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LEGENDS TO SUPPLEMENTARY FIGURES

Fig S1: Signal distribution plots (A) and Principal component analysis (PCA, B) of all intensity values

achieved in the study (three samples for each egg type AM, RE and EQ).

Fig S2: Enriched GO biological process terms in amictic eggs (AM), resting eggs (RE) and resting eggs

before hatching (EO).

Fig S3: Enriched KEGG pathways in AM (blue), RE (red) and EO (green). For each pathway, the
nominator in the bar labels shows the number of proteins displayed in each egg type and the
denominator shows the total number of proteins (KOs) in the translated reference transcriptome that

were associated with the pathway.

Fig S4: Enriched GO biological processes of the proteins with significant differences in their

abundance in the comparisons of AM vs. RE (blue) and AM vs. EO (red).

Fig S5: A heat-map showing the abundance level of proteins in Fatty acid degradation pathway after
hierarchical clustering. Expand the figure x175 to view the text. White cells in the heat map denote
missing values. Two vertical bars to the left of the heat map indicate whether the abundance of a
protein significantly differed in the comparison of AM vs RE (left) or AM vs EO (right). A red box
indicates statistical significance in the 1-Way ANOVA test (FDR p-value<0.05, FC>3). An orange box
indicates that the protein was identified in one egg type but not in the other. A while box indicates
there were no statistically significant differences in the abundance of the protein, in the compared

groups.

Fig S6: A KEGG map displaying the proteins in association with Valine, leucine and isoleucine
degradation pathway. Boxes in grey show the proteins that were identified in rotifer eggs. Boxes in
red show proteins that were significantly more abundant in AM vs RE. Statistically significant

differences were indicated by 1-Way ANOVA test (FDR p-value 0.05, FC>3).

Fig S7: A KEGG map displaying the proteins in association with the Glycolysis/Gluconeogenesis

pathway. Boxes in grey show the proteins that were identified in rotifer eggs. Boxes in red show
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proteins that were significantly more abundant in AM vs RE. Yellow boxes show the proteins that
were detected only in AM eggs. Statistically significant differences were indicated by 1-Way ANOVA

test (FDR p-value 0.05, FC>3).

Fig S8: A heat-map showing the abundance level of proteins in the Glycolysis/Gluconeogenesis
pathway after hierarchical clustering. Expand the figure x175 to view the text. White cells in the heat
map denote missing values. The two vertical bars to the left of the heat map indicate whether the
protein showed differentially abundance in AM vs. RE (left) and in AM vs. EO (right). A red box
indicates statistical significance in the 1-Way ANOVA test (FDR p. 0.05, FC > 3). An orange box
indicates that the protein was abundant in one egg type and not the other. A white box indicates that

the protein did not display differentially abundance.

Fig S9: A heat-map showing the abundance level of proteins in the Citrate cycle (TCA) pathway after
hierarchical clustering. Expand the figure x175 to view the text. White cells in the heat map denote
missing values. The two vertical bars to the left of the heat map indicate whether the protein showed
differentially abundance in AM vs. RE (left) and in AM vs. EO (right). A red box indicates statistical
significance in the 1-Way ANOVA test (FDR p. 0.05, FC > 3). An orange box indicates that the protein
was abundantin one egg type and not the other. A white box indicates that the protein did not display

differentially abundance.

Fig S10: A KEGG map displaying the proteins in association with the Pyruvate metabolism pathway.
Boxes in grey show the proteins that were identified in rotifer eggs. Boxes in red show proteins that
were significantly more abundant in AM vs RE. Yellow boxes show the proteins that were detected
only in AM eggs. Boxes in blue show proteins with significantly higher abundance in RE vs AM.

Statistically significant differences were indicated by 1-Way ANOVA test (FDR p-value 0.05, FC>3).

Fig S11: A heat-map showing the abundance level of proteins in the Pyruvate metabolism pathway
after hierarchical clustering. Expand the figure x175 to view the text. White cells in the heat map

denote missing values. The two vertical bars to the left of the heat map indicate whether the protein
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showed differentially abundance in AM vs. RE (left) and in AM vs. EO (right). A red box indicates
statistical significance in the 1-Way ANOVA test (FDR p. 0.05, FC > 3). An orange box indicates that
the protein was abundant in one egg type and not the other. A white box indicates that the protein

did not display differentially abundance.

Fig $12: A KEGG map displaying the proteins in association with the Cell cycle pathway. Boxes in grey
show the proteins that were identified in rotifer eggs. Boxes in red show proteins that were
significantly more abundant in AM vs RE. Yellow boxes show the proteins that were detected only in
AM eggs. Statistically significant differences were indicated by 1-Way ANOVA test (FDR p-value 0.05,

FC>3).

Fig $13: A KEGG map displaying the proteins in association with the Spliceosome pathway. Boxes in
grey show he proteins that were identified in rotifer eggs. Boxes in red show proteins that were
significantly more abundant in AM vs RE. Yellow boxes show the proteins that were detected only in
AM eggs. Statistically significant differences were indicated by 1-Way ANOVA test (FDR p-value 0.05,

FC>3).

Fig S14: A KEGG map displaying the proteins in association with the mRNA surveillance pathway.
Boxes in grey show the proteins that were identified in rotifer eggs. Boxes in red show proteins that
were significantly more abundant in AM vs RE. Yellow boxes show the proteins that were detected
only in AM eggs. Statistically significant differences were indicated by 1-Way ANOVA test (FDR p-value

0.05, FC>3).

Fig S15: A KEGG map displaying the proteins in association with the Proteasome pathway. Boxes in
grey show the proteins that were identified in rotifer eggs. Boxes in red show proteins that were
significantly more abundant in AM vs RE. Boxes in blue show proteins with significantly higher
abundance in RE vs AM. Statistically significant differences were indicated by 1-Way ANOVA test (FDR

p-value 0.05, FC>3).
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Fig S16: A heat-map showing the abundance level of proteins in the Oxidative phosphorylation
pathway after hierarchical clustering. Expand the figure x175 to view the text. White cells in the heat
map denote missing values. The two vertical bars to the left of the heat map indicate whether the
protein showed differentially abundance in AM vs. RE (left) and in AM vs. EO (right). A red box
indicates statistical significance in the 1-Way ANOVA test (FDR p. 0.05, FC > 3). An orange box
indicates that the protein was abundant in one egg type and not the other. A white box indicates that

the protein did not display differentially abundance.

Fig S17: A KEGG map displaying the proteins in association with the Pentose phosphate pathway.
Boxes in grey show the proteins that were identified in rotifer eggs. Boxes in red show proteins that
were significantly more abundant in AM vs RE. Boxes in blue show proteins with significantly higher
abundance in RE vs AM. Statistically significant differences were indicated by 1-Way ANOVA test (FDR

p-value 0.05, FC>3).

Fig S18: A heat-map showing the abundance level of proteins in the Pentose phosphate pathway after
hierarchical clustering. Expand the figure x175 to view the text. White cells in the heat map denote
missing values. The two vertical bars to the left of the heat map indicate whether the protein showed
differentially abundance in AM vs. RE (left) and in AM vs. EO (right). A red box indicates statistical
significance in the 1-Way ANOVA test (FDR p. 0.05, FC > 3). An orange box indicates that the protein
was abundantin one egg type and not the other. A white box indicates that the protein did not display

differentially abundance.

Fig S19: AKEGG map displaying the proteins in association with the Protein processing in endoplasmic
reticulum pathway. Boxes in grey show the proteins that were identified in rotifer eggs. Boxes in red
show proteins that were significantly more abundant in AM vs RE. Boxes in blue show proteins with
significantly higher abundance in RE vs AM. Statistically significant differences were indicated by 1-

Way ANOVA test (FDR p-value 0.05, FC>3).
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Oxidative phosphorylation
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Pentose phosphate pathway
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