
Supplemental methods 
 

The terms metabolic labeling and fixed labeling 

In general, metabolic labeling is equally referred to SILAC (1) and to any other 

stable isotope labeling method like 15N (Fig. 1). This view comes with certain 

inconsistencies from a chemical perspective, which leads to inaccurate 

isotopologue calculations, especially when both methods are combined. A 

SILAC peptide labeled with heavy arginine (C6H12
15N4O) contains two distinct 

nitrogen pools that show different isotopic distributions: the labeled Arg is 

enriched in 15N, while the rest of the peptide shows the natural abundance of 

nitrogen. As a result, those two nitrogen pools have to be considered 

separately in order to calculate high precision isotopologues. Thus SILAC 

labeling induces a fixed mass shift similar to any chemical labeling, while 

metabolic labeling with 15N changes the natural isotopic distribution to an 

artificial enriched percentile in all molecules, thereby changing the form of the 

isotopologue pattern. Therefore, we would like to propose a redefinition of 

metabolic labeling in a more consistent way, in which only labels that are 

metabolized and incorporated through metabolic pathways are labeled as 

metabolic labeling. While the isotopic labeled amino acids in a SILAC 

experiments are taken up by the cell, the label itself is not metabolized. In 

fact, proline is added additionally to minimize the dilution of the label all other 

pools / amino acids. Thus true metabolic labeling allows partial labeling with x 

%, while fixed labeling is describing an artificially attached molecule, be it in 

vivo (SILAC) or in vitro (chemical tagging). This convention is used in pyQms, 



where metabolic labeling is used to be defined as differential label 

incorporation percentiles for given elements (e.g. 15N enriched to x %) and 

fixed labeling is used to defined modification that do not change the shape of 

the isotopologue but introduce a given mass shift like SILAC, 

carbamidomethylation, 18O digestion (2), iTRAQ (3), TMT (4) or any other 

chemical modification that are part of the community curated collection at 

unimod.org. 

Other algorithms utilizing isotopologue information for peptide 

quantification in comparison to pyQms 

Multiple available algorithms use the isotopologue information to improve the 

molecule detection for peptide quantifications (reviewed in (5–7)). Various 

approaches are employed to incorporate the isotopologue information. In the 

following section the approaches of the algorithms are summarized and finally 

compared to pyQms. Please refer also to supplemental Table S1 for an 

extended overview of algorithms for MS based molecule quantitation, to our 

current knowledge. Additionally, tools for metabolite quantitation and 

algorithms detecting partial labeled molecules are compared to pyQms. 

Please note that information in supplemental Table S1 is presented to the 

best of our knowledge. Nevertheless, we will make this table publicly available 

for comments and extensions under: 

https://docs.google.com/spreadsheets/d/18_h3ACxCDjMynptcm9uU8E61RxE

-o7r_qlVq2vT9xng/edit?usp=sharing 



Algorithms 

msInpsect (8) detects potential isotopic patterns and matches them to 

peptides predicting isotopologues using a Poisson distribution, which was 

empirically evaluated using human tryptic peptides. Only the most intense 

peak from the isotopologue is used for quantification, since it is argued that 

this peak is measured with the highest precision (8).  

MapQuant (9) determines isotopic clusters considering 13C (and its natural 

distribution) for the calculation of the isotopic pattern. The software uses a 

binomially distributed sum of 2-D Gaussians as a bivariate function of 

retention time and m/z to fit peaks which are potential isotopic clusters (9). 

SpecArray (10) defines peptide features by their monoisotopic mass, charge 

and retention time at peak apex. Signals are compared to peptide isotopic 

distributions to identify potential peptide features. Signals from the first three 

calculated and found isotopic masses are combined for the peptide signal. 

The quality of the feature is defined as the single to noise ratio at the features 

apex and the abundance as the feature area. 

OpenMS (11) uses the ‘averagine’ model to approximate the amino acid 

composition of a given mass and calculate atomic composition and isotope 

distributions. Spectra a filtered to find wavelet based isotopic patterns of 

peptides of a given charge state. Several extensions to OpenMS exists 

nowadays, which refine the feature detection and broaden the application 

range also to metabolomics and further research fields (12, 13). 



Superhirn (14) detects the monoisotopic peak by comparing measured 

values to isotopic templates. Overlapping isotopologues can be resolved. The 

intensity is defined as the intensity of the complete isotopic pattern. 

Monoisotopic masses are clustered in retention time dimension (with a m/z 

tolerance of 0.005 Da) and the MS1 feature is defined. 

Census (15) uses the amino acid elemental composition to determine 

isotopologues. The composition can be altered so that any labeling strategy 

should be applicable. A m/z range is determined based on the isotopologue 

pattern and isotope ion intensities are extracted within this range (at least 5 % 

of isotopologue base peak intensity) using a m/z tolerance defined by the 

user. 

MaxQuant (16) detects three dimensional peptide features and uses a graph 

model to assign these features to isotopologues of peptides. The ‘averagine’ 

model is used to define the charge dependent mass difference between 

isotopologue peaks. Isotope patterns are refined by splitting them according 

to obtain groups for single charge states and retaining the charge state with 

the highest number of peaks. Peptide intensity if defined as the two 

dimensional centroid intensity (sum of raw intensities) of an Isotope pattern 

(16). 

Pyquant  (17) detects isotope patterns and extracts XICs from raw data. 

Amounts are calculated from the area under the curve for the XICs employing 

a Bi-Gaussian fit. For validation several quality measures are applied, like 



signal to noise ratio, intensity of the quantified molecule, as well as the elution 

peak width and density (17). 

pySM (18) is a identification and quantification tool for metabolomics analyzed 

by imaging MS. In a first step MS images are filtered to separate for 

information and only noise containing ion images. pySM uses a scoring 

system (MSM score) to evaluate the match of the isotopic pattern in an 

approach comparable to pyQms. Prior to matching of the isotope envelope, 

spectra are averaged, where the principal peak of the isotope pattern is 

present. The main aim of pySM is to identify metabolites using a FDR 

approach by assuming implausible adducts to generate decoy molecules (18). 

Differentiation of pyQms to other algorithms 

In contrast to other algorithms pyQms does not determine peptide features, or 

in a more general respect molecule features, but takes a given input set of 

molecules and matches the calculated isotope pattern in every given MS 

spectra. pyQms is optimized in such a way that such a computationally costly 

approach can nevertheless be taken. User defined filtering steps and elution 

profile reconstructions are done after the raw quantification procedure. 

According to the different needs of analyses this filtering can be very diverse. 

Therefore, pyQms was designed to perform the raw quantification task in the 

analyses and further result integration is left to dedicated, specialized tools, 

algorithms and/or pipeline frameworks. However, the pyQms offers basic 

functionality that allows users to tag elution profile peaks with given identities, 

e.g. peptide search results from Ursgal (19) can be parsed and used to define 

retention time windows. Equally input files for metabolomics data can be 



created by the user, defining e.g. trivial names and retention time windows. 

Please refer to the documentation for more details. 

In pyQms, molecules are quantified on spectrum level by scaling the 

theoretical isotope pattern to the measured ions. This scaling represents the 

amount of this molecule in this spectrum, because the sum of all theoretical 

isotope pattern peaks are equal to 1. Other tools tend to use only the most 

abundant peak (very often the monoisotopic peak, which is very frequently not 

the most abundant peak when larger peptides are considered (7)), only use a 

part of the isotopologue for amount determination or uses the average of 

multiple spectra. Thus, selecting the monoisotopic peak is in general very 

difficult, especially if elemental enrichment levels are between 20 to 80%; see 

e.g. supplemental Fig. 14. 

The assembly of features is not implemented in pyQms as it is a raw 

quantification tool. Nevertheless isotopologue matches can be assembled in 

time dimension (with defined RT borders e.g. obtained by peptide 

identifications), which yields an accurate representative value for a MS run. 

Current default behavior is to extract the maximum intensity, the sum of all 

spectra and the area under curve of a molecular formula from one MS run. 

Nevertheless, newly innovative algorithms can also be easily incorporated into 

pyQms (please refer to online documentation). Also evidence files (with 

peptide identification information) can be provided and this information is 

subsequently used to define retention time windows and calculate amounts. 



Further pyQms uses no approximations like the ‘averagine’ model or uses 

common approximate isotopic pattern, but incorporates all elemental isotope 

abundances into the calculation of the isotopologues, thereby increasing the 

precision of the quantification. This is especially important considering the fact 

that instruments become more and more precise. Further, highly accurate 

isotopologue calculation in combination with high precision instruments will 

pave the way to identification free peptide quantification. 

Generally, quantitative MS analyses will benefit from the mScore. More 

accurate label-free amount and subsequent ratio determination between 

complex samples are obtained if the mScore thresholds are increased 

(supplemental Fig. 15).  
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