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SUMMARY

The core planar polarity pathway coordinates epithe-
lial cell polarity during animal development, and loss
of its activity gives rise to a range of defects, from
aberrant morphogenetic cell movements to failure
to correctly orient structures, such as hairs and cilia.
The core pathway functions via a mechanism
involving segregation of its protein components
to opposite cells ends, where they form asymmetric
intracellular complexes that couple cell-cell polarity.
This segregation is a self-organizing process driven
by feedback interactions between the core pro-
teins themselves. Despite intense efforts, the molec-
ular pathways underlying feedback have proven
difficult to elucidate using conventional genetic ap-
proaches. Here we investigate core protein function
during planar polarization of the Drosophila wing by
combining quantitative measurements of protein
dynamics with loss-of-function genetics, mosaic
analysis, and temporal control of gene expression.
Focusing on the key core protein Frizzled, we show
that its stable junctional localization is promoted by
the core proteins Strabismus, Dishevelled, Prickle,
and Diego. In particular, we show that the stabilizing
function of Prickle on Frizzled requires Prickle activ-
ity in neighboring cells. Conversely, Prickle in the
same cell has a destabilizing effect on Frizzled. This
destabilizing activity is dependent on the presence
of Dishevelled and blocked in the absence of Dyna-
min and Rab5 activity, suggesting an endocytic
mechanism. Overall, our approach reveals for the
first time essential in vivo stabilizing and destabiliz-
ing interactions of the core proteins required for
self-organization of planar polarity.

INTRODUCTION

Planar polarization describes the property whereby cells show

coordinated polarized behaviors within the plane of a tissue

and underlies diverse phenomena, including hairs, bristles, and
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cilia adopting a common orientation on the surface of an epithe-

lium, and groups of cells or neurons showing coordinated direc-

tional migrations [1, 2]. Throughout the animal kingdom, the

major molecular pathway controlling planar polarity is the so-

called ‘‘core’’ pathway [3].

Based primarily on studies in the developingDrosophilawing, it

has been found that the core pathway proteins have the ability to

assemble into asymmetric intercellular junctional complexes

formed around a backbone of an intercellular homodimer of the

cadherin Flamingo (Fmi; also known as Starry Night) associated

on one side of the junction with the seven-pass transmembrane

protein Frizzled (Fz). The other components are the four-pass

transmembrane protein Strabismus (Stbm; also known as Van

Gogh),which associateswith Fmi on the opposite side of the junc-

tion to Fz, the cytoplasmic proteins Dishevelled (Dsh) and Diego

(Dgo) that colocalize with Fz, and the cytoplasmic protein Prickle

(Pk) that colocalizes with Stbm [4]. Interestingly, whereas Fmi

and Fz appear to associate stoichiometrically in a 2:1 ratio, the

other components of the complex show variable stoichiometries,

suggestinga ‘‘signalosome-like’’ organization (Figure1A) [5]. Such

an organization might serve to provide complexes with intrinsic

stability, as a result ofweakmultivalent interactionsbetweencom-

plex components driving a phase transition into a stable state [6].

In planar polarized tissues, the core proteins are sorted within

cells such that Fz, Dsh, and Dgo lie at one end of the cell and

Stbm and Pk lie at the other. These subcellular distributions

then act as polarity cues within the cell, interacting with down-

stream ‘‘effector’’ pathways to mediate polarized cell behaviors

[7, 8]. It is generally believed that the overall direction of polariza-

tion in a tissue is determined by gradients and boundaries of

morphogen expression that define the tissue axes [9, 10]. These

are proposed to specify biases in core protein activity across cell

axes, which are then amplified by feedback mechanisms.

The most striking evidence for feedback amplification comes

from the observations that groups of cells lacking the core pro-

teins Fz and Stbm are able to reorganize the polarity of neigh-

boring cells [11–16]. This shows that cells can adopt strongly

polarized states independently of tissue-level cues and that

cell polarity is intrinsically coupled between neighboring cells.

To understand the feedback mechanisms, a number of theo-

retical/computational models for planar polarization by the

core pathway have been presented (e.g., [17–22]), which share

two common features: (1) the core proteins form asymmetric

intercellular complexes at cell junctions, with Fz and its binding
e Author(s). Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. The Core Planar Polarity Protein Complex and Feedback Amplification of Asymmetry

(A) The core proteins form non-stoichiometric asymmetric intercellular complexes at cell junctions around a trans-dimer of Fmi (red) bound to Fz (green) on one

side of the junction and Stbm (orange) on the other, associated with the cytoplasmic proteins Dsh (dark blue), Pk (light blue), and Dgo (pink).

(B) During normal development, the asymmetric core protein complexes adopt polarized distributions within cells, such that Fz, Dsh, and Dgo predominantly

localize to distal cell edges (right side of cells in diagram; only Fz [green] shown) and Stbm and Pk to proximal cells edges (left side of cells in diagram; only Stbm

[orange] shown), with Fmi at both cell edges. At the cell edges, the proteins are concentrated in bright regions (‘‘puncta’’), where most complexes are in the same

orientation (inset at top right), interspersed with less bright regions where complexes of mixed orientations are found (inset at bottom right). Amplification of

asymmetry and concentration in puncta are believed to be driven by either positive (stabilizing) interactions between complexes of like orientation (blue arrows) or

negative (destabilizing) interactions between complexes of unlike orientation (red flat-headed arrows). Stabilizing interactions will predominate in sorted domains

and destabilizing interactions in unsorted domains. Proximodistal orientation of the complexes is believed to be driven by a variety of global cues.
partners on one side of the cell junction and Stbm and its part-

ners on the other, and (2) feedback interactions occur between

the core proteins of either a positive nature such that ‘‘like’’ com-

plexes of the same orientation are stabilized or of a negative

nature such that ‘‘unlike’’ complexes of opposite orientation

are destabilized (Figure 1B).

Notably, core protein localization at cell junctions is concen-

trated in puncta in which intercellular complexes share a

common orientation [23, 24], and core proteins concentrated in

such clusters show lower turnover than core proteins in other re-

gions of the junctions [5, 23]. Taken together with the theoretical

studies, these results suggest that feedback interactions occur

locally between core protein complexes to produce individual

domains of stable sorted complexes (Figure 1B).

Most attempts to identify molecular mechanisms of feedback

have centered on overexpression assays, which have provided

evidence for both stabilizing and destabilizing interactions be-

tween the core proteins. For instance, overexpression of the

cytoplasmic core proteins Dsh, Pk, or Dgo causes formation of

large punctate accumulations of the core proteins at cell junc-

tions [16, 25, 26], consistent with these factors promoting stable

clustering of complexes. Furthermore, it has been demonstrated

in a heterologous cell culture assay that overexpression of Pk or

Stbm can cause displacement of Dsh from Fz-Dsh membrane

complexes [18, 26], most likely due to competitive binding. Simi-

larly competitive binding interactions between the core proteins

Dgo, Pk, and Dsh have been shown in both in vitro binding as-

says and in vivo overexpression assays [27]. More recently, it

has been reported that in vivo overexpression of Pk can trigger

the appearance of large intracellular vesicles containing Pk,

Fmi, and Stbm [24], providing evidence for Pk activity mediating

the removal of Stbm-containing complexes. These observations

are all consistent with destabilizing feedback interactions be-

tween Fz and Stbm complexes.
However, there are caveats regarding the conclusions of these

overexpression studies. First, they rely on non-physiological

levels of expression. Second, mechanisms relying on competi-

tive mass action binding reactions might exhibit rather slow ki-

netics given that the relative concentrations of core proteins in

the junctions are all very similar [5]: a more plausible mechanism

would involve some form of catalysis with more rapid kinetics.

One such potential feedback interaction, identified in mouse,

relies on the catalytic mechanism of ubiquitination. Ubiquitin li-

gases of the Smurf family can regulate levels of a vertebrate Pk

homolog (Pk1), and in tissue culture, Smurf-mediated degrada-

tion of Pk1 is promoted by association of Smurf with the verte-

brate Dsh homolog Dvl2 [28]. However, this pathway does not

appear to exist in Drosophila [24, 29].

Overall, understanding the molecular mechanisms of planar

polarity remains a major experimental challenge. In this work,

we address this by using new tools and methods to dissect core

protein planar polarization during Drosophila wing development.

RESULTS

Measuring Junctional Stability of Fz-EGFP Using a New
FRAP Geometry
Intercellular core protein complexes are built around an asym-

metric backbone of Fz and Fmi [5, 30, 31]. In this work, as a proxy

measure for core complex stability, we use fluorescence recov-

ery after photobleaching (FRAP) to assay protein dynamics of a

functional Fz-EGFP fusion created by knocking EGFP into the

fz locus [5].

In previous studies, we measured fluorescence recovery after

bleaching of small regions of the cell junctions (typically an ellip-

tical region of around 1.5 mm in length; Figures 2A and S1A)

[5, 23]. This assays protein turnover in restricted locations

but does not measure the dynamics of the total junctional
Current Biology 27, 2784–2797, September 25, 2017 2785



Figure 2. Quantitative FRAP to Measure Stable Populations of Fz-EGFP at Junctions

(A) Diagram of Drosophila pupal wing cells showing ‘‘spot’’ and ‘‘hub-and-spoke’’ regions of interest (ROIs) used for bleaching fluorescence during FRAP. The

‘‘spot’’ ROI covers part of a single junction. The ‘‘hub-and-spoke’’ ROI covers a vertex and the junctions spreading out from that vertex. This shaped region

bleaches the equivalent of the vertices and junctions of half a cell, while avoiding bleaching the cytoplasm.

(B) The ‘‘hub-and-spoke’’ geometry does not substantially bleach overall cellular pools of Fz-EGFP. A ROI was selected and imaged 3 times prior to being

bleached at 0 s; pre-bleach results are indicated as green dots prior to the 0 s time point. Recovery was allowed for 480 s (by which time Fz-EGFP recovery has

reached a plateau) and then a second bleachwas carried out and recoverywas again allowed between 480 and 960 s. The bleached region recovered to the same

extent after each bleach, consistent with the total cellular pool of Fz-EGFP not being depleted during the bleaching step and also showing that the bleaching

process is not causing any cellular damage that might inhibit recovery, such as by inducing protein aggregation. Experiment was carried out at 31 hr APF. See

Table S1 for y[max], half-life values, and confidence intervals.

(C) Bar chart of stable and unstable amounts of Fz-EGFP at 20 hr, 25 hr, 28 hr, and 31 hr APF. n, number of wings analyzed; four regions were averaged per wing

and then those results were averaged across wings. Dunnett’s multiple comparisons post hoc test was carried out on stable amounts (comparing 20 hr to other

time points); 20 hr versus 31 hr **p = 0.0092. Other comparisons were not significant (p > 0.05). Error bars are 95% confidence intervals. See Table S2 for all

statistical comparisons between the time points.

(D–G) Heatmaps of angle of polarity and polaritymagnitude for cells expressing Fz-EGFP in live pupal wings at (D) 20 hr, (E) 25 hr, (F) 28 hr, and (G) 31 hr APF. Data

have been grouped into 20 bins on each axis; colors depict the percentage of cells in each bin. Over time, polarity magnitude increases (y axis) and the spread of

polarity angles decreases (x axis). 0� represents the proximodistal axis of the wing.

(H) Scatterplots showing the mean cell polarity of Fz-EGFP, calculated from the same images as the results in Figures 2D–2G. n, number of wings analyzed; the

mean and 95% confidence intervals are shown. Stars indicate post hoc test results using Tukey-Kramer’s multiple comparisons test (comparing all time points to

all time points); 20 hr versus 28 hr **p = 0.0075; 20 hr versus 31 hr **p = 0.0011.

See also Figure S1.
population. We did attempt to obtain an estimate of overall pro-

portion of stable junctional Fz by adopting a ‘‘half-cell’’ bleaching

geometry (Figure S1B). However, this geometry could lead to
2786 Current Biology 27, 2784–2797, September 25, 2017
substantial bleaching of the total cellular pool of Fz-EGFP,

limiting the total recovery of fluorescence and thus over-esti-

mating the stable proportion of Fz-EGFP in the junctions [32].



Figure 3. Contribution of the Core Proteins to Fz-EGFP Stability and Polarity at Cell Junctions

(A) Scatterplot of the stable amounts of heterozygous Fz-EGFP at 31 hr APF in core planar polarity mutant backgrounds. See Table S1 for the full genotypes and

Table S2 for the statistical comparisons between each genotype. n, number of wings analyzed; the mean and 95%confidence intervals are shown. Stars indicate

significant post hoc test results comparing wild-type to mutants, using Dunnett’s multiple comparisons test; **p = 0.0015; ***p % 0.001. Note that the negative

(legend continued on next page)
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Tobettermeasure the stableproportionof Fz-EGFP incell junc-

tions, we adopted an alternative FRAP geometry that we call

‘‘hub-and-spoke’’ (Figure 2A). In this, the bleached region con-

sistsof a single-cell vertex (thehub)and the radiatingcell junctions

(the spokes). This is designed to sample protein dynamics in a

population representative of all of the junctions of a cell, while

avoiding bleaching of cytoplasmic protein populations.

To show that this geometry does not substantially bleach

cellular pools of Fz-EGFP, we carried out a ‘‘double bleaching’’

experiment. A hub-and-spoke FRAP region was selected and

bleached, and recovery was allowed to proceed for 8 min. The

same regionwas then rebleached and allowed to recover. Impor-

tantly, we observed recovery to the same level following the sec-

ond bleaching as after the first (Figure 2B), suggesting that this

protocol gives minimal depletion of cellular pools of Fz-EGFP.

To convert the measurement of the stable proportion of

fluorescent protein provided by FRAP into a measure of the

stable amount of protein, we combined hub-and-spoke FRAP

with quantitative measurement of total EGFP junctional fluores-

cence [5] (see STAR Methods). We then used this methodology

to ask whether the stable amount of Fz-EGFP increases at

cell junctions as core protein polarizes increases. During wing

development, core protein polarization is weakest at�20 hr after

puparium formation (APF), rising to a maximum at �32 hr APF

[33]. We carried out measurements at 20 hr, 25 hr, 28 hr, and

31 hr APF and at the same time quantified the degree of polari-

zation of Fz-EGFP. Between 20 and 31 hr APF, we see some

increase in both the stable proportion of Fz-EGFP at junctions

(Figures S1C and S1D; Table S1) and in the stable amount (Fig-

ures 2C and S1E; Table S1), in parallel with the previously

reported increase in cell polarization (Figures 2D–2H).

Although significant, the increase in Fz-EGFP stability at junc-

tions between 20 and 31 hr is surprisingly small, if sorting of core

protein complexes into a polarized state is the primary driver

of complex stability. According to such models (Figure 1B), as

polarization proceeds, there will be an increase in stabilizing

feedback interactions between complexes of the same orienta-

tion and/or a decrease in destabilizing feedback interactions be-

tween complexes of opposite orientation. The relatively weak

connection between degree of cellular polarization and stability

of core protein complexes suggests that core complexes have

inherent stability, even when not sorted to opposite cell ends,

most likely as a result of their signalosome-like organization [5].

The Core Proteins Cooperate to Promote the Stable
Junctional Localization of Fz-EGFP
Fz, Fmi, and Stbm showmutual dependency for their localization

and stability at junctions [14–16, 23, 30]. However, we were pre-
data points are due to experimental noise, generated during tracking of bleached

mutant background. Note that, in the mutant backgrounds, the actual location o

(B–G) Heatmaps of angle of polarity and polarity magnitude for cells expressing

stbm6, (F) dsh1; pkpk-sple-13, and (G) dsh1; pkpk-sple-13, stbm6, dgo380. Data were

periments shown in (A). Data are grouped into 20 bins on each axis; colors depic

(H) Scatterplots showing the mean cell polarity of Fz-EGFP, calculated from the sa

95% confidence intervals are shown. Post hoc test results using Tukey-Kramer’s

mean cell polarity for the control is different to all of the other mutants (stars show

significantly different from all other samples (**p = 0.0037; ***p% 0.001; stars show

the statistical comparisons between the genotypes.

See also Figure S2.
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viously unable to detect any role for Dsh andPk in stabilizing core

complexes at junctions [23].

Using quantitative hub-and-spoke FRAP, we have re-investi-

gated the requirements for stable Fz-EGFP junctional localiza-

tion. We systematically measured the total and stable amounts

of Fz-EGFP at junctions at 31 hr APF in backgrounds lacking

one or more core proteins (excluding Fmi, loss of which causes

complete loss of Fz from junctions; Figure S2A). In these back-

grounds, total levels of junctional Fz-EGFP were in a similar

range (Figure S2B; Table S1). However, stable amounts of

Fz-EGFP varied depending on the genotype (Figure 3A).

In the single-mutant backgrounds lacking Pk and Dgo, we did

not see large changes in the stable amount of Fz-EGFP, but sta-

ble amounts were significantly reduced in the absence of Dsh

and/or Stbm. A further decrease in stable amount to �10%–

15% was seen in all multiple mutant combinations lacking both

Dsh and Pk (Figures 3A and S2C–S2H; Table S1). Simultaneous

loss of both Pk and Dgo also resulted in a smaller stable fraction

than either mutant alone (Figure 3A; Table S1). We conclude that

Dsh, Stbm, Pk, and Dgo all cooperate to promote Fz-EGFP sta-

bility at junctions and that there is functional redundancy

between these proteins.

Notably, we only saw a partial correlation between the level of

Fz-EGFP stability and its degree of polarization. With the excep-

tion of loss of Dgo, where weak polarization was still observed

(Figures 3B and 3H), all of the other genotypes analyzed gave

no detectable polarization (Figures 3C–3H); this included loss

of Pk (Figures 3C and 3H), in which Fz-EGFP stability is not

reduced.

Overall, our data lead to a model whereby Stbm, Dsh, Pk, and

Dgo all associate with unstable Fz-Fmi-containing backbones

to create stable complexes at the cell junctions with a non-stoi-

chiometric signalosome-like organization [5], where stabilizing

interactions provided by one protein can be substituted for

by another protein. However, this model does not account for

previous suggestions that the cytoplasmic proteins Dsh and Pk

are involved in negative feedback interactions [18, 24, 26, 27].

Using Induction of Core Protein Expression to Dissect
Protein Functions
Our loss-of-function experiments reveal the net long-term effect

of the absence of a protein on Fz-EGFP stability. However, inter-

pretation of such final phenotypes is difficult in the absence of

temporal knowledge regarding how protein behaviors change

upon removal or addition of a pathway component.

To investigate the functions of the core proteins in a more

refined way, we designed experiments that involve induction

of expression of a core protein in the physiological range,
regions. Diagrams under the graph indicate the core proteins remaining in each

f the proteins in the complex may not be as depicted.

Fz-EGFP in pupal wings of genotypes (B) dgo380, (C) pkpk-sple-13, (D) dsh1, (E)

collected from the first time point of each of the wings used in the FRAP ex-

t the percentage of cells in each bin.

me images as the results in (B–G). n, number of wings analyzed; the mean and

multiple comparisons test (comparing all samples to each other) show that the

n below scatterplots; ***p% 0.001). The mean cell polarity for dgo380 was also

n above the scatterplots). See Table S1 for the full genotypes and Table S2 for



(legend on next page)
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followed by assaying the effect on Fz-EGFP stability and polar-

ization. We used previously characterized transgenes that

express core proteins under control of an Actin5C promoter,

with the promoter separated from the core protein coding

sequence by a cassette containing a polyadenylation site that

can be excised upon heat shock when in the presence of

hsFLP (Figure 4A) [34, 35]. Our previous work indicated

that heat shocks of 1 to 2 hr at 38�C are sufficient to activate

expression throughout the wing and that expression under

the Actin5C promoter is able to provide physiological activity

[35]. To confirm this, we carried out immunoblotting and quan-

tified the levels of Stbm, Dsh, and Pk produced: normal expres-

sion levels are provided by transgenes within 1 to 2 hr post-in-

duction for Dsh and 2 to 3 hr for Pk, whereas Stbm is visible

after 2 hr but does not achieve normal expression levels until

7 hr after induction (Figures S3A–S3F).

For consistency, Fz-EGFP stable amounts and level of polar-

ization were always assayed at 31 hr APF (or the equivalent age

for pupae raised at temperatures other than 25�C). Pupae

mutant for the gene of interest, but carrying the appropriate

inducible transgene, were then heat shocked at different time

points prior to 31 hr APF to give different length periods of

induced protein expression (Figure 4B). In this way, it is

possible to follow the time course of activity of a core protein

in promoting Fz-EGFP stability and polarization. As controls,

we also treated the same genotypes to a heat shock but in

the absence of hsFLP. This will not activate expression from

the Actin5C transgene and should reveal any effects of the

heat shock alone.

Induction of Expression Reveals Net Stabilizing
Functions for Stbm and Dsh but a Destabilizing Function
for Pk
We first investigated the effects of induction of Stbm and Dsh

expression. Absence of both leads to a decrease in Fz-EGFP

stability (Figure 3A). Induction of either protein in its correspond-

ing mutant background rescues this reduced stability, with

increasing periods of expression post-induction leading to

increased Fz-EGFP stability (Figures 4C and 4E) and polarization

(Figures 4D and 4F). In neither background did we see a signifi-

cant effect of heat shock alone on Fz-EGFP stability (Figures

4C and 4E).
Figure 4. Induction of Expression Experiments Reveal Net Stabilizing F

(A) Diagram illustrating induction of expression of core proteins, showing FLAG-

(B) Timeline showing heat shock induction of protein expression relative to develop

on timing of trichome initiation, we observe that developmental time is halted du

(C, E, and G) Stable amount of Fz-EGFP after induction of expression of (C) Stbm,

of protein expression between 1 hr and 25 hr prior to imaging. The no FLP control

to imaging, whereas the no expression control carried hsFLP but was not heat sho

indicate significant results using Dunnett’smultiple comparisons test, comparing t

in (G), no expression versus 1 hr *p = 0.0335, no expression versus 2 hr **p = 0.

compare no FLP 2 hr expression to 2 hr expression: *p = 0.0236. See Table S1 f

(D, F, and H) Scatterplots showing the mean cell polarity of Fz-EGFP in live pupal w

the first FRAP images; n, number of wings analyzed; the mean and 95% confide

Dunnett’s multiple comparisons test, comparing the mean vector polarity of the n

***p% 0.001. Note that, after 24 hr induction, Stbm and Dsh rescue polarity to the

polarity is not significantly different between these genotypes). After 24 hr of Pk

although the reasons for this are not known. See Table S2 for all comparisons.

See also Figure S3.
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Despite these similarities in the effects of Stbm and Dsh induc-

tion, there were also differences. Fz-EGFP stability increased

within 3 hr of Stbm induction (Figure 4C), with significant polari-

zation being observed by 4 hr (Figure 4D). Conversely, Dsh

induction only resulted in a significant increase in Fz-EGFP sta-

bility by 25 hr (Figure 4E), despite significant polarization being

seen by 7 hr (Figure 4F). We consider likely explanations in the

Discussion.

We then carried out induction of Pk and Dgo, loss of either of

which shows a negligible effect on Fz-EGFP stability (Figure 3A).

Notably, induction of Dgo in a dgo background did not lead to

consistent changes in Fz-EGFP stability, suggesting that Dgo

does not play a major role in complex stability in the wing (Fig-

ures S3G and S3H).

In contrast, induction of Pk resulted in a decrease in Fz-EGFP

stability, peaking around 2 hr after protein induction, followed by

a return to the pre-induction level of stability (Figures 4G and

S3I). This recovery of Fz-EGFP stability is accompanied by

increasing Fz-EGFP polarization (Figure 4H).

We conclude that, during the process of core protein polariza-

tion, the primary functions of Dsh and Stbm are to stabilize

Fz-containing complexes at junctions. Conversely, induction of

Pk reveals a net destabilizing function.

Induced Pk Requires Dsh Activity to Destabilize and
Stbm Activity to Stabilize Fz
Whereas our loss-of-function analysis suggested only stabilizing

functions for Pk (Figure 3A), our induction experiments revealed

a destabilizing activity (Figure 4G). To reconcile these observa-

tions, we combined induction of Pk expression with epistasis

experiments, in which another core protein was absent. In partic-

ular, we analyzed the effect of inducing Pk expression in the

absence of the stabilizing factors Stbm or Dsh. We reasoned

that, if Pk acted by promoting or inhibiting the stabilizing function

of Stbm or Dsh, then this effect would be blocked in their

absence.

Notably, when Pk was induced in pupae lacking Dsh activity,

instead of seeing a destabilization of Fz-EGFP, we instead saw

stabilization above the baseline level within 2 hr (Figure 5A).

Nevertheless, in the absence of Dsh, as expected, cells were

unable to polarize (Figures S4A, S4B, and S4E). This ability of

Pk to stabilize Fz-EGFP in the absence of Dsh is consistent
unctions for Stbm and Dsh but a Destabilizing Function for Pk

Pk as an example.

mental time, with examples of 1 hr and 4 hr induction experiments. Note, based

ring heat shock at 38�C.
(E) Dsh, or (G) Pk. FRAPwas performed at 31 hr APF, with heat shock induction

(gray circles in each graph) did not carry hsFLP but was heat shocked 2 hr prior

cked. The mean and 95% confidence intervals are shown. Stars on the graphs

he no expression stable amount to that of the other conditions. For Pk induction

003, and no expression versus 3 hr *p = 0.0369. Student’s t test was used to

or full genotypes and Table S2 for all comparisons.

ings, after induction of (D) Stbm, (F) Dsh, and (H) Pk. Data were collected from

nce intervals are shown. Stars on the graphs indicate significant results using

o expression control to that of the other conditions; *p% 0.05; **p% 0.01; and

same level as seen in fz-EGFP/+ at 31 hr APF (compare to Figure 2H; measured

expression, the measured polarity is slightly stronger than seen in fz-EGFP/+,



(legend on next page)
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with our loss-of-function analysis (Figure 3A), where we

observed only low Fz-EGFP stability in the absence of both

Dsh and Pk but significantly higher stability in the absence of

only Dsh.

Conversely, when Pk is induced in the absence of Stbm activ-

ity, we see a destabilization of Fz-EGFP that is both more rapid

and larger than that seen upon induction when Stbm is present

(Figure 5B; compare Figure 4G). This destabilization is only tem-

porary and is no longer observed at 2 hr after induction, consis-

tent with our earlier observation that, at steady-state, Fz-EGFP

stability is similar in both a stbm background and a pk stbm

background (Figure 3A). Note that again Fz-EGFP does not

polarize (Figures S4C–S4E), consistent with Stbm activity being

essential for polarization.

These results indicate that the ability of Pk to destabilize

Fz-EGFP is dependent on the presence of Dsh, but not of

Stbm. As Dsh binds to and colocalizes with Fz in core protein

asymmetric complexes (Figure 1A), we speculated that the

destabilizing function of Pk might require Pk directly acting on

Fz-Dsh complexes in the same cell. However, when Dsh is not

present, Pk induction results in an increase in Fz stability. We

suggest that, in this case, Pk may be acting by interacting with

its binding partner Stbm to stabilize Fz-EGFP in neighboring cells

(Figure 1A).

We therefore carried out mosaic experiments, in which we

could assess whether Pk was acting in the same cell as Fz-Dsh

or in neighboring cells. We first generated genetically mosaic tis-

sue, in which cells expressing Fz-EGFP were juxtaposed to cells

lacking Fz expression, in a background lacking Pk expression. In

this situation, Fz-EGFP localizes to the boundary between Fz-ex-

pressing and non-expressing cells (Figures 5C, 5E, 5G, and 5I).

We then induced prolonged high-level Pk expression in either

the Fz-EGFP-expressing cells or the Fz non-expressing cells, us-

ing the GAL4/GAL80ts temperature-sensitive expression system

[36]. Consistent with our model, when Pk was expressed in the
Figure 5. Induced Pk Requires Dsh Activity to Destabilize Fz-EGFP an

(A and B) Stable amount of Fz-EGFP after induction of expression of Pk in (A) a ds

performed at 31 hr APF. The no FLP control did not carry hsFLP but was heat shoc

not heat shocked. The mean and 95% confidence intervals are shown. A post

conditions. (A) Results of: no FLP 2 hr versus 2 hr *p = 0.0274; 0 hr (no expressio

expression) versus 7 hr **p = 0.0014. (B) Results of: no FLP 1 hr versus 1 hr **p = 0.

**p = 0.007 and 1 hr versus 7 hr ***p = 0.0003 were also statistically significant co

(C–J) Images and cartoon summaries of pupal wings with twin clones of cells exp

fzP21 mutant cells expressing elevated Pk next to Fz-EGFP-expressing cells (E, F

UAS-pkwas controlled usingGAL4/GAL80ts. (C, E, G, and I) Pupae were raised at

at 29�C for 25 hr, activating UAS-pk expression. Immunolabeled images show

boundaries. Note Pk overexpression in Fz-EGFP-expressing tissue results in clu

scale bar represents 10 mm.

(K–R) Images and cartoon summaries of pupal wings with twin clones of cells exp

cells expressing Fz and elevated Pk next to Fz-EGFP-expressing cells (M, N, Q, an

was controlled using GAL4/GAL80ts. (K, M, O, and Q) Pupae were raised at 18�C
29�C for 25 hr, activating UAS-pk expression. Immunolabeled images show G

boundaries. Note Pk overexpression in Fz-EGFP-expressing tissue results in clu

(O–R) Cartoon summary showing the locations of Fz on clone boundaries in the

(S and T) The stable amount of Fz-EGFP after short-term expression of Pk in the

expression was induced by shifting pupae from 18�C to 29�C for 1 hr, 2 hr, or 4 h

intervals are shown. Stars on the graphs indicate significant results using the �S

experiments. (S) 2 hr control versus 2 hr of Pk expression in the same cell as Fz **p

most likely due to experimental noise generated during tracking of bleached reg

***p < 0.001. See Table S1 for full genotypes and Table S2 for all comparisons.

See also Figure S4.
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Fz-EGFP-expressing cells, Fz-EGFP levels at the clone border

were reduced (Figures 5D and 5H). Moreover, when Pk was ex-

pressed in the adjacent cells, Fz-EGFP levels on the apposing

cell junctions were maintained and possibly increased (Figures

5F and 5J), consistent with Pk interactions with Stbm on one

side of the boundary leading to stabilization of Fz-EGFP on the

other side.

It has previously been suggested that Pk destabilizes Stbm in

response to the presence of Fz in the samemembrane [24]; how-

ever, our experiments expressing Pk in cells lacking Fz activity

(Figures 5F and 5J) are unable to test this. We therefore repeated

the same experiment but in this case juxtaposing cells express-

ing Fz-EGFP to cells expressing untagged endogenous Fz. In the

absence of Pk expression, we once more saw Fz-EGFP on the

boundary between expressing and non-expressing cells (Fig-

ures 5K, 5M, 5O, and 5Q), albeit more weakly than when Fz

is lacking in the adjacent cells. Overexpression of Pk in the

Fz-EGFP-expressing cells again resulted in a loss of Fz-EGFP

from the clone boundary (Figures 5L and 5P), whereas expres-

sion in the adjacent Fz-expressing cells resulted in a striking

punctate accumulation of Fz-EGFP on the clone boundary (Fig-

ures 5N and 5R). Therefore, we did not detect a destabilizing

activity of Pk acting via Stbm.

We wanted to confirm that the decreases or increases in

Fz-EGFP levels that we observed were not an artifact caused

by long-term overexpression of Pk. In particular, Pk overexpres-

sion leads to clustering of core proteins at junctions [26], and in

cells expressing Fz-EGFP and Pk, this might be leading to indi-

rect sequestration of Fz-EGFP from the clone boundary (e.g.,

as may occur in Figures 5D and 5L). We therefore also carried

out experiments in which expression was only induced for a

short period of time and carried out FRAP to measure the effect

on Fz-EGFP stability before any gross relocalization was

observed. Significantly, short-term expression of Pk in cells ex-

pressing Fz-EGFP initially caused a loss of stable Fz-EGFP by
d Stbm Activity to Stabilize Fz-EGFP

h1; pkpk-sple-13 background and (B) a pkpk-sple-13 stbm6 background. FRAP was

ked prior to imaging, whereas the no expression control carried hsFLP but was

hoc Tukey-Kramer’s multiple comparisons test was used to compare all the

n) versus 2 hr *p = 0.0175; no FLP 2 hr versus 7 hr **p = 0.0022; and 0 hr (no

0045 and 0 hr (no expression) versus 1 hr **p = 0.0024. Note that 1 hr versus 2 hr

mparisons. See Table S1 for full genotypes and Table S2 for all comparisons.

ressing Fz-EGFP and elevated Pk next to fzP21 mutant cells (C, D, G, and H) or

, I, and J). Wings were in a pkpk-sple-13 mutant background, and expression of

18�C for 60 hr, giving noUAS-pk expression. (D, F, H, and J) Pupae were raised

GFP (in white) and Pk (in magenta). Arrowheads indicate Fz-EGFP on clone

stering of Fz-EGFP at cell boundaries away from the clone boundary (D). The

ressing Fz-EGFP and elevated Pk next to Fz-expressing cells (K, L, O, and P) or

d R). Wings were in a pkpk-sple13mutant background, and expression ofUAS-pk

for 60 hr, giving no UAS-pk expression. (L, N, P, and R) Pupae were raised at

FP (in white) and Pk (in magenta). Arrowheads indicate Fz-EGFP on clone

stering of Fz-EGFP at cell boundaries away from the clone boundary (L).

mosaic experiments in (K)–(N).

same cells (S) or neighboring cells (T). FRAP was performed at 28 hr APF. Pk

r prior to FRAP. n, number of wings analyzed; the mean and 95% confidence

ı́dák’s multiple comparisons test. The control samples are the same in both

= 0.0024. The negativemean value for Fz-EGFP stability after 2 hr of induction is

ions. (T) 4 hr control versus 4 hr of Pk expression in the neighboring cell to Fz



Figure 6. Destabilization of Fz-EGFP by Pk Requires Active Endocytosis
(A) Timeline of a Pk induction experiment conducted when endocytosis was restricted, using a shi temperature-sensitive background (shits1). Pupae are initially

aged at 18�C to allow active endocytosis to occur (blue line). Pk expression is turned on using a heat shock (38�C for 1 hr, red line). Endocytosis is then restricted

by shifting the pupae to 29�C (yellow line). Equivalent developmental time in hours at 25�C is in green as a comparison to the real time in hours shown below the

graph.

(B) Induction of Pk in pkpk-sple-13 background, with either active (blue points) or restricted (red points) endocytosis using the temperature-sensitive allele of shits1.

Scatterplots show the stable amount of Fz-EGFP at junctions. The mean and 95% confidence intervals are shown. In no FLP controls, pupae are heat shocked

but Pk expression is not induced. Stars on the graphs indicate significant post hoc test results of the ANOVA using Tukey-Kramer’s multiple comparisons test,

comparing all conditions to the rest; *p % 0.05; **p % 0.01; and ***p % 0.001. See Table S1 for full genotypes and Table S2 for all comparisons.

(C) Timeline of a Pk induction experiment conducted when endocytosis was active or restricted, using Act>>Gal4 to express dominant-negative UAS-Rab5S43N.

Pupae are initially aged at 18�C in the presence of endocytosis (blue line). Pk expression and UAS-Rab5S43N are turned on using a heat shock (38�C for 2 hr, red

line). Pupae are then aged at 29�C for 1 hr before imaging (yellow line). Equivalent developmental time in hours at 25�C is in green as a comparison to the real time

in hours shown below the graph.

(D) Induction of Pk in pkpk-sple-13 background, with either active or restricted endocytosis for 1 hr using the dominant-negative UAS-Rab5S43N. Scatterplots show

the stable amount of Fz-EGFP at junctions; n, number of wings analyzed; themean and 95%confidence intervals are shown. Stars on the graph indicate the result

of a t test comparing the stable amounts of Fz-EGFP; **p = 0.0096. See Table S1 for full genotypes.

(legend continued on next page)
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2 hr, followed by a return of stability by 4 hr (Figure 5S).

Conversely, expression in neighboring cells resulted in a strong

stabilization of Fz-EGFP by 4 hr (Figure 5T).

Our epistasis and mosaic experiments therefore allow us to

separate two functions of Pk, providing evidence that Pk can

destabilize Fz-EGFP when present in the same cell, in a Dsh-

dependent manner, and can also stabilize Fz-EGFP by acting

in a Stbm-dependent manner in neighboring cells.

Destabilization of Fz-EGFP by Pk Requires Dynamin and
Rab5 Activity
We were interested to understand the molecular mechanism of

the Dsh-dependent destabilization of Fz-EGFP by Pk. It has

been suggested that competitive binding of Pk to Dsh might

result in displacement either of Dsh from Fz [26], or of Dsh

from Dgo [27], with a consequent loss of Fz stability. However,

we think these mechanisms unlikely, as mass action kinetics

dictate that competitive binding interactions will only proceed

rapidly if either the factor being displaced is only weakly bound

or the displacing factor is present at much higher concentra-

tions. We know from our previous studies that Dsh and Dgo

are stably associated with Fz at junctions [5], which is not

consistent with weak binding interactions. Moreover, Dgo

does not show high Fz stabilizing activity in the wing (Figure 3A),

casting doubt on whether it could be a key feedback compo-

nent. Furthermore, the levels of Pk expressed under control

of the Actin5C promoter when maximal Fz-EGFP destabiliza-

tion is seen (2 hr post-induction) are similar to wild-type levels

(Figures S3E and S3F), indicating that Pk is not present in great

excess over Dsh or Dgo.

Alternatives to a competitive binding mechanism are allosteric

effects, where, for instance, Pk binding to Dsh might alter its

conformation and hence its properties, and/or a catalytic mech-

anism whereby the presence of Pk alters local enzyme activity,

leading to destabilization of Fz. A possible catalytic destabilizing

mechanism would be triggering Fz endocytosis.

To test for a role of endocytosis in Fz destabilization upon Pk

induction, we carried out experiments in a background carrying a

temperature-sensitive allele ofDrosophila dynamin (shits1), which

is widely used as a tool to acutely block endocytosis [37, 38].

Prior to Pk induction via heat shock, the pupae were raised at

the permissive temperature (18�C) and endocytosis was active;

then, after the heat-shock, the pupae were transferred to 29�C,
which is a restrictive temperature that will reduce dynamin activ-

ity and endocytosis (Figure 6A).

When carried out in a background with wild-type dynamin

activity, this regime results in a large and rapid destabilization

of Fz-EGFP upon Pk induction (Figure 6B). This effect is not

seen either if hsFLP is absent, thus preventing Pk induction, or

in a shits1 background, where dynamin activity and endocytosis

was blocked (Figure 6B). As a further control, we confirmed that
(E) Timeline of a dsh1 pkpk-sple-13 double-mutant experiment conducted when en

background (shits1). Pupae are initially aged at 18�C to allow active endocytosis t

(yellow line). Equivalent developmental time in hours at 25�C is in green as a com

(F) A dsh1 pkpk-sple-13 double-mutant experiment conducted when endocytosis

background (shits1). Scatterplots show the stable amount of Fz-EGFP at junction

shown. Stars on the graph indicate the result of a t test comparing the stable am

See also Figure S5.
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Pk is normally produced and delivered to junctions in the

absence of dynamin activity (Figures S5A and S5B).

As another test of whether Fz-EGFP destabilization might be

dependent on endocytosis, we induced expression of a domi-

nant-negative form of the endocytic protein Rab5 at the same

time as inducing Pk. This also interfered with the ability of Pk

to destabilize Fz-EGFP at junctions (Figures 6C and 6D). These

results support the hypothesis that Pk induces removal of

Fz-EGFP via endocytosis.

Interestingly, under conditions where Pk induction leads to

very large reductions in the stable amount of Fz-EGFP at junc-

tions (e.g., Figures 5B and 6B), therewas no accompanying large

reduction in the total amount of Fz-EGFP at junctions (Table S1),

suggesting that destabilized Fz-EGFP is rapidly recycled to re-

engage in complex formation. Consistent with this, by immuno-

labeling, we were unable to detect any increase in cytoplasmic

puncta of Fz-EGFP, EGFP-Dsh, or Fmi, following induction of

Pk expression (Figures S5C–S5H, S5K, and S5L). We also did

not observe gross recruitment of the endocytic proteins clathrin

light chain or Rab5 to the cell junctions following Pk induction

(Figures S5I–S5L), implying that Pk is not triggering large-scale

non-specific endocytosis.

We speculated that Dshmight normally protect Fz from consti-

tutive endocytosis and that induced Pk blocks this protective

activity. If this were true, we reasoned that the low stability of

Fz-EGFP observed in the absence of Dsh and Pk (Figure 3A)

would be due at least partly to endocytosis. We therefore

measured the stable fraction of Fz-EGFP in a dsh; pk back-

ground, either in the absence or presence of shits1 at the restric-

tive temperature (Figure 6E). Notably, reducing endocytosis

partly restored Fz-EGFP stability (Figure 6F). Therefore, we pro-

pose that Dsh normally protects Fz from endocytosis and induc-

tion of Pk blocks this activity.

DISCUSSION

In this study, we investigate core planar polarity pathway func-

tion by combining quantitative measurements of protein dy-

namics with both loss-of-function genetics and induction of

gene function. Taken together, our results support the following

model for planar polarization (Figure 7): (1) polarized cell-cell

communication is mediated by asymmetric core protein com-

plexes built around an asymmetric Fz-Fmi:Fmi backbone; (2)

Stbm, Dsh, Pk, and Dgo promote complex stability at junctions

(with partial redundancy); and (3) in addition to its stabilizing

function (mediated via Stbm in neighboring cells), Pk can also

destabilize Fz-containing complexes in a Dsh-dependent

manner in the same cell.

Previously, relying on analysis of single mutant genotypes, we

were unable to detect direct roles for Dsh and Pk in either stabi-

lizing or destabilizing Fz-containing complexes [23]. It is now
docytosis was active or acutely restricted, using a shi temperature-sensitive

o occur (blue line). Endocytosis is then restricted by shifting the pupae to 29�C
parison to the real time in hours shown below the graph.

was active or acutely restricted for 1 hr, using a shi temperature-sensitive

s; n, number of wings analyzed; the mean and 95% confidence intervals are

ounts of Fz-EGFP; ***p = 0.0004. See Table S1 for full genotypes.



Figure 7. Model for Role of Pk in Feedback Amplification of Planar Polarity

In the absence of cytoplasmic factors, Fz-containing complexes at cell junctions show highmobility (left panel), at least in part due to active endocytosis (arrows).

Cytoplasmic factors are non-stoichiometrically recruited by the transmembrane core proteins (left-center panel). These proteins participate in feedback

amplification interactions (right-center panel) with Pk destabilizing Fz in the same cell via a Dsh-dependent mechanism that results in Fz endocytosis (gray

arrows). At the same time, the cytoplasmic factors stabilize complexes, most likely via a phase transition driven by multivalent binding interactions between the

core proteins (right panel), with Pk acting via Stbm to stabilize Fz in neighboring cells (blue arrows).
apparent that these functions were masked in part due to each

protein having multiple functions. Our findings illustrate the

power of temporal manipulation of gene activity to unmask

essential functions [39].

Based on our recent discovery that stable fractions of Stbm,

Dsh, Pk, and Dgo can associate with Fz and Fmi non-stoichio-

metrically [5], we propose that core protein complexes have a

signalosome-like organization whereby weak multivalent pro-

tein-protein interactions between the complex components

promote a phase transition into a stable state [6]. Such an

arrangement would provide complexes with inherent stability

at cell junctions. Our present findings show that, in the

absence of stabilization by the other complex components,

Fz is highly mobile at junctions, in part due to being actively

endocytosed.

Once core proteins are stably localized at cell junctions, feed-

back interactions can then sort them into polarized domains. We

do not know whether there is only one feedback interaction or

multiple interactions; however, experimental and theoretical

studies looking at single cell polarization suggest that combina-

tions of multiple feedbacks increase robustness (e.g., [40, 41]).

One such feedback interaction appears to bemediated via the

ability of Pk to destabilize Fz in the same cell. Dynamin and Rab5

are required to see this destabilization of Fz, supporting an endo-

cytic mechanism. This may involve a direct interaction between

Pk andDsh, given that they are known to bind in vitro [26, 27].We

propose two possible (non-exclusive) mechanisms: (1) Pk inter-

acts with Dsh to block a protective function of Dsh on Fz (most

likely multimerization into stable complexes), leading to Fz endo-

cytosis via a constitutive mechanism. This is consistent with our

observation of constitutive Fz endocytosis in the absence of Dsh

and Pk activity, and (2) binding of Pk to Dsh-Fz complexes

results in a post-translational modification of Dsh or Fz by an

enzyme that is itself recruited by Pk. Possible modifications

include phosphorylation, whichmight induce a further destabiliz-

ing conformational change or recruitment of further enzymes or

endocytic adaptors, or the change could be ubiquitination of

Fz or Dsh, promoting internalization [42–44].
During normal development, we envisage that it is the popula-

tion of Pk bound to Stbm that mediates destabilizing feedback

interactions between core complexes and leads to their sorting.

However, our experiments show that ‘‘free’’ Pk can also destabi-

lize Fz in the absence of Stbm, andwe speculate that this may be

important for maintaining plasticity by ensuring there is always

some turnover of complexes.

It was recently found that, in addition to binding Pk and local-

izing it to proximal cell edges [16, 45], Stbm also promotes Pk

degradation by the proteasome [24, 29]. We speculate that

this might serve to prevent a large buildup of Pk, which would

continuously destabilize Fz. However, interestingly, we find

that induction of Pk expression in the absence of Stbm only in-

duces a transient destabilization of Fz (Figure 5B). In this case,

the cells appear to show adaptation, whereby they initially

respond to a signal but then adapt and become unresponsive

[46]. If free Pk is causing Fz to be constitutively endocytosed, it

is possible that a homeostatic mechanism acts to progressively

damp down this response. Alternatively, it is possible that Pk can

also stabilize complexes, even in the absence of Stbm, for

instance, via interactions with Fmi [47], but this stabilization

acts on a longer timescale than its ability to destabilize Fz.

Another interesting observation is that, whereas induction of

both Dsh and Stbm expression leads to stabilization of Fz-EGFP,

Stbm induction leads to rapid stabilization (Figures 4C and 4D),

whereas Dsh induction showsmuch slower stabilization (Figures

4E and 4F). This occurs despite induction of Stbm showing a

slower time course of protein production than Dsh (Figures

S3A–S3D). We speculate that this may be because of the

different interactions Stbm and Dsh have with Pk. When Stbm

is induced, we predict that Stbm associates with intercellular

complexes on the opposite side of junctions to Fz and both

recruits Pk and promotes Pk degradation by the proteasome

[24, 29]. This results in stabilization of Fz at junctions both inter-

cellularly by Stbm-Pk but also reduces free Pk, which could

destabilize Fz intracellularly. The balance of interactions is there-

fore toward Fz stabilization, which rises rapidly (Figure 4C).

When Dsh is induced, we predict it will associate with Fz and
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stabilize it at junctions. However, Pk opposes this stabilization by

acting to destabilize Fz and thus causing high mobility of both Fz

and Dsh. There is thus competition between the stabilizing activ-

ity of Dsh and the destabilizing activity of Pk. The competition

only ceases once Dsh and Pk are largely sequestered to oppo-

site cell ends, at which point Fz stability rises (Figure 4E).

Notwithstanding our evidence for an essential role for Pk in

mediating feedback interactions that amplify planar polarity, it

is known that polarity (as revealed by effects on trichome forma-

tion) can propagate from repolarizing boundaries through pk

mutant tissue [35, 48]. Nevertheless, in the absence of Pk, the

core proteins cannot detectably planar polarize. We infer that,

in the absence of Pk, there is at least a small difference in core

protein distribution or activity that can be passed from cell to

cell and which is sufficient to activate the trichome polarization

machinery.

In conclusion, our data support Pk-mediating negative inter-

actions that destabilize Fz during feedback amplification of

planar polarity in the Drosophila wing (Figure 7). Stbm, Dsh,

Pk, and Dgo also play roles in stabilizing core complexes,

most likely by promotingmultivalent protein-protein interactions.

Together, these processes are essential for polarized subcellular

distribution of core planar polarity protein complexes.
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sqh-Clc::mCherry Thomas Lecuit [55] N/A

pUAS-Rab5S43N Bloomington Drosophila Stock Center FlyBase: FBti0150344; RRID: BDSC_42703

hs-FLP Bloomington Drosophila Stock Center FlyBase: FBti0002044; RRID: BDSC_6

FLP22 Bloomington Drosophila Stock Center FlyBase: FBti0000785; RRID: BDSC_8862

Ubx-FLP Bloomington Drosophila Stock Center FlyBase: FBti0150334; RRID: BDSC_42718

Actin-GAL4 Bloomington Drosophila Stock Center FlyBase: FBti0012293; RRID: BDSC_4414

tubulin-Gal80ts Bloomington Drosophila Stock Center FlyBase: FBti0027796; RRID: BDSC_7019

Actin>y+>GAL4 Bloomington Drosophila Stock Center FlyBase: FBti0012290; RRID: BDSC_3953

Ubi-mRFP-nls Bloomington Drosophila Stock Center FlyBase: FBti0129786; RRID: BDSC_30852

Software and Algorithms

NIS Elements AR version 4.60 Nikon N/A

Image Lab version 4.1 BioRad Laboratories N/A

ImageJ version 2.0.0 https://fiji.sc N/A

MATLAB_R2014b Mathworks N/A

GraphPad Prism version 7.0c GraphPad Software N/A
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G*Power version 3.1 http://www.gpower.hhu.de N/A

Packing Analyzer Suzanne Eaton [33] N/A

Polarity measurement scripts (MATLAB) David Strutt [5] N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David

Strutt (d.strutt@sheffield.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila melanogaster flies were grown on standard cornmeal/agar/molasses media at 18�C or 25�C, unless otherwise described.

Fly strains are described in the Key Resources Table. fmiE59, fzP21, stbm6, pkpk-sple13, dshV26 and dgo380 are null alleles. dsh1 gives a

strong planar polarity phenotype, but functions normally in wingless signaling. shits1 is a temperature sensitive allele, which is func-

tional at the permissive temperature (18�C) and is less active at the restrictive temperature (29�C).
fz-EGFP is a knockin of EGFP into the endogenous fz locus and P[acman]-EGFP-dsh is a genomic rescue construct. Both

are expressed at similar levels to the endogenous genes, and fully rescue mutant phenotypes [5]. pActP>STOP>FLAG-stbm,

pActP>STOP>FLAG-pk and pActP>STOP>FLAG-dgo were generated by using PCR to introduce FLAG-tags at the N-termini of

the coding sequences and inserting the final products into the vector pActP>STOP>PolyA. UAS-pk was generated by FC31-medi-

ated recombination into the VK31 landing site. Other transgenes were pActP>STOP>dsh-ECFP [35], tub-CFP-Rab5 [54] and sqh-

Clc::mCherry [55]. pUAS-Rab5S43N was obtained from Bloomington Stock Centre (w; P{w[+mC]=UAS-Rab5.S43N}2) (see also

Key Resources Table).

Transgenics were generated by Genetivision and BestGene.

METHOD DETAILS

Fly genetics
To express dsh-ECFP, FLAG-stbm, FLAG-pk and FLAG-dgo, hsFLP or FLP22 were used, and pupae were heat shocked for 1 hr at

38�C at the indicated times to excise the FRT-STOP-FRT cassette. On the basis of when trichomes subsequently emerge, we

observe that development is halted for the period of the heat shock. The start time of protein expression was varied to ensure

FRAP was always conducted at the same developmental time at 31 hr APF. The genotype for the heat shock control did not carry

FLP but was heat shocked under the same conditions, 2 hr prior to imaging. UAS-Rab5S43N was expressed after excision of the

FRT-STOP-FRT cassette from Actin>y+>GAL4 using hsFLP following a 2 hr heat shock at 38�C.
Mitotic clones were induced using the FLP/FRT system and Ubx-FLP. For twin clone experiments with fz-EGFP and UAS-pk,

mitotic clones were induced with Ubx-FLP, and pk expression was controlled using Actin-GAL4, tub-GAL80ts. Flies were raised

at 18�C and shifted to 29�C to allow expression of UAS-pk for the indicated times. For FRAP on clone boundaries, tissue lacking

fz-EGFP was marked using Ubi-mRFP-nls.

Immunostaining and antibodies
Unless otherwise indicated, pupal wings were dissected at 28 hr APF at 25�C. Pupae were placed in a drop of 4% paraformaldehyde

in PBS and the pupal cuticle was removed. Pupae were fixed for 30-45min at room temperature, prior to dissection of the pupal wing

from the pupal carcass. Wings were transferred into PBS containing 0.2% Triton X-100 (PTX) and 10% normal goat serum to block

prior to antibody incubation. Wings were incubated with antibodies overnight at 4�C, in PTX with normal goat serum, and washes

were in PTX. After immunostaining wings were post-fixed in 2% paraformaldehyde in PTX for 30 min and mounted in 10% glycerol,

1xPBS, containing 2.5% DABCO (pH7.5). Primary antibodies for immunostaining were affinity purified rabbit anti-GFP (ab6556,

Abcam, UK), affinity-purified rat anti-Pk [49] and mouse monoclonal anti-Fmi (Flamingo #74, DSHB [14]).

Western blotting
For pupal wing westerns, 28-30 hr APF pupal wings were dissected directly into sample buffer. Two pupal wing equivalents were

loaded per lane. Westerns were probed with affinity-purified rat anti-Pk [49], affinity purified rabbit anti-Dsh [49], rabbit anti-Stbm

[50] andmonoclonal mouse anti-actin (AC-40, Sigma, UK). A BioRad ChemiDoc XRS+was used for imaging. Images were quantified

using the Gel Analysis plug-in in ImageJ.
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Imaging
Fixed pupal wings were imaged on a Nikon A1R GaAsP confocal microscope using a 60x NA1.4 apochromatic lens, with a pixel size

of 70 nm, and the pinhole was set to 1.2 AU. 9 Z-slices separated by 150 nm were imaged, and then the 3 brightest slices around

junctions were selected and averaged for each channel in ImageJ.

For live imaging, white prepupae were collected and aged for 31 hr at 25�C (or the equivalent time at different temperatures).

Briefly, a small piece of cuticle was removed from above the pupal wing, and the exposed wing wasmounted in a drop of Halocarbon

700 oil in a glass-bottomed dish. Images were taken below vein 5, as this is the flattest region in our preparations. For FRAP analysis,

images were 2563 256 pixels, with a pixel size of 100 nm, and a pinhole of 1.2 AU. ‘‘Hub-and-spoke’’ ROIs of approximately 4 mm2

were selected, that covered a vertex and 3 half-cell edges. Three pre-bleach images were taken at 2 frames/sec, and ROIs were then

bleached using a 488 nm Argon laser at 80% with 8 passes (1 s total time), which resulted in 50%–60% bleaching. Immediately

following bleaching, 5 images were taken at 5 s intervals, followed by 10 images at 10 s intervals, 10 images at 15 s intervals and

8 images at 30 s intervals. Laser power was adjusted to maintain constant power between different imaging sessions.

If only EGFP was being imaged, a 488nm laser and a long pass GFP filter was used. For imaging both EGFP and mRFP, a 488nm

laser and a 525-550 band pass filter was used to detect GFP and a 561nm laser and a 550-595 band pass filter to detect mRFP. For

the UAS-pk and shits1 experiments, pupae were imaged on a heated stage at 29�C.

QUANTIFICATION AND STATISTICAL ANALYSIS

FRAP processing
For data analysis, ImageJ was used to manually reselect up to 4 bleach regions in each image for each time point. The laser off back-

ground was subtracted, and the values were then corrected for acquisition bleaching and normalized against the average of the

prebleach values. Data were then plotted on an xy graph using Prism (v7 Graphpad), bleached regions within the same wing

were averaged and a one-phase exponential curve was fitted for each wing. Multiple wings were then combined and an exponential

association curve was fitted. An extra-sum-of-squares F test was used to compare curve plateaux (y[max]).

To determine the stable amount of Fz-EGFP in the ROIs, the mean intensity of the ROIs from the three pre-bleach images was

measured in ImageJ, and averaged per wing. The intensity was then corrected for distance from the coverslip as previously

described [5], and this value was then multiplied by the stable fraction (1-y[max]) for each wing. The stable amounts were then aver-

aged across wings, and results were plotted on a scatter graph along with the mean and 95% confidence intervals.

Statistics
The overall intensities, and stable and unstable amounts for multiple genotypes were compared using a one-way ANOVA, to take into

account the sample variation across the genotypes analyzed and to avoid multiple t test analysis. Post hoc tests were used to

compare individual samples: Dunnett’s multiple comparison test was used to compare the control to the rest of the genotypes in

the experiment; Tukey-Kramer’s multiple comparison test to compare all genotypes within an experiment; and �Sı́dák’s multiple com-

parison test was sometimes used to compare genotypes pairwise. Where a post hoc test was used this is described in the

Figure legends, and multiplicity adjusted p values calculated in Prism are reported on the graph as asterisks (p < 0.5*, p < 0.01**,

p < 0.001***), and in Tables S1 and S2.

Based on the mean intensity and standard deviation of a control set of wings, we aimed for a sample size of at least 6 wings per

genotype. This would allow detection of differences of 20% in the means, in a pairwise comparison, with a power of 0.8 and a 0.05

(using G*Power). In practice the power was lower than this, as standard deviations were larger for some genotypes, multiple geno-

types were compared in each experiment, and in many cases the desired number of wings was not achieved, due to the constraints

of timed pupa collections of complex genotypes.

Each experiment was performed onmultiple wings fromdifferent pupae, which represent biological replicates (n, number of wings).

For eachwing, 4 ROIs were selected for FRAP analysis, and thesewere treated as technical replicates andwere averaged per wing to

produce a y[max] and a stable amount per wing. Data was excluded if the ROI recovery curve failed the ‘replicates test for lack of fit’ in

GraphPad Prism, or if the wing moved out of focus during the course of imaging. In total 14 wings were discarded across all the

genotypes.

Polarity measurement
Polarity measurements were taken from the pre-bleach images that were used for FRAP.Wings were aligned along the proximodistal

wing axis based on wing vein orientation, and membrane masks were generated using Packing Analyzer [33]. Polarity magnitude

(maximum asymmetry ratio on a cell-by-cell basis) and polarity angle were determined using previously described MATLAB

scripts [5]. To visualize the polarity magnitude compared to the polarity angle, data from multiple wings were combined, and heat-

maps were created using MATLAB. Data was grouped into 20 bins on each axis, with each bin representing a unique polarity angle

and magnitude. Colors depict the percentage of cells in each bin, and 0� represents the proximodistal axis of the wing.
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Figure S1. Quantitative FRAP of Fz-EGFP. Related to Figure 2 
(A) Diagram of an idealised spot-bleach experiment. After bleaching of the region of interest (ROI, orange 
ellipse) at the start of the experiment, fluorescence gradually recovers in the bleached region as a result of 
exchange of any mobile bleached molecules within the ROI for unbleached material from outside the ROI, by 
either diffusion or intracellular trafficking. The degree of recovery achieved reveals the size of the mobile 
fraction of material (blue arrow) whereas the proportion of fluorescence that does not recover reveals the size of 
the immobile fraction (red arrow). The rate of recovery of fluorescence is revealed by the slope of the recovery 
curve and provides a measure of the rate of protein turnover within the ROI. 
(B) Diagram showing "half-cell" ROI used for bleaching fluorescence during FRAP. This shaped region bleaches 
the equivalent of the vertices and junctions of at least an entire cell, while also bleaching significant regions of 
cytoplasm, possibly resulting in depletion of the total cellular pool of fluorescent protein from which 
fluorescence recovery can occur. 
(C) Hub-and-spoke FRAP recovery curves of heterozygous Fz-EGFP at 20h, 25h, 28h and 31h APF, fitted to a 
single exponential equation. 95% confidence intervals for the curve are also plotted as dotted lines in the same 
colour. Plateaux comparison of all of the curves: extra sum-of-squares F test result P≤0.001. Rate comparison of 
all the curves: extra sum-of-squares F test result P=0.0279. 
(D) Scatter plots showing the FRAP y[max] (plateau) of Fz-EGFP recovery in live pupal wings at 20h, 25h, 
28h and 31h APF. Analysed from the same images as the results in Figure 2C. n = number of wings with 4 
regions averaged per wing. Green dots are the averaged results from each wing; the mean and 95% confidence 
intervals are shown. Post hoc test results using Dunnett's multiple comparisons test (comparing 20h APF 
column to all columns) 20h vs. 28h **P= 0.0085, 20h vs. 31h *P= 0.0318. 
(E) Scatter plots showing the mean junctional intensity of Fz-EGFP in live pupal wings at 20h, 25h, 28h and 
31h APF. Analysed from the same images as the results in Figure 2C. n = number of wings with 4 regions 
averaged per wing. Green dots are the averaged results from each wing; the mean and 95% confidence intervals 
are shown. Post hoc test results using Dunnett's multiple comparisons test (comparing 20 h column to all 
columns) *P=0.0241.
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Figure S2. Amounts and fluorescence recovery after photobleaching of Fz-EGFP at junctions in different 
core pathway genotypes. Related to Figure 3 
 (A) Image of Fz-EGFP fluorescence in 31h APF pupal wing carrying fmiE59 mutant clones. No Fz-EGFP is 
visible at junctions in fmi mutant tissue. 
(B) Scatter plot showing Fz-EGFP intensity in the control (+) and core planar polarity mutant backgrounds. 
Error bars are 95% confidence intervals. A post hoc Tukey-Kramer’s multiple comparisons test (comparing all 
genotypes to each other) was conducted; significant comparisons were stbm6 vs. pkpk-sple-13 dgo380 (*P=0.020) and 
dsh1 dgo380 vs. pkpk-sple-13 dgo380 (**P=0.007). See Table S1 for the full genotypes and Table S2 for the statistical 
comparisons between the genotypes. 
(C-H) FRAP recovery curves of Fz-EGFP at 31h APF, in core planar polarity mutant backgrounds. Each curve is 
fitted to a single exponential equation. 95% confidence intervals for the curves are indicated as dotted lines in 
the same colour. fz-EGFP/+ control is shown as a solid green line in (C) and as a dotted green line in (D-H). The 
mutant genotypes in each graph are: (C) stbm6 (orange); dsh1 (dark blue); dgo380 (pink); pkpk-sple-13 (light blue). 
(D) pkpk-sple-13 stbm6 (navy); dsh1 stbm6 (peach). (E) dsh1 pkpk-sple-13 (purple); dsh1 pkpk-sple-13 dgo380 (light blue). 
(F) dsh1 pkpk-sple-13 stbm6 (yellow); dsh1 pkpk-sple-13 stbm6 dgo380 (blue). (G) stbm6 dgo380 (blue); dsh1 dgo380 
(orange); pkpk-sple-13 dgo380 (red). (H) dsh1 stbm6 dgo380 (turquoise); pkpk-sple-13 stbm6 dgo380 (grey). See Table 
S1 for the full genotypes. 
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Figure S3. Protein induction profiles for Stbm, Dsh and Pk, and effects of Dgo and Pk induction on Fz-
EGFP stability. Related to Figure 4 
(A,C,E) Immunoblots of Stbm (A), Dsh (C) or Pk (E) protein levels and Actin levels after indicated time of 
induction of expression, in 28-30 h APF pupal wing extracts, compared to a wild-type (w1118) control. (A) hs-
FLP; Actin>>FLAG-stbm, stbm6/ stbm6; fz-EGFP/+ flies or Ubx-FLP; Actin>>FLAG-stbm, stbm6/ stbm6; fz-
EGFP/+ flies for long-term expression. (C) dsh1, FLP22; Actin>>Dsh-ECFP; fz-EGFP/+ flies. (E) hs-FLP; 
Actin>>FLAG-pk, pkpk-sple-13/ pkpk-sple-13; fz-EGFP/+ flies or Ubx-FLP; Actin>>FLAG-pk, pkpk-sple-13/ pkpk-sple-13; 
fz-EGFP/+ flies for long-term expression. Arrows indicate Stbm, Dsh or Pk protein, and the asterisks indicate 
non-specific bands on the immunoblots. (A,B) Stbm is detectable 2h after induction, and reaches wild-type 
levels after 7h. By 24h the protein is overexpressed, and levels are at a steady state, comparable to those seen 
with Ubx-FLP. (C,D) Note that Dsh-ECFP is larger than endogenous Dsh, and leaky expression is detectable in 
the absence of heat shock (13% of endogenous levels). Wild-type levels are achieved 1-2h after induction using 
heat shock, and protein levels continue to increase over the time course. The dsh1 allele encodes a protein of the 
correct size that is not phosphorylated (see absence of upper band). Interestingly when Dsh-ECFP is over-
expressed after 24 h of expression, the phosphorylation of the protein encoded by dsh1 is restored, possibly due 
to sequestration by Dsh-ECFP. (E,F) Pk reaches wild type levels 2-3h after induction, and is overexpressed by 
7h, when steady state levels are achieved. 
(B,D,F) Quantitation of Stbm, Dsh and Pk protein levels relative to Actin levels, for the immunoblots shown in 
A, C and E. Quantitations were from 3 biological replicates, and graphs show mean and sem. 
(G) Stable amount of Fz-EGFP after induction of expression of Dgo. FRAP was performed at 31h APF, with heat 
shock induction of protein expression between 1h and 25h prior to imaging. The no FLP controls (grey circles in 
each graph) did not carry hs-FLP but were heat shocked 2 h prior to imaging, while the no expression controls 
carried hs-FLP but were not heat shocked. The mean and 95% confidence intervals are shown. Stars on the 
graphs indicate significant results using Dunnett's multiple comparisons test, comparing the no-expression stable 
amount to that of the other conditions, 2h expression, no FLP vs. no expression *P= 0 .0116. See Table S1 for 
full genotypes, Table S2 for all comparisons. 
(H) Scatter plots showing the mean cell polarity of Fz-EGFP in live pupal wings, after induction of Dgo. Data 
were collected from the first FRAP images. n = number of wings analysed, mean and 95% confidence intervals 
are shown. Stars on the graphs indicate significant results using Dunnett's multiple comparisons test, comparing 
the mean cell polarity of the no expression control to that of the other conditions: 0h vs. 1h ***P=0.0003, 0h vs. 
3h **P=0.002 and 0h vs. 7h *P=0.011. Note that the no expression and the no FLP controls retain a low degree 



of polarity even in the absence of dgo380, similar to the dgo380 mutant (Figure 3B,H). See Table S1 for full 
genotypes, Table S2 for all comparisons. 
(I) Stable amount of Fz-EGFP after induction of expression of Pk. Samples are the same as for Figure 4G, but 
additional controls are shown. FRAP was performed at 31h APF, with heat shock induction of protein expression 
between 1h and 25h prior to imaging. The no FLP controls (grey circles) did not carry hs-FLP but were heat 
shocked at various times prior to imaging, while the no expression control carried hs-FLP but was not heat 
shocked. The mean and 95% confidence intervals are shown. Student's t-tests were used to compare no FLP 
controls to expression (with FLP) at each timepoint; no FLP 2h expression to 2h expression: *P=0.0236. See 
Table S1 for full genotypes, Table S2 for all comparisons. 
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Figure S4. Fz-EGFP polarity after Pk induction in double mutant backgrounds. Related to Figure 5 
(A-D) Heat maps of Fz-EGFP in live pupal wings at 31h APF, comparing the angle of polarity against the 
polarity magnitude, for the induction experiments expressing either Pk (A,B) or Stbm (C,D) for 0h (A,C) or 25h 
(B,D). Data for the 0h expression wings were collected from the first timepoint of each of the wings used in the 
FRAP experiments shown in Figure 5A,B. Colours depict the percentage of cells with a particular polarity 
magnitude and angle. Data has been grouped into 20 bins on each axis. 
(E) Scatter plots showing the mean cell polarity of Fz-EGFP in live pupal wings, after induction of Pk for 1h or 
25h, in a stbm6 or dsh1 mutant background. Data were calculated from the same images as the results in Figure 
S4A-D. n = number of wings analysed, mean and 95% confidence intervals are shown. t-tests comparing the 
mean cell polarity of Fz-EGFP: for Pk induction in a dsh1 mutant comparing 0h vs. 25h P=0.292 and Pk 
induction in a stbm6 mutant comparing 0h vs. 25h P=0.115. See Table S1 for full genotypes. 
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Figure S5. Subcellular localisation of core proteins and endocytic components following Pk induction. 
Related to Figure 6 
(A,B) Images from hs-FLP; pkpk-sple-13/Act>>FLAG-pk, pkpk-sple-13; fz-EGFP/+ (A) or shits1 FLP12; pkpk-sple-13/
Act>>FLAG-pk, pkpk-sple-13; fz-EGFP/+ (B) pupal wings, immunolabelled for GFP (green and white) and Pk 
(magenta and white). Pupae were raised at 18°C for 52h APF, heat shocked for 1h at 38°C to induce Pk 
expression, and then allowed to develop for a further 3h at the restrictive temperature (29°C). Pk expression is 
similar in the presence or absence of shi. Scale bar 10µm. 
(C-F) Images from pkpk-sple-13/Act>>FLAG-pk, pkpk-sple-13; fz-EGFP/+ (C), hs-FLP; pkpk-sple-13/Act>>FLAG-pk, 
pkpk-sple-13; fz-EGFP/+ (D), pkpk-sple-13 stbm6/Act>>FLAG-pk, pkpk-sple-13 stbm6; fz-EGFP/+ (E) or hs-FLP; pkpk-

sple-13 stbm6/Act>>FLAG-pk, pkpk-sple-13 stbm6; fz-EGFP/+ (F) pupal wings, immunolabelled for GFP (green and 
white) and Pk (magenta and white). Pupae were raised at 18°C for 54h APF, heat shocked for 1h at 38°C, and 
then allowed to develop for a further 1.5h at 29°C. No obvious appearance of Fz-EGFP in vesicles is seen after 
induction of Pk expression. Note that this temperature regime was chosen, as it shows a rapid destabilisation of 
Fz-EGFP as assayed by FRAP (see Figure 6B). 
(G, H) Images from dsh1 FLP12; P[acman]-EGFP-dsh pkpk-sple-13/Actin>>FLAG-pk, pkpk-sple-13 male prepupae, 
immunolabelled for GFP (green and white) and Fmi (magenta and white). (G) Pupae were raised at 18°C for 54h 
APF, and then 1.5h at 29°C. (H) Pupae were raised at 18°C for 54h APF, heat shocked for 1h at 38°C to induce 
Pk expression, and then allowed to develop for a further 1.5h at 29°C. No obvious appearance of EGFP-Dsh or 
Fmi in vesicles is seen after induction of Pk expression. 



(I-L) sqh-mCh:Clc, pkpk-sple-13 stbm6/Actin>>FLAG-pk, pkpk-sple-13 stbm6; fz-EGFP/+ (I), hs-FLP; sqh-mCh:Clc, 
pkpk-sple-13 stbm6/Actin>>FLAG-pk, pkpk-sple-13 stbm6; fz-EGFP/+ (J), CFP-Rab5, pkpk-sple-13 stbm6/Actin>>FLAG-
pk, pkpk-sple-13 stbm6; fz-EGFP/+ (K) or hs-FLP; CFP-Rab5, pkpk-sple-13 stbm6/Actin>>FLAG-pk, pkpk-sple-13 stbm6; 
fz-EGFP/+ (L) pupal wings, showing GFP immunolabelling (green and white), mCherry fluorescence (magenta 
and white, I, J) or Fmi immunolabelling (magenta and white, K, L). Pupae were raised at 18°C for 54h APF, heat 
shocked for 1h at 38°C, and then allowed to develop for a further 1.5h at 29°C. No obvious recruitment of 
mCh:Clc or CFP-Rab5 to junctions is seen after induction of Pk expression. 
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