho-Stat3. Bar, 100 µm. (right) The ratio of p-Stat3 positive cells in the epidermis (SE, n=3) **c.** WT mice were treated daily with IL-23 or PBS in the presence of anti-TNF- α blocking monoclonal antibody or isotype control. Ratio of phospho-p65-positive cells in the epidermis shown in Fig. 3e (n=4, *p<0.01 by t-test). **d.** H₂O₂ solution (0-200 µM) in PBS was intradermally injected into the ear skin (40 µl/ear). Epidermal cells isolated by trypsinization were incubated with H₂DCFDA, and DCF fluorescence intensity was quantified by flow cytometry.

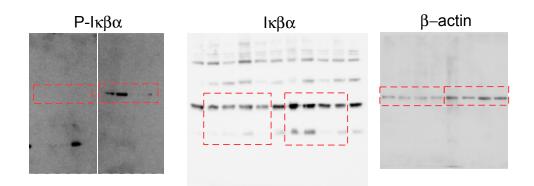
Mice were treated daily with 10 mg of IMQ cream (5%, Beselna Cream; Mochida Pharmaceuticals, Tokyo, Japan) topically on the ear for 4 consecutive days. **a.** Ear swelling was measured with a micrometer (n=5-6, *p<0.01, WT *vs.* AQP3^{-/-} by t-test) **b.** Hematoxylin and eosin staining of ears from WT and AQP3^{-/-} mice. Bar, 100 μ m. **c.** Immunostaining with anti-AQP3 antibody in WT mouse skin (red; AQP3). Bar, 50 μ m. Epi; epidermis. Der; dermis. **d.** Immunostaining of phospho-p65 in IMQ-treated WT and AQP3^{-/-} skin. Bar, 50 μ m. **e.** Mean fluorescence intensity (MFI) of DCF fluorescence by flow cytometry analysis in epidermal cells from WT and AQP3^{-/-} skin treated with IMQ (SE, n=5, *p < 0.01 by t-test).

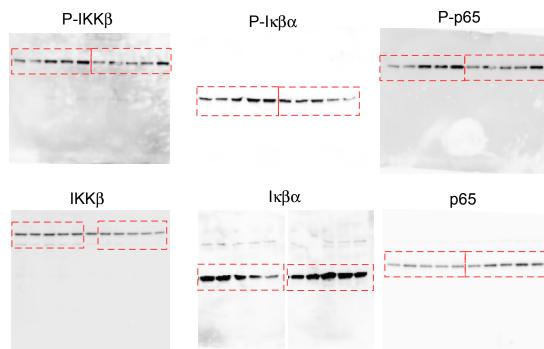


Ct-

Nox1-

Si-RNA

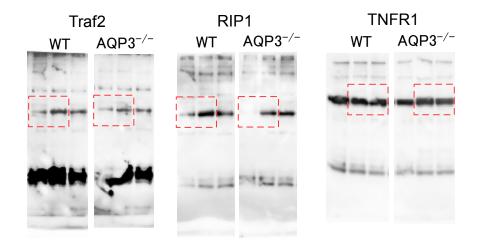

a. Light micrographs of primary keratinocytes from WT and AQP3^{-/-} mice at 2 and 4 days after plating, and at 1hr after incubation with H₂O₂ (100 μ M). Left; bar, 200 μ m. Right; bar, 50 μ m. **b.** (Left) TUNEL staining of mice primary keratinocytes incubated with H₂O₂ (100 μ M-1 mM, 1hr-1day). Green, TUNEL-positive cells. Blue, DAPI. Bar, 100 μ m. (Right) Ratio of TUNEL-positive cells (over 100 cells from 2 different fields counted). **c.** WT mice primary keratinocytes were transfected with Nox1- or non-targeting (Ct) si-RNA. Cellular H₂O₂ levels determined by CM-H2DCFDA after TNF- α (100 ng/ml) stimulation (3 min, SE, n=5, *p < 0.01 by t-test).


Quantification of immunoblots.

a. P-IKK β , P-I $\kappa\beta\alpha$, and P-p65 were normalized to β -actin detected, from data as in Fig. 4a (SE, n=4, *p < 0.01, WT *vs.* AQP3^{-/-}). **b**. P-IKK β was normalized to IKK β , from data as in Fig. 6f (SE, n=3-4, *p < 0.01, control- *vs.* AQP3-vector transfected). **c**-**e**. The ratio of P-IKK β to IKK β and P-p65 to p65, from data as in Fig. 7d, Fig. 7g, and Fig. 8c (SE, n=3-4, *p < 0.01, TNF- α added *vs.* control cells in **c**, control- *vs.* Ppp2ca-vector transfected in **d**, control- *vs.* AQP3-SiRNA-transfected in **e**, by t-test)


Figure 3b

Figure 4a



 β –actin

Supplementary Figure 7. Uncropped western blots (continued)

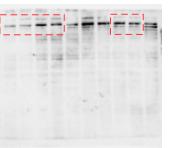
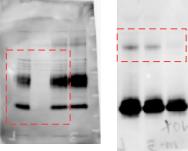
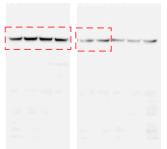

Figure 4b

Figure 4d

P-Jak2

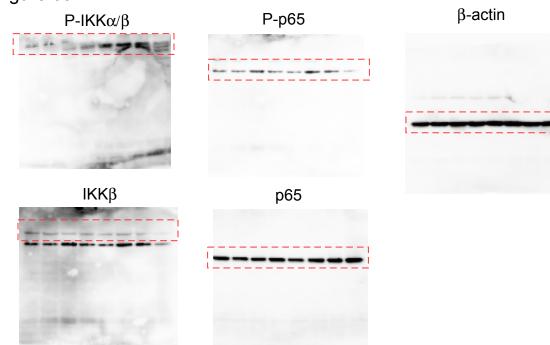


-


Figure 5g

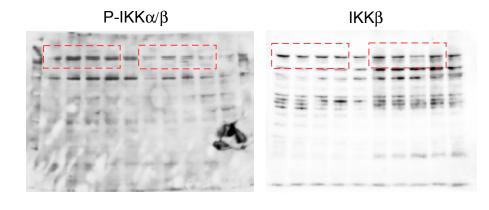
AQP3

Nox2



Stat3

	Jal	<2	
		Ē	
		1-	1
山塘	173		
E	1		


Figure 6c

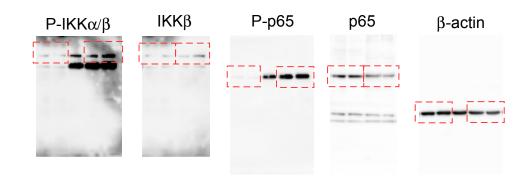

Figure 6d

Figure 6f

Figure 7b

Supplementary Figure 7. Uncropped western blots (continued)

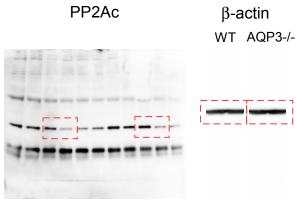
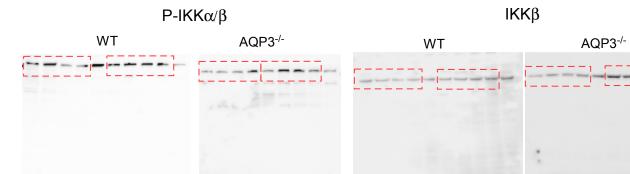



Figure 7f

Figure 7d

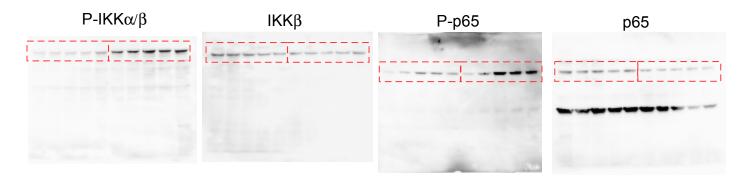

P-p65 MT AQP3-/- WT AQP3-/-

Figure 7e

Ρ-ΙΚΚα/β	ΙΚΚβ	P-p65	p65
		[]	

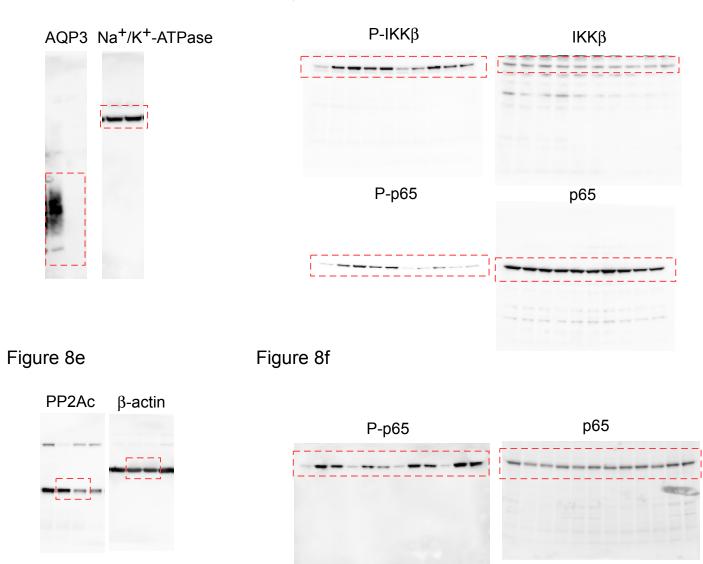

Supplementary Figure 7. Uncropped western blots (continued)

Figure 7g

Figure 8a

Figure 8c

Species	Gene	Forward/ Reverse	Sequence
mouse	IL17A	F	TCAGCGTGTCCAAACACTGAG
		R	GACTTTGAGGTTGACCTTCACAT
mouse IL17F	IL17F	F	ATGAAGTGCACCCGTGAAACAG
		R	CTCAGAATGGCAAGTCCCAACA
mouse IL17C	IL17C	F	CTCCTGCTTCTAGGCTGGTTG
		R	CCACCTGGCACTTCGAGTTAG
mouse	IL22	F	TTCCAGCAGCCATACATCGTC
		R	CTTCCAGGGTGAAGTTGAGCA
mouse	IL19	F	TGCAACTAGGATCATCCATGACAAC
		R	GATGATTCCTGTCAATCCAGGCTAA
mouse	CCR6	F	ATGCGGTCAACTTTAACTGTGG
		R	CCCGGAAAGATTTGGTTGCCT
mouse	CXCR3	F	GGTTAGTGAACGTCAAGTGCT
		R	CCCCATAATCGTAGGGAGAGGT
mouse	CCL20	F	ACTGTTGCCTCTCGTACATACA
		R	ACCCACAATAGCTCTGGAAGG
mouse	CXCL9	F	TCCTTTTGGGCATCATCTTCC
		R	TTTGTAGTGGATCGTGCCTCG
mouse CXCL10	CXCL10	F	CCAAGTGCTGCCGTCATTTTC
		R	GGCTCGCAGGGATGATTTCAA
mouse	CXCL11	F	GGCTTCCTTATGTTCAAACAGGG
		R	GCCGTTACTCGGGTAAATTACA
mouse	CCL17	F	GACGACAGAAGGGTACGGC
		R	GCATCTGAAGTGACCTCATGGTA
mouse	CCL22	F	AGGTCCCTATGGTGCCAATGT
		R	CGGCAGGATTTTGAGGTCCA
mouse	CCL19	F	GGGGTGCTAATGATGCGGAA
		R	CCTTAGTGTGGTGAACACAACA
mouse	CCL21	F	GTGATGGAGGGGGTCAGGA
		R	GGGATGGGACAGCCTAAACT
mouse	CCL27	F	CCTCCCGCTGTTACTGTTG
		R	TTCCATGTGGACAATCCTCCT
mouse	S100A8	F	AAATCACCATGCCCTCTACAAG
meace		R	CCCACTTTTATCACCATCGCAA
mouse	Caspase3		TGGTGATGAAGGGGTCATTTATG
mouse	Cuopuoco	R	TTCGGCTTTCCAGTCAGACTC
mouse	Ppp2ca	F	ATGGACGAGAAGTTGTTCACC
mouse	Γρρεσα	R	CAGTGACTGGACATCGAACCT
mouse	AQP3	F	
mouse		R	GCTTTTGGCTTCGCTGTCAC
mouro	GAPDH	F	TAGATGGGCAGCTTGATCCAG AGGTCGGTGTGAACGGATTTG
mouse	GAPDH		
human	11 470	R	TGTAGACCATGTAGTTGAGGTCA
human	IL17C	F	CCCTGGAGATACCGTGTGGA
humer		R	GGGACGTGGATGAACTCGG
human	IL6	F	ACTCACCTCTTCAGAACGAATTG
h		R	CCATCTTTGGAAGGTTCAGGTTG
human PPP2C	PPP2CA	F	CAAAAGAATCCAACGTGCAAGAG
		R	CGTTCACGGTAACGAACCTT
human	AQP3	F	TCTTTGACCAGTTCATAGGCAC
		R	GGCAGGGTTGACGGCATAG
human	GAPDH	F	ATGGGGAAGGTGAAGGTCG

Supplementary Table 1. Primers for qRT-PCR analysis