BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

A COST EFFECTIVENESS COMPARISON OF THE NICE 2015 AND WHO 2013 DIAGNOSTIC CRITERIA FOR GESTATIONAL DIABETES

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016621
Article Type:	Research
Date Submitted by the Author:	03-Mar-2017
Complete List of Authors:	Jacklin, Paul; Royal College of Obstetricians and Gynaecologists, National Guideline Alliance Maresh, Michael; Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre Patterson, Chris; Queen's University Belfast, Centre for Public Health Stanley, Katharine; Norfolk and Norwich University Hospitals NHS Foundation Trust, Department of Obstetrics and Gynaecology Dornhorst, Anne; Hammersmith Hospital, Department of Investigative Medicine Burman-ROY, Shona; Royal College of Obstetricians and Gynaecologists, National Guideline Alliance Bilous, Rudy; Newcastle University Medicine Malaysia
Primary Subject Heading :	Health economics
Secondary Subject Heading:	Diabetes and endocrinology, Obstetrics and gynaecology, Diagnostics
Keywords:	HEALTH ECONOMICS, DIABETES & ENDOCRINOLOGY, OBSTETRICS

SCHOLARONE[™] Manuscripts

BMJ Open

1	Title:
2	A COST EFFECTIVENESS COMPARISON OF THE NICE 2015 AND WHO 2013
3	DIAGNOSTIC CRITERIA FOR GESTATIONAL DIABETES
4	
5	Authors: PB Jacklin ¹ , MJA Maresh ² , CC Patterson ³ , KP Stanley ⁴ , A Dornhorst ⁵ , S Burman-
6	Roy ¹ , RW Bilous ⁶
7	
8	Institutions:
9	1. Royal College of Obstetricians and Gynaecologists, London NW1 4RG, UK
10	
	2. St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust,
11	Manchester Academic Health Science Centre, Manchester M13 9WL, UK
12	3. Centre for Public Health, Queen's University Belfast, Room 3.014, ICS Block B, Grosvenor Road,
13	Belfast BT12 6BJ, UK
14	4. Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospitals NHS
15	Foundation Trust, Colney Ln, Norwich NR4 7UY, UK
16	5. Faculty of Medicine, Department of Investigative Medicine, Hammersmith Hospital, Imperial
17	College London, London, UK
18	6. Newcastle University Medicine Malaysia, Johor, Malaysia
19	
20	Corresponding author:
21 22	Paul Jacklin
22	e-mail: <u>pjacklin@rcog.org.uk</u>
23	e-man. <u>pjackmaarcog.org.uk</u>
25	Paul Jacklin e-mail: <u>pjacklin@rcog.org.uk</u> Abstract: 278 words
26	Main text: 4618 words
27	
28	

29 Abstract

Objectives To compare the cost effectiveness of The National Institute for Health and Care

- 32 Excellence (NICE) 2015 and the World Health Organisation (WHO) 2013 diagnostic thresholds
- 33 for gestational diabetes (GDM).

34 Setting: The analysis was from the perspective of the National Health Service (NHS) in35 England and Wales.

Participants: 6,221 patients from 4 of the Hyperglycaemia and Adverse Pregnancy Outcomes
(HAPO) study centres (2 UK, 2 Australian), 6,308 patients from the Atlantic Diabetes in
Pregnancy (DiP) study and 12,755 patients from UK clinical practice

39 Primary and secondary outcome measures planned: The incremental cost per quality
40 adjusted life year (QALY), net monetary benefit (NMB) and the probability of being cost41 effective at cost-effectiveness thresholds of £20,000 and £30,000 per QALY

Results. In a population of pregnant women from the 4 HAPO study centres, and utilising NICE defined risk factors for GDM, diagnosing GDM using NICE 2015 criteria had an incremental cost effectiveness ratio (ICER) of £23,073 per QALY gained compared to £37,669 per QALY gained using WHO 2013 diagnostic criteria. At a cost-effectiveness threshold of £30,000 per QALY the NICE 2015 criteria had a 43.4% probability of being cost-effective compared to the WHO 2013 diagnostic criteria which had a 34.7% probability of being cost-effective (no treatment had a 21.9% probability of being cost-effective). The ICERs for women without NICE risk factors in this population were £43,845 and £220,638 per QALY for NICE and WHO diagnostic criteria, respectively.

Conclusion The NICE 2015 diagnostic criteria for GDM can be considered cost-effective 52 relative to the WHO 2013 alternative at a cost-effectiveness (CE) threshold of £30,000 per 53 QALY. Universal screening for GDM was not found to be cost-effective relative to screening 54 based on NICE risk factors.

1		
2		
3	55	
4	00	
5	5(Karranda Cast Effectionen Castational Dichata Consume Dish Frater Disance
6	56	Keywords: Cost Effectiveness, Gestational Diabetes, Screening, Risk Factors, Diagnosis
7		
	57	
8		
9	58	
10	20	
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
40		
41 42		
42 43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55 50		
56		
57		
58		
59		
60		3
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 4 of 61

59	Strengths and limitations of this study
----	---

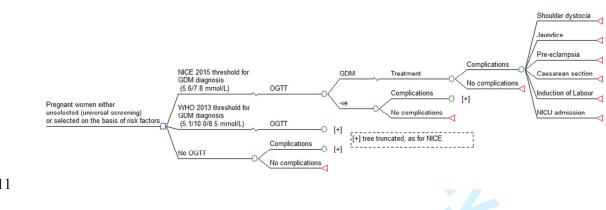
- This economic evaluation address an important clinical and policy issue. The existing
 economic evidence is limited and WHO have stated that studies of this type are needed
 to inform a future update of their guideline
- Our paper has used patient-level data from the influential HAPO study for an economic
 analysis which has not been previously been published in a peer reviewed journal.
- This analysis provides strong evidence that universal screening is not cost-effective in
 the UK
- This analysis suggests that the NICE diagnostic criteria for GDM are more costeffective than the WHO criteria in the UK context
- Model conclusions are sensitive to uncertainties with respect to valuation of health outcomes and the possible long term metabolic consequences for offspring for which the evidence is debated and which are hard to quantify

BMJ Open

72 Introduction

The diagnostic glycaemic thresholds for GDM remain the subject of considerable debate. The original definition was based upon maternal risk for developing post partum diabetes, but subsequent thresholds have concentrated on complications during pregnancy and the health of the offspring. Since the publication of the HAPO study¹ showing that there was a linear association between increasing levels of maternal hyperglycaemia and adverse perinatal outcomes with no obvious threshold, the discussion around the diagnostic criteria that should define GDM has intensified. New diagnostic thresholds were proposed by the International Association of Diabetes in Pregnancy Study Group (IADPSG)² based upon the HAPO study levels of plasma glucose when fasting, and at 1 and 2 hours after an oral 75g glucose load that were associated with covariate adjusted odds ratio of 1.75 relative to the mean glucose value in the whole HAPO cohort on three offspring outcomes: exceeding the 90th centile for birth weight, for cord serum C-peptide concentration and for percent fetal body fat. These diagnostic criteria have been subsequently adopted by the WHO.³ However, they remain controversial, and have not been supported by bodies such as the National Institutes for Health and the American College of Obstetricians.⁴ Furthermore, WHO has acknowledged that they will have to be revisited in the near future in the light of new studies reporting their cost-effectiveness.³

In 2015 the NICE published updated guidance on Diabetes in Pregnancy⁵ which included recommendations on diagnostic thresholds for GDM which differ from those adopted by WHO. These NICE thresholds were informed by an economic evaluation of the type that WHO considered important to inform future recommendations, but have attracted criticism in the UK⁶ and elsewhere. Data from a recently published Spanish study⁷ have been widely cited^{6,8} in support of the cost effectiveness of the WHO criteria.


In this paper we compared the cost-effectiveness of NICE 2015 and WHO 2013 diagnostic thresholds for GDM. The analysis was undertaken using a revised version of the health economic model developed for the NICE guideline and was based upon data from the UK and Australian HAPO Study centres.

Methods

Model description

A decision analytic framework was used to evaluate the cost effectiveness of two recently proposed diagnostic thresholds for GDM, together with a no diagnosis/no treatment option (See Table 1). A schematic of the model is shown in Error! Reference source not found.. Costeffectiveness was evaluated using both deterministic and probabilistic sensitivity analysis.

Figure 1: *Model Schematic*

112	Tahle 1.	Diagnostic thre	sholds for plas	ma olucose es	valuated in the	economic model
114	I uvie I.	Diagnostic unc	sholus for plas	ma giucose ev	valuated in the	

Threshold name	Fasting (mmol/L)	1-hour (mmol/L)	2-hour (mmol/L)
No diagnosis/no treatment	-	-	-
NICE 2015	≥5.6	-	≥7.8
WHO 2013	≥5.1	≥10.0	≥8.5

Population

The model population comprised women of gestational age 24-28 weeks without pre-existing diabetes. The analysis utilised individual patient data from three datasets which, although not restricted to the UK, provide a representative cross section of the demographic and patient characteristics that would be found in the UK. The analyses were run separately for each dataset and, where possible, for subgroups with and without risk factors for GDM within a dataset.

i. HAPO – a dataset from the two UK (Manchester and Belfast) and two Australian
(Brisbane and Newcastle) centres of the HAPO Study, referred to as HAPO (4)

ii. Norwich – these data were routinely collected between 2008 and February 2014 on
women who had an oral glucose tolerance test (OGTT) on the basis of the presence of one or
more risk factors for GDM. The results were obtained from laboratory records with no
identifiers. Risk factors in addition to those recommended by NICE were used e.g. women with
polycystic ovary syndrome, previous stillbirth or recurrent glycosuria.

128 iii. Atlantic Diabetes in Pregnancy (Atlantic DiP) – these data were collected between 2007
129 and 2013 as part of a research initiative in the Republic of Ireland intended to improve
130 pregnancy outcomes for women with diabetes before, during and after pregnancy.

For the HAPO (4) and Atlantic DiP datasets the populations were stratified according to whether or not they had NICE risk factors for GDM (body mass index (BMI) above 30 kg/m², previous baby with birthweight ≥ 4.5 kg, previous GDM, first-degree relative with diabetes and minority ethnic family origin with a high prevalence of diabetes). This facilitated a comparison of the cost-effectiveness of universal screening for GDM when compared with a risk factor approach. The NICE risk factor approach could not be replicated exactly because the patient data used in the model do not include information on previous offspring birth weight, and the HAPO (4) dataset does not provide information on previous GDM. Therefore, the comparison in the model was between universal screening and a subset of NICE risk factors. *Clinical outcomes* The agreed outcomes for the economic model were selected prior to model development by the

- 146 NICE Guideline Development Group. They were:
- 147 i. Shoulder dystocia (SD) this was used to estimate serious perinatal complications
- 148 (SPC), a broader composite outcome (death, shoulder dystocia and birth trauma) used as
- a primary outcome in clinical trials. The estimation of SPC from shoulder dystocia has
- 150 been described elsewhere.⁵
- 151 ii. Caesarean section (CS)
- 152 iii. Neo-natal intensive care unit (NICU) admission
- 153 iv. Jaundice requiring phototherapy (Jaund)
- 154 v. Pre-eclampsia (PE)
- 155 vi. Induction of labour (IOL)

BMJ Open

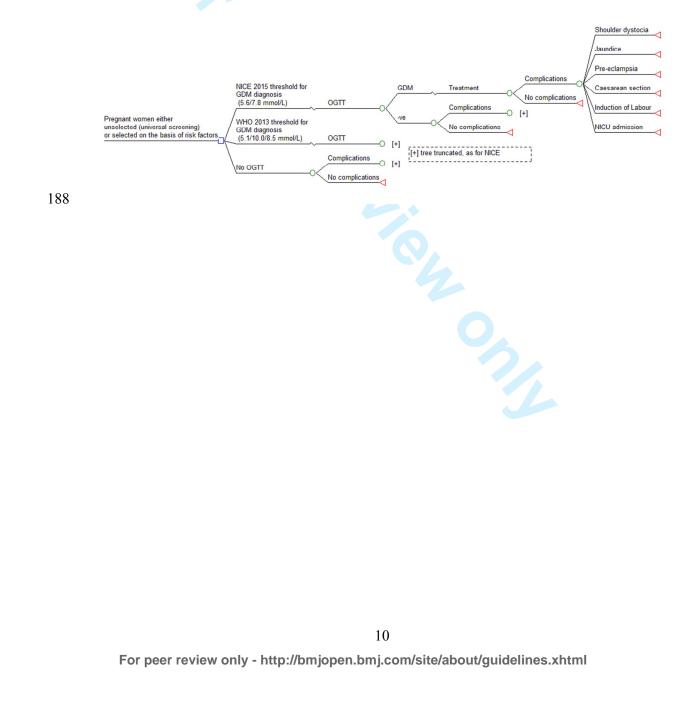
Outcomes were prioritised for inclusion in the model if they had a direct impact on health related quality of life and/or cost. Birth weight was not included because there were few longterm outcome data for modelling any risk benefit of a reduction in birth weight for future diabetes and other health outcomes in the offspring.

In addition, outcomes were only included if the relationship with plasma glucose levels had been established in the HAPO study, and also that they had been assessed in intervention studies used to derive treatment effect size estimates. Possible double counting of certain outcomes was taken into account (e.g. preterm birth and NICU admission). The final list of outcomes included in the model was therefore a pragmatic one.

167 Baseline risk

Logistic regression analyses of patient data from HAPO (4) were used to predict a baseline risk for all six outcomes for each woman, based on their characteristics including their OGTT results. In the HAPO study the OGTT was blinded to the carers, unless there was overt diabetes, thus allowing direct comparison of the OGTT with perinatal outcomes without intermediate treatment effects for those meeting the new diagnostic criteria for GDM.

173 For each of the six outcomes, 2 logistic analyses to predict risk were assessed:


- i. Prediction based on OGTT plasma glucose results and including the same covariates as
 used for Model 2 in the original analysis of the HAPO data¹ this could not be applied
 to the Norwich and Atlantic DiP datasets as information on all HAPO covariates was not
 available.
- 178 ii. Prediction based only on OGTT plasma glucose results

179 Backward elimination of plasma glucose variables with non-significant coefficients was

180 undertaken to arrive at a 'final' logistic regression analysis to predict baseline risk for each

outcome for the base case analysis, although a sensitivity analysis is also presented where the model was run with plasma glucose variables with non-significant coefficients retained. The logistic regression analyses used to predict the baseline risk for each outcome are shown in the Supplementary Report, Tables x1 to x6.

- *Clinical effectiveness*
- 187 For each evaluated diagnostic threshold in

BMJ Open

Table 1 the model determined whether a woman would be identified as having GDM based on her OGTT. If the woman was not identified as having GDM then outcome probabilities were based on the predicted baseline risk, but for women identified as having GDM the predicted baseline risk was modified to take account of the effects of treatment. Treatment effectiveness for most outcomes was estimated from a random-effects meta-analysis of two studies, Australian Carbohydrate Intolerance Study (ACHOIS) and the Landon et al. trial.9, 10 Other published studies of treatment for GDM were adjudged to lack adequate randomisation.¹¹ For the NICU outcome only the Landon et al. trial data were used as it was considered to more closely represent UK practice as they utilised all neonatal nursery admissions. Similarly, the incidence of pre-eclampsia seemed high in ACHOIS in both arms, and again only Landon et al. trial data were utilised. The treatment effects for each of the model's clinical outcomes are shown in Table 2 along with parameters for probabilistic sampling. The model assumes that the relative treatment effect will be the same irrespective of the absolute baseline risk. For deterministic analyses the point estimate of relative risk was used but in order to account for uncertainty in these point estimates, these relative risks were sampled from a log-normal distribution in the simulations undertaken for probabilistic sensitivity analysis (PSA).

205206 Table 2: Relative treatment e	effects for model	outcomes	
Outcome	Relative risk (RR)	Standard error (log RR)	Source
Shoulder dystocia	0.41	0.316	ACHOIS (2005), Landon (2009)
Caesarean section	0.88	0.095	ACHOIS (2005), Landon (2009)

NICU	0.77	0.194	Landon (2009)
Jaundice requiring phototherapy	0.83	0.136	ACHOIS (2005), Landon (2009)
Pre-eclampsia	0.46	0.345	Landon (2009)
Induction of Labour	1.16	0.126	ACHOIS (2005), Landon (2009)
207	·	·	
200			
208			

BMJ Open

2		
- 3 4	209	Costs
5 6	210	Costing was undertaken from the perspective of the NHS and was calculated for each woman in
7 8	211	the dataset being analysed and made up of three components;
9 10	212	• the costs of the diagnostic test – not applied in the <i>no test/no treat</i> strategy
11 12 13	213	• the costs of treatment- applied to every woman diagnosed with GDM at a particular
13 14 15	214	threshold
16 17	215	• the costs associated with the various outcomes – with the cost for each woman being the
18 19	216	expected (or average) cost of the outcome based on her estimated risk
20 21 22	217	The costs calculated for each woman were then summed across the entire patient dataset to give
23 24	218	a total cost for a particular diagnostic threshold.
25 26	219	
27 28	220	Costs were taken from published UK sources where possible (cost year 2015) and have not been
29 30 31	221	discounted as they are all assumed to occur within 12 months of diagnosis. Model unit costs are
32 33	222	reported in the Supplementary Report, Table x7.
34 35	223	
36 37	224	Other event probabilities
38 39 40	225	Probabilities in decision analysis were used to calculate the expected costs and benefits of the
40 41 42	226	various comparators. Many of these probabilities stemmed from relative treatment effects but a
43 44	227	few additional event probabilities were included in the model in order to estimate certain costs.
45 46	228	These probabilities are shown in Table 3 and their source is described elsewhere. ⁵
47 48 49	229	
49 50 51	230	
52 53	231	
54 55	232	
56 57		
E0		
58 59 60		13

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
4 5 6 7 8 9 10 11 2 3 14 5 16 7 18 9 20 1 22 3 24 5 6 7 8 9 10 11 2 3 14 5 16 7 18 9 20 1 22 3 24 5 26 7 8 9 30 1 32 3 3 4 5 36 7 8 9 4 1
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 41
42 43
43 44
44 45
45 46
40 47
47 78
48 49
49 50
51 52
53
53 54
55
56
57
58
59
60
50

233	Table 3: Model event	probability not derive	ed from patient leve	l regression

Event	Probability
Not requiring hypoglycaemic therapy when treated for GDM	36%
Risk of hypoglycaemia if taking hypoglycaemic therapy	20%
Risk of hypoglycaemia being severe (requiring hospitalisation)	5%

234

235 Quality Adjusted Life Years (QALYs)

Following previous studies^{5, 16} a QALY decrement of 2.2 was assigned to serious perinatal 236 237 complications (SPC), defined as per the ACHOIS study as a composite outcome of shoulder dystocia, death and birth trauma.⁹ More detail on the derivation of this QALY loss is provided 238 239 in the Supplementary Report. The cost-effectiveness of a healthcare intervention is determined 240 by the opportunity cost of the health foregone on the basis that with a fixed health budget any 241 newly funded intervention would displace the least cost-effective treatment currently provided. 242 In the UK, NICE typically uses a threshold of £20,000 to £30,000 per QALY as a benchmark¹⁷ 243 for the opportunity cost of health foregone and this paper assesses cost-effectiveness 244 accordingly.

245

246 Sensitivity analysis

247

Probabilistic sensitivity analysis, using Monte Carlo simulation (with 2,000 iterations for each analysis), was undertaken in order to assess the impact of sampling uncertainty on model inputs.
Parameters and distributions for the probabilistic sensitivity analysis are given in Table 2 and Table x7 in the supplementary report**Error! Reference source not found.** For the logistic regression coefficients used to predict baseline risk, the Cholesky decomposition method¹⁸ was

BMJ Open

3
4
5
4 5 6 7 8
7
2
8
9
10
11
11
12
13
1/
14
15
16
17
10
10
19
20
21
20
$ \begin{array}{c} 9 \\ 9 \\ $
23
24
25
20
20
27
28
20
23
30
31
32
22
33
34
35
36
27
31
38
39
40
40
41
42
43
44
44 45
-
46
47
48
49
50
51
52
53
54
55
56
57
58

used to sample from a multivariate normal distribution in order to reflect correlations between
the coefficients. **Results**Table 4 shows the percentage of women diagnosed with GDM in the three populations using
both of the evaluated diagnostic thresholds. In addition, for the HAPO (4) and Atlantic DiP

datasets this is additionally broken down in the subgroups with and without NICE risk factors(RF).

Table 4: Percentage of women identified with GDM by threshold and population

Threshold name	Norwich (n=12,754)	HAPO all (n=6,163)	HAPO RF (n=3,549)	HAPO No RF (n=2,614)	DiP All (n=5,290)	DiP RF (n=1,988)	DiP No RF (n=3,302)
NICE	7.0%	13.6%	17.7%	8.0%	13.1%	25.0%	5.9%
2015							
WHO	13.9%	18.9%	25.7%	9.7%	21.2%	37.7%	11.2%
2013							

263 Detailed deterministic and probabilistic results for HAPO (4) with risk factors are shown in

Table 5, Table 6, Table 7 and

Figure 2.

Table 5: Clinical outcomes for HAPO (4) population with NICE risk factors (n=3,549)

Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	49	67	759	345	219	146	974
NICE 2015	629	41	56	739	326	210	123	1,004
WHO 2013	912	39	54	731	321	207	117	1,016
272								

273Table 6: Deterministic analysis for the HAPO (4 centres) population with NICE risk factors274(n=3,549)

Diagnostic threshold	Cost	QALY	Incremental	Incremental	ICER
			cost	QALY	
No Treatment	£0	0.00	n/a	n/a	n/a
NICE 2015	£546,349	23.68	£546,349	23.68	£23,073
WHO 2013	£778,993	29.86	£232,644	6.18	£37,669
	.	•		•	•

Table 5 indicates that there was a relatively small difference in clinical outcomes contrasting NICE and WHO diagnostic criteria, despite there being a 45% increase in women diagnosed with GDM. Using the WHO 2013 criteria, instead of the NICE 2015 criteria, an additional 142 women would have had to be diagnosed with GDM, and treated in order to prevent 1 case of shoulder dystocia.

282 In the deterministic analysis the NICE 2015 diagnostic criteria would be considered cost-

283 effective at a cost-effectiveness threshold of £30,000 per QALY (Table 6).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 61

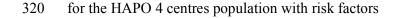
1

BMJ Open

2 3	285	The probabilistic sensitivity analysis reached a similar conclusion, with the NICE 2015
4 5 6 7	286	diagnostic threshold having the highest probability of being the most cost-effective treatment
6 7 8	287	and the highest NMB using a cost-effectiveness threshold of £30,000 per QALY (Table 7 and
9 10	288	
11 12	289	
13 14	290	
15 16	291	
17 18	291	
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		17
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 2). The analysis also suggested that no diagnosis/no treatment might be considered the most likely to be cost-effective when using a lower cost-effectiveness threshold of £20,000 per QALY. The probability of no diagnosis/no treatment being cost-effective falls sharply in the cost-effectiveness threshold range of £20,000 - £30,000 *per* QALY. As shown in the costeffectiveness acceptability curve of

BMJ Open


BMJ Open

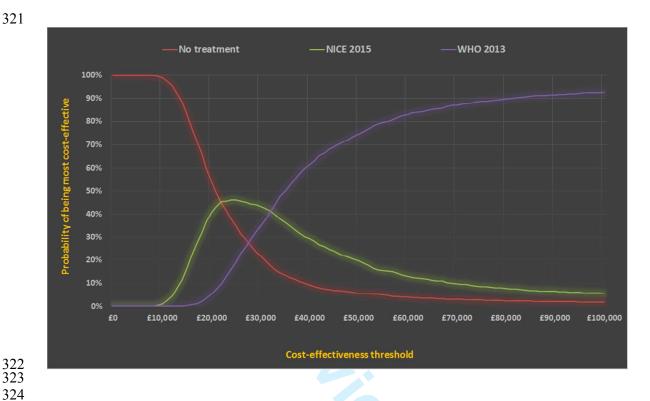

Figure 2, the WHO 2013 diagnostic threshold becomes more cost-effective as the cost-effectiveness threshold increases. Nevertheless, this would have to exceed £30,000 per QALY before becoming cost-effective, indicating that the further reduction in adverse outcomes, are achieved at an unacceptably high opportunity cost. The Supplementary Report plots the incremental cost and QALY outcomes of 2,000 simulations from the probabilistic analysis on the cost-effectiveness plane (see Figure x1). Whilst most points fall in the south-western quadrant, suggesting that WHO 2013 diagnostic criteria are likely to lead to additional QALYs when compared with NICE 2015 criteria, all points show that NICE 2015 criteria were associated with markedly lower costs.

Table 7: Probabilistic sensitivity analysis for HAPO (4) in a population with NICE risk factors

Diagnostic threshold	NMB	Probability cost-	Probability cost-
	CE threshold	effective	effective
	£30,000 per	CE threshold	CE threshold
	QALY	£20,000 per	WTP = £30,000
		QALY	per QALY
No Treatment	£391	54.2%	21.9%
NICE 2015	£233,192	40.7%	43.4%
WHO 2013	£200,384	5.2%	34.7%
	1		

- 318 Figure 2– Cost-effectiveness acceptability curve indicating the probability of a threshold or a
- 319 no diagnosis/no treatment strategy being cost-effective at different cost-effectiveness thresholds

325 Summaries of results for all of the model populations and more detailed results are provided in326 the Supplementary Report.

Table x9 and Table x10 in the Supplementary Report show that in both the HAPO (4) and Atlantic DiP populations with NICE risk factors, the NICE diagnostic threshold is the most cost-effective strategy at a cost-effectiveness threshold of £30,000 per QALY. The NICE 2015 diagnostic threshold has ICERs of less than £30,000 per QALY, and in the probabilistic sensitivity analysis it has the highest net monetary benefit and the highest probability of being the most cost-effective. For HAPO (4) the results are similar if baseline risks are estimated using logistic regression based on all covariates or a logistic regression just using plasma glucose levels

BMJ Open

336	
337	The results also suggested that universal screening would not be cost-effective as, when
338	compared to risk factor screening (as recommended in NICE guidelines), the additional women
339	included in such an approach would be those without risk factors and the model demonstrates
340	that the ICERs for diagnosis and treatment are all well in excess of £30,000 per QALY;
341	markedly so when using WHO 2013 diagnostic thresholds. These conclusions were supported
342	by an analysis of the Norwich dataset (see Supplementary Report).
343	
344	It was not possible to stratify the Norwich dataset according to risk factors, and therefore the
345	ICERs presented relate to a comparison between no screening/treatment and universal screening
346	and treatment. However, the results were consistent with those for HAPO (4) and Atlantic DiP.
347	First, they showed that universal screening was not cost-effective even when compared to an
348	alternative of no screening/no treatment. Second, the ICERs for the whole population were a
349	weighted average of the populations with and without risk factors. The ICER for the population
350	with risk factors would be lower than the ICER for the entire population, which was not
351	substantially above the £30,000 per QALY threshold.
352	
353	One-way sensitivity analysis
354	As part of a sensitivity analysis the deterministic models were re-run using the logistic
355	regression models without backward elimination of glucose variables with non-significant
356	coefficients, and these analyses are summarised in the Supplementary Report.
357	
358	Discussion
359	In the NICE guideline analysis, 14 alternative diagnostic thresholds were compared and there
360	was no single optimal diagnostic threshold which clearly $emerged^5$. This is not surprising given
	21

the small differences in patient outcomes between them. In that analysis the previous WHO 1999 criteria emerged as a relatively cost-effective strategy. However, the Guideline Committee rejected a fasting threshold of 7.0 mmol/L as there was a wide clinical consensus that this was too high, as 6.1-7.0 mmol/L is diagnostic of impaired fasting glycaemia in the non-pregnant population. Intervention studies had used a lower fasting threshold than 7.0 mmol/L as a basis for inclusion, and therefore made a case for intervention at lower levels. Based upon detailed cost effectiveness analysis of all the options, the Guideline Committee ultimately decided on recommending a fasting plasma glucose of 5.6 mmol/L and a 2 hour plasma glucose of 7.8 mmol/L. In this paper, we have restricted our analysis of cost effectiveness to the WHO 2013 and NICE 2015 criteria (with a no screening/treatment baseline also included) as these two recommendations have the most clinical currency at present.

All of the analyses presented in this paper suggest that, in a population with NICE risk factors, the NICE 2015 diagnostic criteria for GDM could be considered cost-effective relative to no screening/no treatment and to WHO 2013 diagnostic thresholds when using a cost-effectiveness threshold of £30,000 per QALY. The analyses also show that no screening/no treatment is costeffective in populations without NICE risk factors, suggesting that universal screening does not represent value for money, at least in a UK setting.

One of the limitations of our analysis was that the 2-hour threshold was restricted to the historical WHO 1999 2-hour definition of 7.8mmol/l, or the new WHO 2013 criteria of 8.5 mmol/l. It is conceivable that a 2-hour threshold lying between these values might outperform both. Our greater focus, though was on the optimal fasting level as this is where the greatest controversy lies with respect to potentially missed treatment opportunities.

BMJ Open

As noted by the proponents of WHO 2013 diagnostic criteria for GDM, using a lower fasting plasma glucose threshold would by definition detect more cases. Furthermore, because we assumed in the model that the relative treatment effect would be the same in additionally diagnosed cases, it follows that such a threshold could potentially yield the lowest number of adverse outcomes and the greatest QALY gain. However, our analysis suggests that the relatively small additional gains are not justified by the substantially higher costs that such lower thresholds would require.

A key driver of our results were the logistic regression models which were used to predict baseline risk. For the outcomes included in this study these regression models suggested that the 2-hour plasma glucose was a much more important predictor of adverse outcomes than the fasting plasma glucose, something we were unaware of when selecting the model's clinical outcomes.

400 We consider that our analysis which builds on previous modelling^{5, 16} is the most

401 comprehensive assessment of the cost-effectiveness of diagnostic thresholds for GDM yet

402 undertaken, and will hopefully contribute to the WHO's expectation "that a substantial body of

403 new data will emerge in the near future, providing currently scarce health and economic

404 evaluation of the recommended criteria applied to various populations and with different

405 approaches (universal screening, screening only women at high risk, diagnostic testing only)".

407 A number of commentators ^{19, 20} have recently advocated universal screening for GDM. The

408 essence of the argument is based upon the number of cases of GDM that would be missed with

409 selective screening, and the subsequent reduced opportunity to prevent a serious perinatal

410 outcome. Of course, it is true that universal screening will detect more cases, although the

າ
2
3
4
5
6
7
8
à
3
10
11
12
13
14
15
16
17
10
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 5 16 7 18 9 20
19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
23
24
25
26
20
21
28
29
30
31
32
33
31
25
30
36
37
38
39
40
41
42
42
43 44
44
45
46
47
48
49
50
51
52
52
53
54
55
56 57 58 59 60
57
58
59
60
00

1

411	absolute numbers will depend upon the thresholds used to define GDM. Table 5 shows that
412	many more women would need to be diagnosed in order to prevent a single adverse outcome.
413	However, in the context of finite health care resources, it must be accepted that it may be cost-
414	effective to miss some cases. Epidemiological measures such as number needed to treat (or
415	number needed to screen in this case) implicitly recognise that a goal of health care systems
416	cannot be to maximize health gain without any consideration of cost. Identifying missed cases
417	carries an opportunity cost and it may be that those resources would achieve greater benefit if
418	employed elsewhere in the health care system. If a population is divided into those with risk
419	factors and those without risk factors, then the prevalence of GDM must be lower in the group
420	without risk factors (and the number needed to screen higher) with concomitantly lower cost-
421	effectiveness. However, the comparative cost-effectiveness of screening in those with and
422	without risk factors is not only affected by the respective prevalence in the two groups, but also
423	differences in severity. In those diagnosed with GDM and who had risk factors there were, as
424	anticipated, greater levels of hyperglycaemia than in those without risk factors. As shown in
425	Table x24 in the Supplementary Report, Error! Reference source not found.Error! Reference
426	source not found. 'true positives' or identified cases (risk factor present and GDM) had higher
427	plasma glucose values than 'false negatives' or missed cases (risk factors absent and GDM)
428	when defining GDM positives according to WHO 2013 diagnostic thresholds.
429	
430	We would therefore expect the women with risk factors and GDM to be at greater risk of
421	advarge outcomes than the women with CDM without risk feature as a regult of their higher

adverse outcomes than the women with GDM without risk factors as a result of their higher
plasma glucose levels. So the "cases" missed with selective screening would have, on average,
fewer adverse outcomes than in "cases" in a population with risk factors. So the ICER would
be greater in the population without risk factors because prevalence is lower and cases have

435 fewer adverse outcomes.

1

BMJ Open

1 2 3	
4 5 6 7	
7 8 9	
10 11 12	
13 14	
15 16 17	
18 19 20	
21 22 23	
21 22 23 24 25 26 27 28	
27 28	
29 30 31 32	
33 34	
35 36 37	
38 39 40	
41 42 43	
44 45	
46 47 48	
49 50 51	
52 53 54	
55 56 57	
58 59	
60	

437	Our analysis, by splitting the HAPO (4) and Atlantic DiP datasets into those with and without
438	risk factors, was able to evaluate the cost-effectiveness of moving from risk factor screening to
439	universal screening. Whilst diagnosis in populations with risk factors was shown to be cost-
440	effective at a threshold of £30,000 per QALY, it was never cost-effective to diagnose and treat
441	in those without risk factors. Table 4 indicates the large differences that exist in prevalence
442	between the populations with and without risk factors. Our analysis suggests that the cost-
443	effectiveness threshold would have to substantially exceed currently accepted UK norms for
444	universal screening to be considered cost-effective. Although the NICE risk factor approach
445	could not be replicated exactly, we felt that the approximation used was acceptable, as the only
446	women who would be omitted from the model risk factor population were multiparous and
447	would have had a large baby previously and/or a past history of GDM. This approximation
448	would over-estimate slightly the benefits of universal screening, as the baseline risk in a group
449	designated as being without NICE risk factors present would be over-stated.
450	
451	A previous study ⁷ from Spain using WHO 2013 diagnostic criteria suggested cost effectiveness
452	compared with a two-step protocol using the Carpenter – Coustan thresholds. However, this
453	was largely based upon estimates of reduction of caesarean section rates of 50% which we find
454	implausible based upon changes in diagnostic criteria alone, noting that ACHOIS and Landon et

455 al. found only a 4% and 21% reduction in caesarean section respectively as a result of treating

457 retrospective, before and after analysis which has been criticized by the Cochrane Collaboration

gestational diabetes. The Spanish study did not consider other alternative thresholds, and was a

458 as it does not control for possible changes in important variables, such as clinical management,

459 over time.²¹

460

456

1	
2	
3	
4	
5	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
10	
10	
17	
2 3 4 5 6 7 8 9 10 1 12 3 14 5 16 7 8 9 10 1 12 3 14 5 16 7 8 9 10 1 12 3 14 5 16 7 8 9 20 12 22 3 24 5 26 7 8 9 30 1 32 33 4 35 6 37 8 9 20 10 10 10 10 10 10 10 10 10 10 10 10 10	
19	
20	
20	
21	
22	
23	
24	
25	
20	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
25	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
40	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	
00	

1

461	Our model has a number of limitations particularly with respect to the valuation of health
462	outcomes. We did not include large for gestational age as an outcome because it was felt that
463	shoulder dystocia was the relevant immediate complication of interest, and that possible long
464	term metabolic consequences for the offspring were hard to quantify and therefore difficult to
465	incorporate within the model. As previously noted, the QALY loss from a serious perinatal
466	complication used in this analysis is likely to be overstated because of the relatively large
467	weight given to death based on the intervention studies. ¹⁶ HAPO failed to show an association
468	between perinatal mortality and plasma glucose levels, which may mean that perinatal mortality
469	reduction is less amenable to reduction by treatment than other serious perinatal complications.
470	In this respect the cost-effectiveness of diagnosing and treating GDM may be over-stated. On
471	the other hand, the model does not take account of any potential long term effects on the
472	offspring (e.g. adiposity and the likelihood of subsequent pathology) as these effects are
473	difficult to quantify but may under-estimate the QALY gain from diagnosis and treatment. A
474	US study ²² considered the potential long-term benefits to the mother whereby a diagnosis of
475	GDM averts or delays onset of Type 2 diabetes mellitus, but this was not incorporated into our
476	model as we did not consider that the relationship was sufficiently well established at this time.
477	However, to the extent that such a relationship does exist our model would also underestimate
478	the QALY gain from a diagnosis of GDM. A recent review has, however, questioned the
479	association between maternal glycaemia and subsequent cardio-metabolic outcomes in offspring
480	in humans. ²³
481	

481

482 Despite these caveats, we feel our analysis represents a robust analysis of the cost-effectiveness 483 of WHO 2013 diagnostic thresholds for GDM based upon current understanding of the impact 484 of intervention in women with GDM, at least in the UK population using NICE criteria for 485 assessing cost-effectiveness. We acknowledge completely that this analysis cannot be the final

BMJ Open

486	word on the subject, and that further health economic evaluation is required to either
487	corroborate our findings or to challenge them. Nevertheless, we feel that our analysis represents
488	a constructive and evidence based contribution to establishing cost effective diagnostic
489	thresholds for GDM and will hopefully lead to more research to clarify this important but vexed
490	area of clinical diagnosis.
491	
492	Conclusions
493	The results presented in this analysis, based on a UK setting, do not suggest that the diagnostic
494	thresholds for GDM adopted by the WHO are cost-effective. On the other hand they do provide
495	some support for the cost-effectiveness of the diagnostic criteria adopted by NICE when
496	compared to either no screening/treatment and to WHO 2013 diagnostic criteria. Furthermore,
497	according to this analysis, universal screening would seem to offer poor value for money and
498	does not appear cost-effective compared to the current NICE guidance of targeting high risk
499	women.
500	

501	Acknowledgements
502	We are grateful to Professor DR McCance and Professor HD McIntyre for allowing us to use
503	their local datasets from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) trial and
504	to Professor F Dunne for allowing us to use her Atlantic DiP dataset
505	We are also grateful to Professor David James who provided clinical support during the
506	development of the updated NICE guideline on Diabetes in Pregnancy
507	
508	Competing interests
509	All authors have completed the ICMJE uniform disclosure form at
510	http://www.icmje.org/coi_disclosure.pdf and declare:
511	
512	Funding: Some of this work was undertaken by the now defunct National Collaborating Centre
513	for Women's and Children's Health (subsumed within the National Guideline Alliance from 1st
514	April 2016), which received funding from NICE. The views expressed in this publication are
515	those of the authors and not necessarily those of the institute. Revisions to the guideline model
516	after the guideline was published and drafting of the manuscript was done in the author's own
517	time and was not funded
518	
519	National Institute for Health and Care Excellence (2015). Diabetes in pregnancy: management
520	from preconception to the postnatal period. Available from
521	https://www.nice.org.uk/guidance/ng3
522	PBJ and SBR are employees of the National Guideline Alliance (part of the RCOG), which
523	receives its funding from NICE.
524	MJAM, KS, AD and RWB received travel expenses from NICE for attending clinical guideline
525	development meetings

BMJ Open

526	Author contribution
527	Paul Jacklin designed and developed the health economic model, undertook the health
528	economic analysis, wrote the first draft of the manuscript and incorporated edits from co-
529	authors. Mike Maresh provided clinical input into the design of the health economic model;
530	read, commented and edited various draft of the manuscripts. Katharine Stanley supplied the
531	Norwich dataset, provided clinical input into the design of the health economic model; read,
532	commented and edited various draft of the manuscripts. Anne Dornhorst provided clinical input
533	into the design of the health economic model; read, commented and edited various draft of the
534	manuscripts. Chris Patterson provided statistical advice, undertook statistical analysis of the
535	HAPO dataset; read, commented and edited various drafts of the manuscript. Shona Burman
536	Roy reviewed the clinical literature, contributed to discussions of model design; read,
537	commented and edited various drafts of the manuscript. Rudy Bilous chaired the NICE
538	guideline, provided clinical input into the design of the health economic model; read,
539	commented and edited various draft of the manuscripts
540	
541	Transparency declaration
542	The lead author, Paul Jacklin, affirms that this manuscript is an honest, accurate, and
543	transparent account of the study being reported; that no important aspects of the study have
544	been omitted; and that any discrepancies from the study as planned (and, if relevant, registered)
545	have been explained.
546	

547 Exclusive License

548 "I Paul Jacklin The Corresponding Author of this article contained within the original

- 549 manuscript which includes any diagrams & photographs within and any related or stand alone
- 550 film submitted (the Contribution") has the right to grant on behalf of all authors and does grant

- on behalf of all authors, a licence to the BMJ Publishing Group Ltd and its licencees, to permit
- this Contribution (if accepted) to be published in the BMJ and any other BMJ Group products
- and to exploit all subsidiary rights, as set out in our licence set out at:
- http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-
- open-access-and-permission-reuse."

Data sharing Statement

- Potential for data sharing (the health economic model) can be discussed with study
- investigators.

1		
2 3	560	References
4 5		
6 7	561	1. Metzger BE, Lowe LP, Dyer AR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J
8 9	562	Med 2008;358:1991-2002.
10 11	563	2. Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, et al. International
12 13	564	Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and
14 15 16	565	classification of hyperglycemia in pregnancy. Diabetes Care 2010;33:676-82.
17 18	566	3. WHO Health organisation, 2013. Diagnostic criteria and classification of hyperglycaemia first
19 20	567	detected in pregnancy WHO/NMH/MND/13.2
21 22	568	http://apps.who.int/iris/bitstream/10665/85975/1/WHO_NMH_MND_13.2_eng.pdf.
23 24	569	4. American College of Obstetricians and Gynecologists. Practice Bulletin 137: Mellitus. Obstet
25 26	570	Gynecol 2013; 122: 406-16
27 28 29	571	5. National Institute for Health and Care Excellence (NICE) (2015) Diabetes in pregnancy:
30 31	572	management of diabetes and its complications from preconception to the postnatal period.
32 33	573	Clinical guideline NG3 (2015). Available from
34 35	574	www.nice.org.uk/guidance/ng3/resources/diabetes-in-pregnancy-management-of-diabetes-
36 37	575	and-itscomplications-from-preconception-to-the-postnatal-period-51038446021, accessed
38 39	576	February 2016
40 41 42	577	6. Meek CL, Lewis HB, Patient C, et al. Diagnosis of gestational diabetes: falling through the net.
43 44	578	Diabetologia 2015;Sep;58(9):2003-12
45 46	579	7. Duran A, Sáenz S, Torrejón MJ et al. Introduction of IADPSG criteria for the screening and
47 48	580	diagnosis of gestational diabetes mellitus results in improved pregnancy outcomes at a lower
49 50	581	cost in a large cohort of pregnant women: the St. Carlos Gestational Diabetes Study. Diabetes
51 52	582	<i>Care</i> 2014;37(9):2442–2450. doi: 10.2337/dc14-0179.
53 54 55	583	8. Herman WH. Insights offered by economic analyses. <i>Diabetes Care</i> . 2014 Sep;37(9):2424-6. doi:
55 56 57	584	10.2337/dc14-1232.
58 59		
60		31

Page 32 of 61

		BMJ Open	Pa
1			
2 3	585	9. Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment of	of
4 5 6	586	gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 2005;352:2477-86.	
7 8	587	10. Landon MB, Spong CY, Thom E, Carpenter MW, Ramin SM, Casey B, et al. A multicente	r,
9 10	588	randomized trial of treatment for mild gestational diabetes. N Engl J Med 2009;361:1339-48	
11 12	589	11. Horvath K, Koch K, Jeitler K et al. Effects of treatment in women with gestational diabete	S
13 14	590	mellitus: systematic review and meta-analysis. BMJ (Clin Res Ed) 2010;340:c1395	
15 16	591	12. British National Formulary. July 2016. <u>https://www.medicinescomplete.com/mc/bnf/current/</u>	
17 18 19	592	(accessed 4 Aug 2016).	
20 21	593	13. Unit Costs of Health and Social Care 2015. Personal Social Services Research Unit, The	
22 23	594	University of Kent, 2015.	
24 25	595	14. Department of Health. NHS reference costs: financial year 2014–2015.	
26 27	596	https://www.gov.uk/government/publications/nhs-reference-costs-2014-to-2015,	
28 29	597	Department of Health, 2015.	
30 31 32	598	15. NHS Electronic Drug Tariff, August 2016. <u>http://www.drugtariff.nhsbsa.nhs.uk/#/00336026-</u>	
32 33 34	599	DD 1/DD00336022/Home (accessed 4 Aug 2016).	
35 36	600	16. Round, J.A., Jacklin, P., Fraser, R.B., Hughes, R.G., Mugglestone, M.A., Holt, R.I., Screening for	or
37 38	601	gestational diabetes mellitus: cost-utility of different screening strategies based on a woman	S
39 40	602	individual risk of disease, <i>Diabetologia</i> 2011,54(2), 256-263. doi: 10.1007/s00125-010-1881-y	
41 42	603	17. National Institute for Health and Care Excellence. Developing NICE guidelines: the manual.	
43 44	604	October 2014 (<u>https://www.nice.org.uk/media/default/about/what-we-do/our-</u>	
45 46 47	605	programmes/developing-nice-guidelines-the-manual.pdf)	
47 48 49	606	18. Briggs A, Claxton K, Sculpher M. Decision Modelling for Health Economic Evaluation. Oxford	1:
50 51	607	Oxford University Press; 2006	
52 53	608	19. Avalos GE, Owens LA, Dunne F et al. Applying Current Screening Tools for Gestational Diabetes	
54 55	609	Mellitus to a European Population: Is It Time for Change? <i>Diabetes Care</i> . 2013 Oct;36(10):3040)-
56 57	610	4. doi: 10.2337/dc12-2669. Epub 2013 Jun 11.	
58 59		32	
60		<i>52</i>	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3	611	20.	Simmons D, Moses RG. Gestational Diabetes Mellitus: To Screen or Not to Screen? Is this really
4 5 6	612		still a question? Diabetes Care. 2013 Oct;36(10):2877-2878
8 7 8	613	21.	Armstrong R, Waters E, Doyle J (editors). Chapter 21: Reviews in health promotion and public
9 10	614		health. In Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of
11 12	615		Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011.
13 14	616		Available from www.cochrane-handbook.org. Accessed June 2015
15 16	617	22.	Werner EF, Pettker CM, Zucerwise et al. Screening for gestational diabetes mellitus: are the
17 18	618		criteria proposed by the international association of the Diabetes and Pregnancy Study Groups
19 20	619		cost-effective? Diabetes Care. 2012 Mar;35(3):529-35. doi: 10.2337/dc11-1643.
21 22 23	620	23.	Donovan LE, Cundy T. Does exposure to hyperglycaemia in utero increase the risk of obesity
23 24 25	621		and diabetes in the offspring? A critical reappraisal. Diabetic Medicine. 2015 Mar;32(3):295-
26 27	622		304. doi: 10.1111/dme.12625. Epub 2014 Dec 17.
28 29			304. doi: 10.1111/dme.12625. Epub 2014 Dec 17.
30 31	623		
32 33	624		
34 35			
36 37	625		
38 39 40	626		
40 41 42			
43 44			
45 46			
47 48			
49 50			
51 52			
53 54			
55 56			
57 58			
59 60			33

Supplementary Report

This supplementary document provides further details about model parameter estimates and model

results.

Multivariable prediction models to estimate baseline risk

- Model 1 includes all three blood glucose regression coefficients while Model 2 includes only blood
- glucose regression coefficients which remained significant after performing variable selection by
- backward elimination.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

9 Table x1. Logistic regression models to predict neonatal shoulder dystocia

		Co-efficient b (Stan	dard error (SE(b))	
	Model with blood	glucose covariates	Model with a	all covariates
Variable	Model 1 ^ª	Model 2 ^b	Model 1 ^ª	Model 2 ^b
Centre (Manchester v Belfast)	-	-	1.151 (0.424)	1.151 (0.423)
(Brisbane v Belfast)	-	-	0.562 (0.491)	0.505 (0.489)
(Newcastle v Belfast)	-	-	1.622 (0.472)	1.604 (0.472)
Age at OGTT (yr)	-	-	-0.022 (0.024)	-0.023 (0.024
BMI at OGTT (kg/m ²)	-	-	-0.011 (0.024)	-0.006 (0.023
Smoker (Yes v No)	-	-	-0.477 (0.409)	-0.480 (0.409
Drinker (Yes v No)	-	-	-0.107 (0.317)	-0.101 (0.317
Family history DM (Yes v No)	-	-	-0.008 (0.187)	-0.006 (0.184
Gestational age at OGTT (wk)	-	-	-0.114 (0.092)	-0.111 (0.091
Neonate gender (F v M)	-	-	-1.316 (0.292)	-1.321 (0.292
Family history HBP (Yes v No) ^c	-	-	-	-
Maternal UTI (Yes v No) ^c	-	-	-	-
Mean Blood Pressure (mmHg)	-	-	-0.007 (0.015)	-0.006 (0.015
Hospital admission before delivery (Yes v No)	-	-	0.175 (0.267)	0.173 (0.266
Parity (1 v 0)	-	-	-0.108 (0.420)	-0.118 (0.420
(2+ v 0)	-	-	0.469 (0.414)	0.456 (0.412
(Unknown v 0)	-	-	-0.013 (0.399)	-0.026 (0.399
Fasting blood glucose ^d	0.166 (0.110)	-	0.151 (0.112)	-
1-hr blood glucose ^d	-0.152 (0.163)	-	-0.138 (0.165)	-
2-hr blood glucose ^d	0.265 (0.151)	0.267 (0.097)	0.222 (0.152)	0.223 (0.100
Constant	-4.475 (0.122)	-4.467 (0.122)	1.139 (3.508)	0.925 (3.025

10 (a) Sensitivity analysis

(b) Base case analysis

12 (c) Omitted from HAPO model for shoulder dystocia

(d) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for shoulder
 dystocia arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) =
 4.60(0.47); 1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

19 Table x2. Logistic regression models to predict caesarean section

	Co-efficient b (Standard error (SE(b))					
		plood glucose riates	Model with all covariates			
Variable	Model 1 ^a	Model 1 ^ª	Model 1 ^ª	Model 1 ^ª		
Centre (Manchester v Belfast)	-	-	-0.495 (0.092)	-0.494 (0.092		
(Brisbane v Belfast)	-	-	-0.114 (0.100)	-0.099 (0.098		
(Newcastle v Belfast)	-	-	-0.692 (0.141)	-0.681 (0.140		
Age at OGTT (yr)	-	-	0.034 (0.007)	0.034 (0.007)		
BMI at OGTT (kg/m ²)	-	-	0.039 (0.007)	0.039 (0.007)		
Smoker (Yes v No)	-	-	-0.292 (0.106)	-0.304 (0.106		
Drinker (Yes v No)	-	-	-0.025 (0.087)	-0.028 (0.087		
Family history DM (Yes v No)	-	-	0.052 (0.057)	0.050 (0.057		
Gestational age at OGTT (wk)	-	-	0.004 (0.029)	0.004 (0.029		
Neonate gender (F v M)	-	-	-0.205 (0.071)	-0.205 (0.071		
Family history HBP (Yes v No) ^c	-	-	-	-		
Maternal UTI (Yes v No) ^c	-	-	-	-		
Mean Blood Pressure (mmHg)	-	-	0.003 (0.004)	0.003 (0.004		
Hospital admission before delivery (Yes v No)	-	-	0.510 (0.079)	0.514 (0.079		
Parity (1 v 0) ^c	-	-	-	-		
$(2+v 0)^{c}$	-	-	-	-		
(Unknown v 0) ^c	-	-	-	-		
Fasting blood glucose ^d	0.053 (0.040)	-	-0.009 (0.044)	-		
1-hr blood glucose ^d	0.119 (0.048)	0.138 (0.046)	0.101 (0.051)	0.144 (0.037)		
2-hr blood glucose ^d	0.113 (0.046)	0.123 (0.046)	0.071 (0.048)			
Constant	-1.433 (0.035)	-1.435 (0.035)	-3.509 (0.950)	-3.518 (0.947		

20 (a) Sensitivity analysis

21 (b) Base case analysis

22 (c) Omitted from HAPO model for caesarean section

(d) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for caesarean
 section arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) =

4.60(0.47); 1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

1	
2	
2 3 4 5 6	
4	
5	
6	
7	
8	
g	
10	
10	
10	
12	
13	
14	
15	
16	
17	
7 8 9 10 11 23 14 15 16 17 18 9 21 22 24 25 26 27 8 22 27 8	
19	
20	
21	
22	
23	
24	
24	
20	
20	
21	
28	
29 30 31 32 33 34 35 36 37 38 39	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

60

28 **Table x3.** Logistic regression models to predict neonatal intensive care unit admissions

		Co-efficient b (St	andard error (SE(b))		
	Model with b covar	-	Model with all covariates		
Variable	Model 1 ^ª	Model 1 ^ª Model 1 ^ª		Model 1 ^ª	
Centre (Manchester v Belfast)	-	-	0.889 (0.159)	0.894 (0.159)	
(Brisbane v Belfast)	-	-	1.400 (0.163)	1.393 (0.161)	
(Newcastle v Belfast)	-	-	1.163 (0.191)	1.153 (0.161)	
Age at OGTT (yr)	-	-	0.012 (0.009)	0.013 (0.009)	
BMI at OGTT (kg/m ²)	-	-	0.024 (0.009)	0.025 (0.009)	
Smoker (Yes v No)	-	-	0.201 (0.130)	0.209 (0.130)	
Drinker (Yes v No)	-	-	-0.023 (0.117)	-0.025 (0.117)	
Family history DM (Yes v No)	-	-	0.038 (0.069)	0.033 (0.069)	
Gestational age at OGTT (wk)	-	-	-0.052 (0.038)	-0.050 (0.038)	
Neonate gender (F v M)	-	-	-0.302 (0.094)	-0.304 (0.094)	
Family history HBP (Yes v No) ^c	-	-	-	-	
Maternal UTI (Yes v No) ^c	-	-	-	-	
Mean Blood Pressure (mmHg)	-	-	0.006 (0.006)	0.006 (0.006)	
Hospital admission before delivery (Yes v No)	-	-	0.792 (0.097)	0.794 (0.148)	
Parity (1 v 0)	-	-	-0.474 (0.148)	-0.474 (0.148)	
(2+ v 0)	-	-	-0.493 (0.157)	-0.490 (0.157)	
(Unknown v 0)	-	-	-0.086 (0.135)	-0.084 (0.135)	
Fasting blood glucose ^d	-0.025 (0.050)	-	-0.003 (0.054)	-	
1-hr blood glucose ^d	0.078 (0.064)	-	0.082 (0.067)	-	
2-hr blood glucose ^d	0.167 (0.060)	0.208 (0.041)	0.107 (0.063)	0.159	
Constant	-2.375 (0.046)	-2.374 (0.046)	-3.061 (1.243)	-3.181 (1.236)	

29 (a) Sensitivity analysis

30 (b) Base case analysis

31 (c) Omitted from HAPO model for neonatal intensive care unit admissions
 32 (d) Blood glucose values are 'standardised' – so the exponential of the coe,

(d) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for neonatal

33 34

intensive care unit admissions arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47); 1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

36 Table x4. Logistic regression models to predict jaundice

		Co-efficient b (St	andard error (SE(b))		
	Model with b covar	-	Model with all covariates		
Variable	Model 1 ^ª	Model 1 ^ª	Model 1 ^ª	Model 1 ^ª	
Centre (Manchester v Belfast)	-	-	0.410 (0.157)	0.407 (0.157)	
(Brisbane v Belfast)	-	-	0.420 (0.173)	0.449 (0.171)	
(Newcastle v Belfast)	-	-	-0.332 (0.259)	-0.315 (0.259)	
Age at OGTT (yr)	-	-	-0.005 (0.011)	0.005 (0.011)	
BMI at OGTT (kg/m ²)	-	-	-0.009 (0.012)	-0.011 (0.011)	
Smoker (Yes v No)	-	-	-0.093 (0.162)	0.082 (0.161)	
Drinker (Yes v No)	-	-	-0.508 (0.163)	-0.514 (0.163)	
Family history DM (Yes v No)	-	-	-0.060 (0.094)	-0.060 (0.094)	
Gestational age at OGTT (wk)	-	-	-0.077 (0.047)	-0.078 (0.047)	
Neonate gender (F v M)	-	-	-0.115 (0.113)	-0.116 (0.113)	
Family history HBP (Yes v No) ^c	-	-	-	-	
Maternal UTI (Yes v No) ^c	-	-	-	-	
Mean Blood Pressure (mmHg)	-	-	0.018 (0.007)	0.018 (0.007)	
Hospital admission before delivery (Yes v No)	-	-	0.865 (0.116)	0.867 (0.116)	
Parity (1 v 0)	-	-	-0.380 (0.185)	-0.382 (0.185)	
(2+ v 0)	-	-	-0.526 (0.200)	-0.526 (0.200)	
(Unknown v 0)	-	-	0.078 (0.165)-	0.078 (0.165)	
Fasting blood glucose ^d	-0.063 (0.061)	-	-0.055 (0.066)	-	
1-hr blood glucose ^d	0.199 (0.078)	0.237 (0.052)	0.192 (0.079)	0.216 (0.056)	
2-hr blood glucose ^d	0.102 (0.072)	-	0.073 (0.074)		
Constant	-2.850 (0.057)	-2.846 (0.057)	-2.014 (1.526)	-1.927 (1.522)	

38 (a) Sensitivity analysis

39 (b) Base case analysis

40 (c) Omitted from HAPO model for jaundice

(d) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for jaundice
 arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47); 1-hour

43 plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

Table x5. Logistic regression models to predict pre-eclampsia

	Co-efficient b (Standard error (SE(b))					
	Model with b covar	-	Model with all covariates			
Variable	Model 1 ^ª	Model 1 ^ª	Model 1 ^a	Model 1 ^a		
Centre (Manchester v Belfast)	-	-	-0.800 (0.193)	-0.794 (0.192)		
(Brisbane v Belfast)	-	-	-0.277 (0.202)	-0.308 (0.200		
(Newcastle v Belfast)	-	-	-0.667 (0.278)	-0.685 (0.278		
Age at OGTT (yr)	-	-	-0.011 (0.015)	-0.009 (0.015		
BMI at OGTT (kg/m ²)	-	-	0.097 (0.012)	0.101 (0.011)		
Smoker (Yes v No)	-	-	-0.569 (0.246)	-0.556 (0.245		
Drinker (Yes v No)	-	-	-0.168 (0.194)	-0.170 (0.194		
Family history DM (Yes v No)	-	-	0.006 (0.127)	-0.004 (0.127		
Gestational age at OGTT (wk)	-	-	-0.096 (0.059)	-0.092 (0.059		
Neonate gender (F v M)	-	-	0.174 (0.147)	0.173 (0.147		
Family history HBP (Yes v No)	-	-	0.230 (0.150)	0.233 (0.150		
Maternal UTI (Yes v No)	-	-	0.721 (0.211)	0.734 (0.211		
Mean Blood Pressure (mmHg)	-	-	-	-		
Hospital admission before delivery (Yes v No) ^c	-	-	-	-		
Parity (1 v 0)	-	-	-0.292 (0.240)	-0.291 (0.240		
(2+ v 0)	-	-	-0.703 (0.271)	-0.701 (0.271		
(Unknown v 0)	-	-	0.023 (0.224)	0.026 (0.224		
Fasting blood glucose ^d	0.183 (0.068)	0.201 (0.065)	0.062 (0.078)	-		
1-hr blood glucose ^d	0.083 (0.098)	-	0.065 (0.104)	-		
2-hr blood glucose ^d	0.150 (0.090)	0.196 (0.072)	0.195 (0.096)	0.272 (0.067		
Constant	-3.455 (0.075)	-3.453 (0.075)	-3.107 (1.855)	-3.370 (1.842		

47 (a) Sensitivity analysis

48 (b) Base case analysis

49 (c) Omitted from HAPO model for pre-eclampsia

(d) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for pre-eclampsia
 arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47); 1-hour

52 plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

	Co-efficient b (Standard error (SE(b))					
	Model with blood glucose covariates	Model with a	all covariates			
Variable	Model 1 ^ª	Model 1 ^ª	Model 1 ^ª			
Centre (Manchester v Belfast)	-	-0.476 (0.077)	-0.476 (0.077			
(Brisbane v Belfast)	-	-0.333 (0.087)	-0.337 (0.085			
(Newcastle v Belfast)	-	-0.384 (0.110)	-0.387 (0.109			
Age at OGTT (yr)	-	0.006 (0.006)	0.006 (0.006)			
BMI at OGTT (kg/m ²)	-	0.039 (0.006)	0.039 (0.006)			
Smoker (Yes v No)	-	0.051 (0.082)	0.051 (0.082			
Drinker (Yes v No)	-	0.079 (0.072)	0.079 (0.072)			
Family history DM (Yes v No)	-	0.016 (0.048)	0.016 (0.048			
Gestational age at OGTT (wk)	-	0.011 (0.024)	0.011 (0.024)			
Neonate gender (F v M)	-	-0.038 (0.059)	-0.038 (0.059			
Family history HBP (Yes v No) ^c	-	-	-			
Maternal UTI (Yes v No) ^c	-	-	-			
Mean Blood Pressure (mmHg)	-	0.008 (0.004)	0.008 (0.004			
Hospital admission before delivery (Yes v No)	-	0.608 (0.066)	0.608 (0.066)			
Parity (1 v 0)	-	-0.363 (0.101)	-0.363 (0.101			
(2+ v 0)	-	-0.193 (0.105)	-0.193 (0.105			
(Unknown v 0)	-	0.141 (0.094)	0.141 (0.094			
Fasting blood glucose ^d	0.079 (0.033)	0.009 (0.037)	-			
1-hr blood glucose ^d	-0.093 (0.041)	-0.111 (0.043)	-0.108 (0.041			
2-hr blood glucose ^d	0.100 (0.040)	0.094 (0.041)	0.096 (0.041			
Constant	-1.032 (0.029)	-3.037 (0.796)	-3.050 (0.794			

(a) Sensitivity analysis

(b) Base case analysis

(c) Omitted from HAPO model for induction of labour

(d) Blood glucose values are 'standardised' - so the exponential of the coefficient represents the odds ratio for induction of

labour arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47);

1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

65 Table x7: Model unit costs

Category	Cost	Standard Error	Distribution	Source
2 sample OGTT	£8.07	n/a	n/a	NICE 2015 ⁵
3 sample OGTT	£12.11	n/a	n/a	NICE 2015 ⁵
Rapilose OGTT solution	£3.48	n/a	n/a	BNF July 2016 ¹²
Health Care Assistant Band 3 (per hour)	£25	n/a	n/a	Unit Costs of Health and Social Care 2015 ¹³
Nurse Band 7 (per hour of patient contact)	£147	n/a	n/a	Unit Costs of Health and Social Care 2015 ¹³
Dietician	£38	n/a	n/a	Unit Costs of Health and Social Care 2015 ¹³
Ante-natal appointment	£96	£9.07	Normal	NHS Reference Costs 2014-15 ¹⁴
Ultrasound scan	£112	£7.65	Normal	NHS Reference Costs 2014-15 ¹⁴
Rapid acting insulin	£0.02	n/a	n/a	BNF June 2016 ¹²
Regular insulin	£0.02	n/a	n/a	BNF June 2016 ¹²
Needles	£0.10	n/a	n/a	NHS Drugs Tariff June 2016 ¹⁵
Lancets	£0.03	n/a	n/a	NHS Drugs Tariff June 2016 ¹⁵
Strips	£0.18	n/a	n/a	NHS Drugs Tariff June 2016 ¹⁵
Treatment of GDM	£987	n/a	n/a	Calculated
Severe hypoglycaemia	£650	n/a	n/a	NHS Reference Costs 2014-15 ¹⁴
Admission to NICU	£1,176	£38	Normal	NHS Reference Costs 2014-15 ¹⁴
Caesarean section	£982	£80	Normal	NHS Reference Costs 2014-15 ¹⁴
Neonatal death	£777	£39	Normal	NHS Reference Costs 2014-15 ¹⁴
Shoulder dystocia	£1,394	£79	Normal	NHS Reference Costs 2014-15 ¹⁴
Birth trauma	£1,394	£79	Normal	NHS Reference Costs 2014-15 ¹⁴
Serious perinatal complication (death, shoulder dystocia, birth trauma)	£1,347	n/a	n/a	Calculated
Phototherapy	£788	£72	Normal	NHS Reference Costs 2014-15 ¹⁴
Pre-eclampsia	£4,750	n/a	n/a	NICE 2015 ⁵

67	
68	QALYs
69	A QALY loss was estimated for each individual component (shoulder dystocia, death and birth trauma)
70	of the composite serious perinatal outcome, which was used in the ACHOIS study. ⁹ A weighting for
71	each individual component was derived according to their relative frequency in the selected studies to
72	assess treatment effectiveness. ^{9, 10} These were then used in order to derive a weighted average for a
73	serious perinatal complication as shown in Table x8. QALY losses from a serious perinatal complication
74	could be experienced over a lifetime and therefore an annual discount rate of 3.5% was applied in line
75	with NICE methods. ¹³ For each patient, an expected QALY decrement is calculated based on their risk of
76	serious perinatal complications. These individual patient QALY decrements are then summed across all
77	patients to give the total QALY decrement for the patient dataset for each different diagnostic
78	threshold.

Table x8: QALY losses and weights from individual components of the composite outcome of serious
 perinatal complications

Complication	Weight	QALY	Weighted QALY
Death	0.08	25	2.00
Shoulder dystocia	0.73	0.2	0.15
Birth trauma	0.20	0.2	0.04
		•	

The analyses presented in this paper include a maternal health state utility which was estimated from quality of life data collected as part of the ACHOIS study. Whilst treatment conferred a small benefit in maternal health state utility, this was small in comparison to QALYs derived from infant outcomes. The value of the maternal health state utility with and without treatment is the same as has been used previously⁵.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

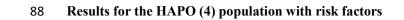
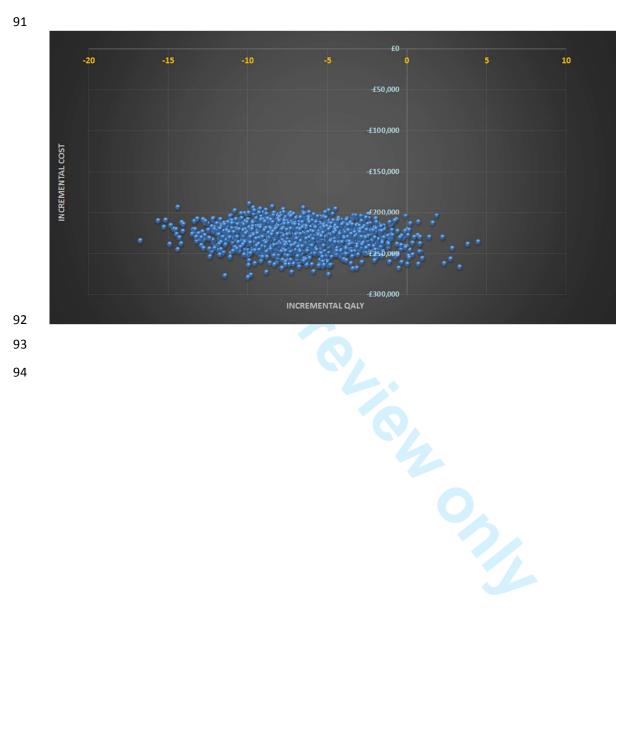



Figure x1: Cost-effectiveness plane for NICE 2015 compared with WHO 2013 for HAPO (4) with riskfactors

Summary of Results for each model population

Table x9: Summary of deterministic ICERs for each population with backward elimination of plasma

glucose variables with non-significant coefficients

	All cov	All covariates		Plasma glucose covariates					
Diagnostic threshold	HAPO Risk factor	HAPO No Risk factor	HAPO Risk factor	HAPO No Risk factor	Atlantic DiP Risk factor	Atlantic DiP No Risk factor	Norwich		
	(n=3,549)	(n=2,614)	(n=3,549)	(n=2,614)	(n=1,988)	(n=3,302)	(n=12,754)		
No Treatment	-	-	-	-	-	-	-		
NICE 2015	£23,073	£43,845	£25,434	£35,230	£23,755	£35,732	£33,177		
WHO 2013	£37,669	£220,638	£41,631	£97,941	£42,457	£45,075	£42,931		
98									

Table x10: Probability that a threshold is cost-effective at a threshold of £30,000 per QALY and the

net monetary benefit in each population using regression models with backward elimination of

plasma glucose variables with non-significant coefficients

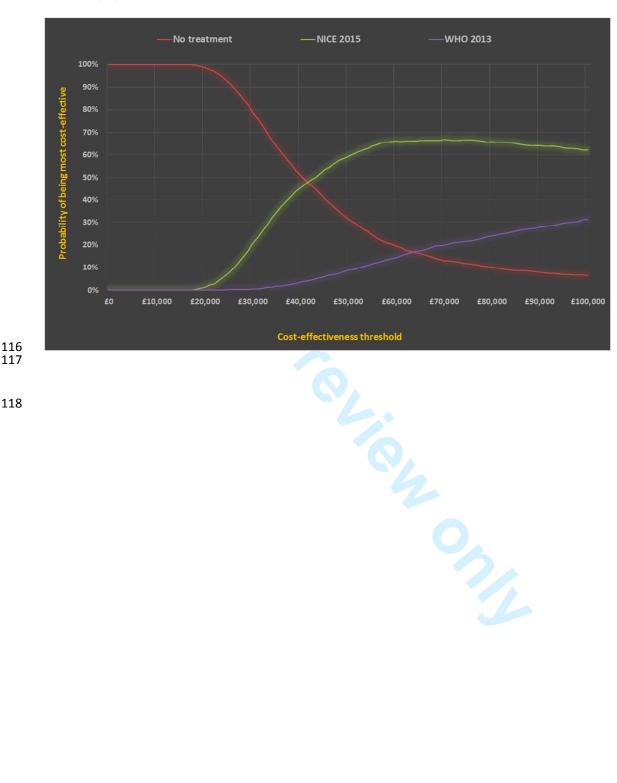
	All covariates Plasma glucose covariates						
Diagnostic threshold	НАРО	НАРО	HAPO	HAPO	Atlantic DiP	Atlantic DiP	Norwich
-	Risk	No Risk	Risk factor	No Risk	Risk factor	No Risk	
	factor	factor		factor		factor	
	(NMB)	(NMB)	(NMB)	(NMB)	(NMB)	(NMB)	(NMB)
No Treatment	21.9%	78.7%	33.7%	66.9%	30.2%	69.0%	59.7%
	(£391)	(£223)	(£845)	(£392)	(£518)	(£402)	(£1,141)
NICE 2015	43.4%	20.9%	45.6%	31.0%	50.8%	18.0%	23.2%
	(£233,192)	(-£57,742)	(£111,502)	(-£33,767)	(£116,178)	(-£36,481)	(-£76,289)
WHO 2013	34.7%	0.5%	20.8%	2.2%	19.1%	13.1%	17.2%
	(£201,384)	(-£94,754)	(£45,208)	(-£61,385)	(£53,129)	(-£88,283)	(-£300,254)

104 Results for the HAPO (4) population without risk factors

Table x11: Clinical outcomes for HAPO (4) population without NICE risk factors (n=2,614)

Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	24	34	466	188	126	55	647
NICE 2015	208	23	31	460	184	124	51	655
WHO 2013	253	23	31	459	184	123	51	657

Table x12: Deterministic analysis for HAPO (4) population without NICE risk factors (n=2,614)


Diagnostic threshold	Cost	QALY	Incremental cost	Incremental QALY	ICER
No Treatment	£0	0.00	n/a	n/a	n/a
NICE 2015	£238,074	5.43	£238,074	5.43	£43,845
WHO 2013	£281,357	5.63	£43,283	0.20	£220,638

109 Table x13: Probabilistic sensitivity analysis for HAPO (4) in a population without NICE risk factors

Diagnostic threshold	NMB	Probability cost-
	CE threshold	effective
	£30,000 per	CE threshold
	QALY	£30,000 per
		QALY
No Treatment	£223	78.9%
NICE 2015	-£57,742	20.9%
WHO 2013	-£94,754	0.5%

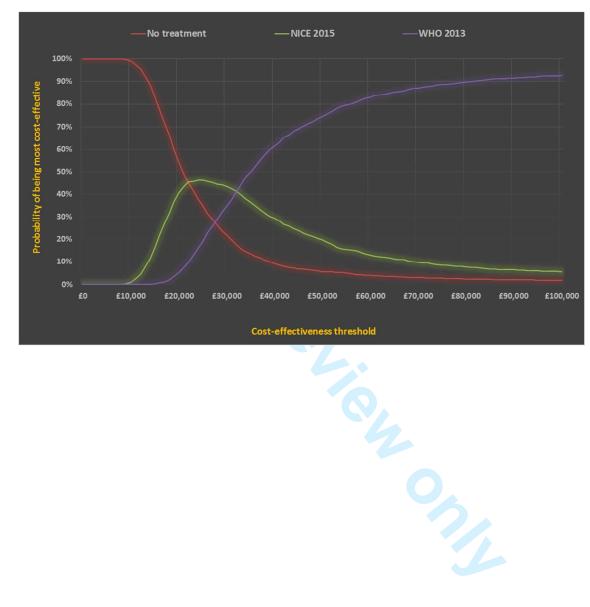
Figure x2: Cost-effectiveness acceptability curve indicating the probability of a threshold or a no diagnosis/no treatment strategy being cost-effective at different cost-effectiveness thresholds for

115 HAPO (4) population without risk factors

119 Results for the Atlantic DiP population with risk factors

Table 14: Clinical outcomes for Atlantic DiP population with NICE risk factors (n=1,988)

Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	25	34	408	177	122	73	522
NICE 2015	497	19	26	391	163	116	56	545
WHO 2013	749	17	24	385	158	112	51	555


Table x15: Deterministic analysis for the Atlantic DiP population with NICE risk factors (n=1,988)

Diagnostic threshold	Cost	QALY	Incremental cost	Incremental QALY	ICER
No Treatment	£0	0.00	n/a	n/a	n/a
NICE 2015	£414,714	17.46	£414,714	17.46	£23,755
WHO 2013	£626,417	22.44	£211,703	4.98	£42,457

Table x16: Probabilistic sensitivity analysis for Atlantic in a population with NICE risk factors

Diagnostic threshold	NMB CE threshold £30,000 per QALY	Probability cost- effective CE threshold £30,000 per QALY
No Treatment	£518	30.2%
NICE 2015	£116,178	50.8%
WHO 2013	£53,129	19.1%

Figure x3: Cost-effectiveness acceptability curve indicating the probability of a threshold or a no diagnosis/no treatment strategy being cost-effective at different cost-effectiveness thresholds for the Atlantic DiP centres population with risk factors

BMJ Open

2	
3	
1	
4	
5	
6	
7	
Q	
0	
9	_
1	0
1	1
1	2
4	2
1	3
1	4
1	5
1	6
1	7
	1
1	8
1	01234567890123456789012345678901234567890
2	0
2	1
2	י ר
2	2
2	3
2	4
2	5
2	6
2	0
2	1
2	8
2	9
2	ñ
3	4
3	1
3	2
3	3
ર	Δ
2	
3	с С
3	6
3	7
3	8
2 2	ā
1	0
4	
4	
4	3
4	
4	
4	6
4	7
4	8
4	~
5	
	1
	2
	3
5	
5	
5	6
5	
5	
	~

Results for the Atlantic DiP population without risk factors

Table x17: Clinical outcomes for Atlantic DiP population without NICE risk factors (n=3,302)

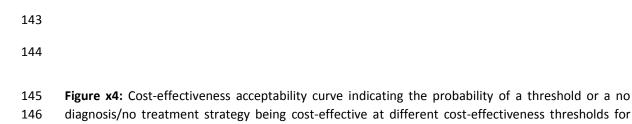

Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	33	45	575	254	168	84	828
NICE 2015	194	31	42	569	248	166	79	837
WHO 2013	371	30	41	564	245	163	76	844
137		1		1	1	1	-1	

 Table x18: Deterministic analysis for the Atlantic DiP population without NICE risk factors (n=3,302)

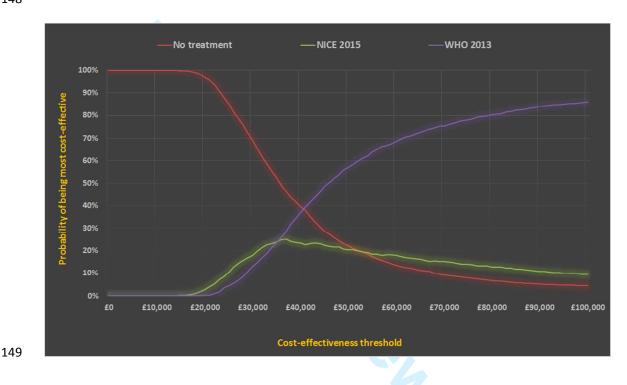

Diagnostic threshold	Cost	QALY	Incremental	Incremental	ICER
			cost	QALY	
No Treatment	£0	0.00	n/a	n/a	n/a
NICE 2015	£231,633	6.48	£231,633	6.48	£35,732
WHO 2013	£381,795	9.81	£150,162	3.33	£45,075

Table x19: Probabilistic sensitivity analysis for the Atlantic DiP population without NICE risk factors

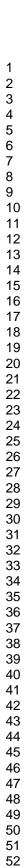
Diagnostic threshold	NMB	Probability cost-
	CE threshold	effective
	£30,000 per	CE threshold
	QALY	£30,000 per
		QALY
No Treatment	£402	69.0%
NICE 2015	-£36,481	18.0%
WHO 2013	-£88,283	13.1%

147 the Atlantic DiP centres population without risk factors

Results for the Norwich population

Table x20: Clinical outcomes for Norwich population (n=12,754)

Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	132	182	2,333	1,005	699	346	3,173
NICE 2015	888	122	168	2,305	981	687	318	3,214
WHO 2013	1,771	117	161	2,283	965	676	301	3,248


Table x21: Deterministic analysis for the Norwich population (n=12,754)

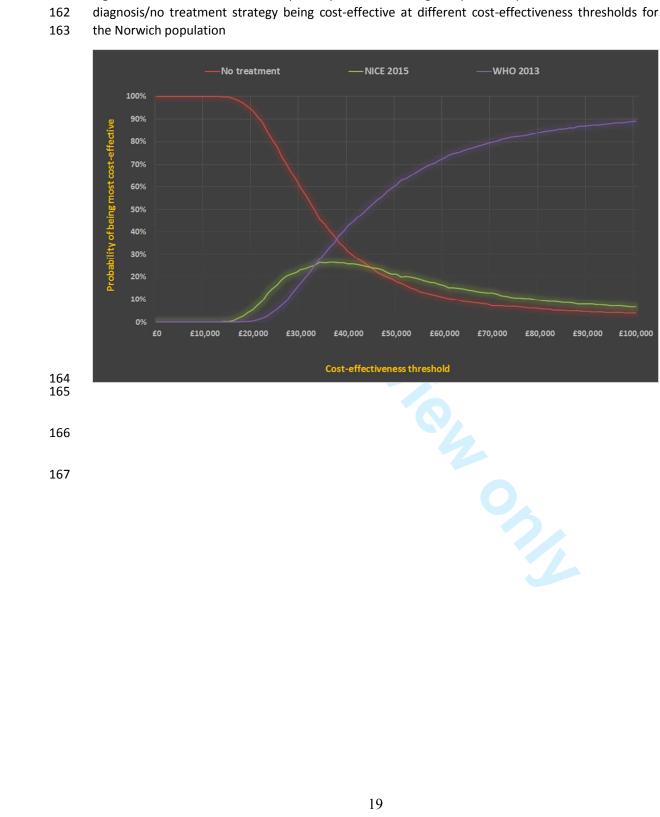

Cost	QALY	Incremental	Incremental	ICER
		cost	QALY	
£0	0.00	n/a	n/a	n/a
£979,903	29.54	£979,903	29.54	£33,177
£1,725,098	46.89	£745,195	17.35	£42,931
	£979,903	£979,903 29.54	£0 0.00 n/a £979,903 29.54 £979,903	£0 0.00 n/a n/a £979,903 29.54 £979,903 29.54

Table x22: Probabilistic sensitivity analysis for the Norwich population

Diagnostic threshold	NMB	Probability cost-
	CE threshold	effective
	£30,000 per	CE threshold
	QALY	£30,000 per
		QALY
No Treatment	£1,141	59.7%
NICE 2015	-£76,289	23.2%
WHO 2013	-£300,524	17.2%

Figure x5: Cost-effectiveness acceptability curve indicating the probability of a threshold or a no

BMJ Open

One-way sensitivity analysis

The cost-effectiveness of universal screening was not generally affected when the model was re-run using the regression models without backward elimination of non-significant variables with no screening/no treatment continuing to be the cost-effective option in populations not selected on the basis of NICE risk factors (see Table x23). In the Norwich population, universal screening was borderline cost-effective compared to no screening/no treatment at £30,000 per QALY but the same point remains that a risk factor subset in this population would have a lower ICER than that reported, and that a subset without risk factors, (i.e. those additionally incorporated as a result of universal screening compared to risk factor screening), would have a higher ICER. In populations with NICE risk factors the NICE 2015 diagnostic thresholds were still found to be cost-effective at a threshold of £30,000 per QALY, with broadly similar ICERs as previously. Similarly, the WHO 2013 diagnostic threshold was never found to be cost effective even in a population with risk factors.

Table x23: Summary of deterministic ICERs for each population without backward elimination of non-significant coefficients

	All cov	variates		Plasi	ma glucose cova	riates	
Diagnostic threshold	HAPO Risk factor	HAPO No Risk factor	HAPO Risk factor	HAPO No Risk factor	Atlantic DiP Risk factor	Atlantic DiP No Risk factor	Norwich
	(n=3,549)	(n=2,614)	(n=3,549)	(n=2,614)	(n=1,988)	(n=3,302)	(n=12,754)
No Treatment	-	-	-	-	-	-	-
NICE 2015	£22,786	£46,677	£24,802	£39,338	£22,126	£37,887	£31,191
WHO 2013	£33,876	£107,247	£35,852	£54,288	£41,652	£43,106	£43,694
182							

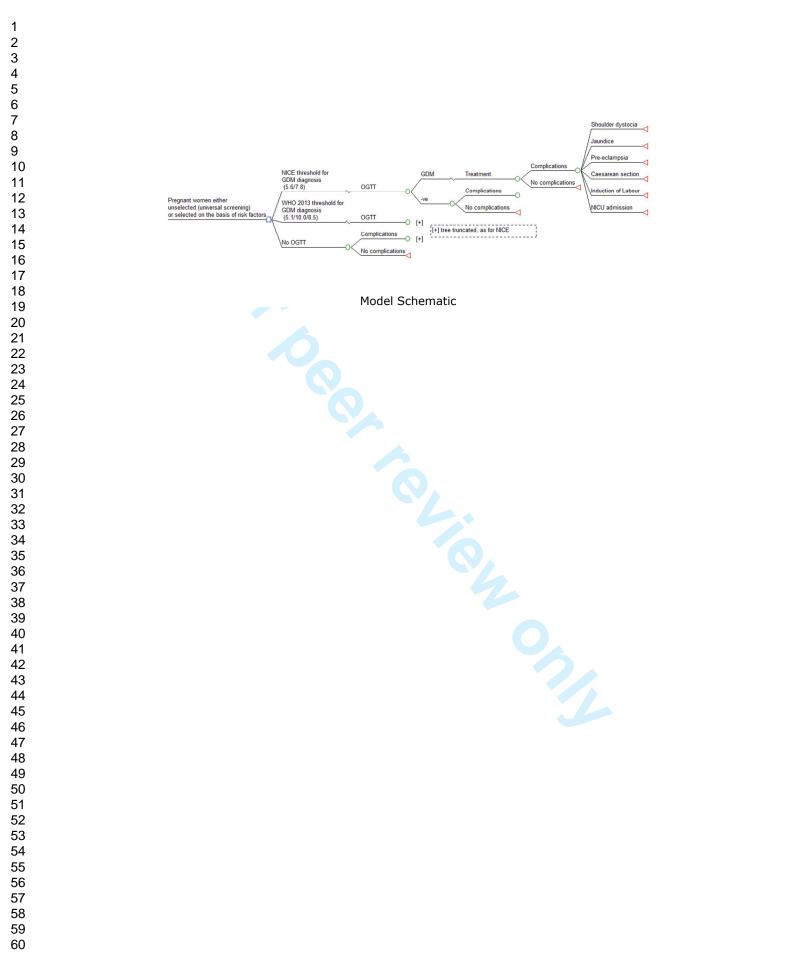
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

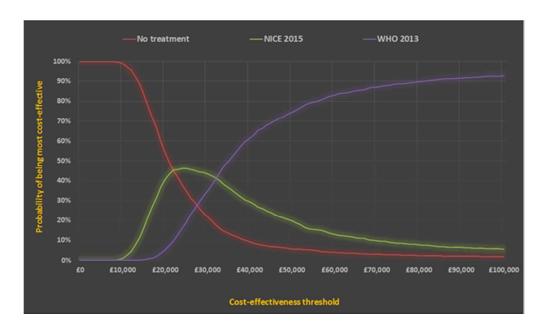
184 Mean plasma glucose values according to risk factor status

Table x241: Mean plasma glucose values in HAPO (4) and Atlantic DiP population according to their
 risk factor status

	HAPO 4				Atlantic Dil	P
	Fasting	1-hour	2-hour	Fasting	1-hour	2-hour
True Positives	5.24	9.90	7.89	5.21	10.21	7.61
False Positives	4.50	7.20	5.95	4.33	6.75	5.33
True Negatives	4.44	6.95	5.78	3.92	5.99	4.76
False Negatives	4.89	9.52	7.41	4.90	9.51	7.12

CHEERS Statement


CHEERS checklist—Items to include when reporting economic evaluations of health interventions


Section/item	Item No	Recommendation	Reported on page No/ line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost- effectiveness analysis", and describe the interventions compared.	Yes Page 1 Line 2
Abstract	2	Provide a structured summary of objectives, perspective, setting, methods (including study design and inputs), results (including base case and uncertainty analyses), and conclusions.	Yes Page 2 Lines 29-47
Introduction			
Background and objectives	3	Provide an explicit statement of the broader context for the study.	Yes Page 3-4 Lines 70-80
		Present the study question and its relevance for health policy or practice decisions.	Yes Page 3 Lines 53-68
Methods			
Target population and subgroups	4	Describe characteristics of the base case population and subgroups analysed, including why they were chosen.	Yes Page 5 Lines 94-122
Setting and location	5	State relevant aspects of the system(s) in which the decision(s) need(s) to be made.	Yes Page 5 Lines 94-99
Study perspective	6	Describe the perspective of the study and relate this to the costs being evaluated.	Yes Page 9 Line 189
Comparators	7	Describe the interventions or strategies being compared and state why they were chosen.	Yes Page 4 Line 77-78; 84-85
Time horizon	8	State the time horizon(s) over which costs and consequences are being evaluated and say why appropriate.	Yes Page 10 Line 200
			Supp. Report Page 9 Line 74

Section/item	Item No	Recommendation	Reported on page No/ line No
Discount rate	9	Report the choice of discount rate(s) used for costs and outcomes and say why appropriate.	Yes Page 10 Line 200 Supp. Report Page 9 Line 74
Choice of health outcomes	10	Describe what outcomes were used as the measure(s) of benefit in the evaluation and their relevance for the type of analysis performed.	Yes Pages 6-7 Lines 124- 145
Measurement of effectiveness	11a	<i>Single study-based estimates:</i> Describe fully the design features of the single effectiveness study and why the single study was a sufficient source of clinical effectiveness data.	Yes Pages 8 Lines 174- 177
	11b	<i>Synthesis-based estimates:</i> Describe fully the methods used for identification of included studies and synthesis of clinical effectiveness data.	Yes Pages 8 Lines 171- 174
Measurement and valuation of preference based outcomes	12	If applicable, describe the population and methods used to elicit preferences for outcomes.	
Estimating resources and costs	13a	Single study-based economic evaluation: Describe approaches used to estimate resource use associated with the alternative interventions. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	
	13b	<i>Model-based economic evaluation:</i> Describe approaches and data sources used to estimate resource use associated with model health states. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	Yes Page 10-11 Lines 188- 213 Supp. Report Page 8 Line 65
Currency, price date, and conversion	14	Report the dates of the estimated resource quantities and unit costs. Describe methods for adjusting estimated unit costs to the year of reported costs if necessary. Describe methods for converting costs into a common currency base and the exchange rate.	Yes Page 10 Lines 199

Section/item	Item No	Recommendation	Reported on page No/ line No
Choice of model	15	Describe and give reasons for the specific type of decision-analytical model used. Providing a figure to show model structure is strongly recommended.	Yes Page 4 Lines 84-85; 89-91
Assumptions	16	Describe all structural or other assumptions underpinning the decision-analytical model.	Yes Page 6-7 Lines 124- 145
			Yes Page 11 Lines 214- 218
		0	Supp. Report Page 2-7
			Supp. Report Page 9 Lines 68-86
		Q.	+References to other sources
Analytical methods	17	Describe all analytical methods supporting the evaluation. This could include methods for dealing with skewed, missing, or censored data; extrapolation methods; methods for pooling data; approaches to validate or make adjustments (such	Yes Page 7 Lines 147- 164
		as half cycle corrections) to a model; and methods for handling population heterogeneity and uncertainty.	Page 11 Lines 225- 232
			Supp. Report Page 2-7
Results			
Study parameters	18	Report the values, ranges, references, and, if used, probability distributions for all parameters. Report reasons or sources for distributions used to represent uncertainty where appropriate. Providing a table to show the input values is	Page 9 Lines 185- 186
		strongly recommended.	Page 11 Lines 212- 213

Section/item	Item No	Recommendation	Reported on page No/ line No
			Supp. Report Page 2-9
Incremental costs and outcomes	19	For each intervention, report mean values for the main categories of estimated costs and outcomes of interest, as well as mean differences between the comparator groups. If applicable, report incremental cost-effectiveness ratios.	Yes Page 13 Lines 246- 248 Supp. Report Page 11-19
Characterising uncertainty	20a	Single study-based economic evaluation: Describe the effects of sampling uncertainty for the estimated incremental cost and incremental effectiveness parameters, together with the impact of methodological assumptions (such as discount rate, study perspective).	
	20b	<i>Model-based economic evaluation:</i> Describe the effects on the results of uncertainty for all input parameters, and uncertainty related to the structure of the model and assumptions.	Yes Supp. Report Page 11 Lines 95-103 Supp. Report
			Page 20 Lines 181- 182
Characterising heterogeneity	21	If applicable, report differences in costs, outcomes, or cost-effectiveness that can be explained by variations between subgroups of patients with different baseline characteristics or other observed variability in effects that are not reducible by more information.	Yes Supp. Report Page 11 Lines 95-103
Discussion			
Study findings, limitations, generalisability, and current knowledge	22	Summarise key study findings and describe how they support the conclusions reached. Discuss limitations and the generalisability of the findings and how the findings fit with current knowledge.	Yes Pages 16-22
Other][]	L	IL
Source of funding	23	Describe how the study was funded and the role	Yes

Cost-effectiveness acceptability curve indicating the probability of a threshold or a no diagnosis/no treatment strategy being cost-effective at different cost-effectiveness thresholds for the HAPO 4 centres population with risk factors

BMJ Open

A COST EFFECTIVENESS COMPARISON OF THE NICE 2015 AND WHO 2013 DIAGNOSTIC CRITERIA FOR WOMEN WITH GESTATIONAL DIABETES WITH AND WITHOUT RISK FACTORS

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016621.R1
Article Type:	Research
Date Submitted by the Author:	28-Apr-2017
Complete List of Authors:	Jacklin, Paul; Royal College of Obstetricians and Gynaecologists, National Guideline Alliance Maresh, Michael; Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre Patterson, Chris; Queen's University Belfast, Centre for Public Health Stanley, Katharine; Norfolk and Norwich University Hospitals NHS Foundation Trust, Department of Obstetrics and Gynaecology Dornhorst, Anne; Hammersmith Hospital, Department of Investigative Medicine Burman-ROY, Shona; Royal College of Obstetricians and Gynaecologists, National Guideline Alliance Bilous, Rudy; Newcastle University Medicine Malaysia
Primary Subject Heading :	Health economics
Secondary Subject Heading:	Diabetes and endocrinology, Obstetrics and gynaecology, Diagnostics
Keywords:	HEALTH ECONOMICS, DIABETES & ENDOCRINOLOGY, OBSTETRICS

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	1	Title:
4		
5 6	2	A COST EFFECTIVENESS COMPARISON OF THE NICE 2015 AND WHO 2013
7 8	3	DIAGNOSTIC CRITERIA FOR WOMEN WITH GESTATIONAL DIABETES WITH AND
9 10	4	WITHOUT RISK FACTORS
11 12	5	
13 14 15	6	Authors: PB Jacklin ¹ , MJA Maresh ² , CC Patterson ³ , KP Stanley ⁴ , A Dornhorst ⁵ , S Burman-
16 17	7	Roy ¹ , RW Bilous ⁶
18 19	8	
20 21	9	Institutions:
22 23	10	1. Royal College of Obstetricians and Gynaecologists, London NW1 4RG, UK
24	11	2. St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust,
25		
26	12	Manchester Academic Health Science Centre, Manchester M13 9WL, UK
27 28	13	3. Centre for Public Health, Queen's University Belfast, Room 3.014, ICS Block B, Grosvenor Road,
29	14	Belfast BT12 6BJ, UK
30 31	15	4. Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospitals NHS
32	16	Foundation Trust, Colney Ln, Norwich NR4 7UY, UK
33 34	17	5. Faculty of Medicine, Department of Investigative Medicine, Hammersmith Hospital, Imperial
35 36	18	College London, London, UK
37 38	19	6. Newcastle University Medicine Malaysia, Johor, Malaysia
39 40	20	
41	21	Corresponding author:
42	22	Paul Jacklin e-mail: <u>pjacklin@rcog.org.uk</u>
43	23	Paul Jacklin
44 45	24	e-mail: <u>pjacklin@rcog.org.uk</u>
46 47	25	
48 49	26	Abstract: 278 words
50 51	27	Main text: 4618 words
52 53	28	
54 55 56	29	
50 57		
58		
59		
60		1

30 Abstract

Objectives To compare the cost effectiveness of The National Institute for Health and Care
Excellence (NICE) 2015 and the World Health Organisation (WHO) 2013 diagnostic thresholds
for gestational diabetes (GDM).

Setting: The analysis was from the perspective of the National Health Service (NHS) in
England and Wales.

37 Participants: 6,221 patients from four of the Hyperglycaemia and Adverse Pregnancy
38 Outcomes (HAPO) study centres (2 UK, 2 Australian), 6,308 patients from the Atlantic
39 Diabetes in Pregnancy (DiP) study and 12,755 patients from UK clinical practice

40 Primary and secondary outcome measures planned: The incremental cost per quality
41 adjusted life year (QALY), net monetary benefit (NMB) and the probability of being cost42 effective at cost-effectiveness thresholds of £20,000 and £30,000 per QALY

Results. In a population of pregnant women from the four HAPO study centres, and utilising NICE defined risk factors for GDM, diagnosing GDM using NICE 2015 criteria had an incremental cost effectiveness ratio (ICER) of £20,400 per QALY gained (relative to no treatment) compared to £33,596 per QALY gained (relative to NICE 2015 criteria) using WHO 2013 diagnostic criteria. At a cost-effectiveness threshold of £30,000 per QALY the NICE 2015 criteria had a 53.5% probability of being cost-effective compared to the WHO 2013 diagnostic criteria which had a 26.8% probability of being cost-effective (no treatment had a 19.8% probability of being cost-effective). The ICERs for women without NICE risk factors in this population were £36,878 and £141,812 per QALY for NICE and WHO diagnostic criteria, respectively.

Conclusion The NICE 2015 diagnostic criteria for GDM can be considered cost-effective 54 relative to the WHO 2013 alternative at a cost-effectiveness (CE) threshold of £30,000 per

1	
2	
3	
2 3 4	
5	
6 7 8	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
$\begin{array}{c} 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 32\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 33\\ 34\\ 52\\ 26\\ 35\\ 34\\ 35\\ 26\\ 35\\ 34\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35$	
27	
28	
29	
30	
31	
32	
33	
34	
30	
36 37	
37	
38 39	
39 40	
40 41	
41	
42 43	
44	
45	
46	
47	
48	
49	
5 0	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

55 QALY. Universal screening for GDM was not found to be cost-effective relative to screening

- 56 based on NICE risk factors.
- 57
- 58 Keywords: Cost Effectiveness, Gestational Diabetes, Screening, Risk Factors, Diagnosis
- 59
- 60

Page 4 of 66

BMJ Open

Strengths and limitations of this study This economic evaluation addresses an important clinical and policy issue. The existing economic evidence is limited and WHO have stated that studies of this type are needed to inform a future update of their guideline Our paper has used patient-level data from the influential HAPO study for an economic analysis which has not been previously been published in a peer reviewed journal This analysis provides clear evidence that universal screening is not cost-effective in the UK This analysis suggests that the NICE diagnostic criteria for GDM are more cost-effective than the WHO criteria in the UK context Model conclusions are sensitive to uncertainties with respect to valuation of health • outcomes and the possible long term metabolic consequences for offspring for which the evidence is debated and which are hard to quantify

BMJ Open

74 Introduction

The diagnostic glycaemic thresholds for GDM remain the subject of considerable debate. The original definition was based upon maternal risk for developing postpartum diabetes, but subsequent thresholds have concentrated on complications during pregnancy and the health of the offspring. The publication of the HAPO study¹ demonstrated a linear association between increasing levels of maternal hyperglycaemia and adverse perinatal outcomes with no obvious threshold, an association that has also been observed in subsequent analyses.² The discussion around the diagnostic criteria that should define GDM has intensified. New diagnostic thresholds were proposed by the International Association of Diabetes in Pregnancy Study Group (IADPSG)³ based upon the HAPO study levels of plasma glucose when fasting, and at 1 and 2 hours after an oral 75g glucose load that were associated with covariate adjusted odds ratio of 1.75 relative to the mean glucose value in the whole HAPO cohort on three offspring outcomes: exceeding the 90th centile for birth weight, for cord serum C-peptide concentration and for percent fetal body fat. These diagnostic criteria have been subsequently adopted by the WHO.⁴ However, they remain controversial and have not been supported by bodies such as the National Institutes for Health and the American College of Obstetricians.⁵ Furthermore, WHO has acknowledged that they will have to be revisited in the near future in the light of new studies reporting their cost-effectiveness.⁴

In 2015 NICE published updated guidance on Diabetes in Pregnancy⁶ which included recommendations on diagnostic thresholds for GDM which differ from those adopted by WHO. These NICE thresholds were informed by an economic evaluation of the type that WHO considered important to inform future recommendations, but have attracted criticism in the UK⁷ and elsewhere. Data from a published Spanish study⁸ have been widely cited^{7, 9} in support of the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

98 cost effectiveness of the WHO criteria, although a UK analysis has more recently suggested that

99 it is not cost-effective to identify gestational diabetes for treatment.¹⁰

In this paper we compared the cost-effectiveness of NICE 2015 and WHO 2013 diagnostic thresholds for GDM, as these are new thresholds proposed by national and international bodies. The analysis was undertaken using a revised version of the health economic model developed for the NICE guideline and was based upon data from the UK and Australian HAPO Study centres.

107 Methods

108 Model description

109 A decision analytic framework was used to evaluate the cost effectiveness of two recently 110 proposed diagnostic thresholds for GDM, together with a no diagnosis/no treatment option (See 111 Table 1). A schematic of the model is shown in Figure 1. Cost-effectiveness was evaluated 112 using both deterministic and probabilistic sensitivity analysis.

- *Table 1*: Diagnostic thresholds for plasma glucose evaluated in the economic model

Threshold name	Fasting (mmol/L)	1-hour (mmol/L)	2-hour (mmol/L)	
No diagnosis/no treatment	-	-	-	
NICE 2015	≥5.6	-	≥7.8	
WHO 2013	≥5.1	≥10.0	≥8.5	

Population

117 The model population comprised women of gestational age 24-28 weeks without pre-existing

118 diabetes. The analysis utilised individual patient data from three datasets which, although not

BMJ Open

restricted to the UK, provide a representative cross section of the demographic and patient characteristics that would be found in the UK (Table x1 in the Supplementary Report provides a breakdown of ethnic groups in each of our datasets). The analyses were run separately for each dataset and, where possible, for subgroups with and without risk factors for GDM within a dataset.

i. HAPO – a dataset from the two UK (Manchester and Belfast) and two Australian
(Brisbane and Newcastle) centres of the HAPO Study, referred to as HAPO (4)

ii. Norwich – these data were routinely collected between 2008 and February 2014 on
women who had an oral glucose tolerance test (OGTT) on the basis of the presence of one or
more risk factors for GDM. The results were obtained from laboratory records with no
identifiers. Risk factors in addition to those recommended by NICE were used e.g. women with
polycystic ovary syndrome, previous stillbirth or recurrent glycosuria.

132 iii. Atlantic Diabetes in Pregnancy (Atlantic DiP) – these data were collected between 2007
133 and 2013 as part of a research initiative in the Republic of Ireland intended to improve
134 pregnancy outcomes for women with diabetes before, during and after pregnancy.

For the HAPO (4) and Atlantic DiP datasets the populations were stratified according to whether or not they had NICE risk factors for GDM (body mass index (BMI) above 30 kg/m², previous baby with birthweight \geq 4.5 kg, previous GDM, first-degree relative with diabetes and minority ethnic family origin with a high prevalence of diabetes). This facilitated a comparison of the cost-effectiveness of universal screening for GDM when compared with a risk factor approach.

The NICE risk factor approach could not be replicated exactly because the patient data used in the model do not include information on previous offspring birth weight, and the HAPO (4) dataset does not provide information on previous GDM. Similarly the Atlantic DIP dataset does not include data on previous macrosomia or previous GDM. Therefore, the comparison in the model was between universal screening and a subset of NICE risk factors. Our Norwich dataset only included the plasma glucose values from a three point (fasting, 1 and 2 hour) OGTT and therefore it was not possible to assess cost-effectiveness according to the presence of risk factors in this group. *Clinical outcomes* The agreed outcomes for the economic model were selected prior to model development by the NICE Guideline Development Group. They were: Shoulder dystocia (SD) – this was used to estimate serious perinatal complications i. (SPC), a broader composite outcome (death, shoulder dystocia and birth trauma) used as

- 157 a primary outcome in clinical trials. The estimation of SPC from shoulder dystocia has
- 158 been described elsewhere.⁶
- 159 ii. Caesarean section (CS)
- 160 iii. Neonatal intensive care unit (NICU) admission
- 161 iv. Jaundice requiring phototherapy (Jaund)
- 162 v. Pre-eclampsia (PE)
- 163 vi. Induction of labour (IOL)

Outcomes were prioritised for inclusion in the model if they had a direct impact on health related quality of life and/or cost. Birth weight was not included because there were few longterm outcome data for modelling any risk benefit of a reduction in birth weight for future diabates and other health outcomes in the offenring

167 diabetes and other health outcomes in the offspring.

BMJ Open

2 3	168	
4 5 6	169	In addition, outcomes were only included if the relationship with plasma glucose levels had
7 8	170	been established in the HAPO study, and also that they had been assessed in intervention
9 10	171	studies used to derive treatment effect size estimates. Possible double counting of certain
11 12	172	outcomes was taken into account (e.g. preterm birth and NICU admission). The final list of
13 14 15	173	outcomes included in the model was therefore a pragmatic one.
16 17	174	
18 19	175	Baseline risk
20 21	176	Logistic regression analyses of patient data from HAPO (4) were used to predict a baseline risk
22 23 24	177	for all six outcomes for each woman, based on their characteristics including their OGTT
25 26	178	results. In the HAPO study the OGTT was blinded to the carers, unless there was overt diabetes,
27 28	179	thus allowing direct comparison of the OGTT with perinatal outcomes without intermediate
29 30	180	treatment effects for those meeting the new diagnostic criteria for GDM.
31 32 33	181	For each of the six outcomes, 2 logistic analyses to predict risk were assessed:
34 35	182	i. Prediction based on OGTT plasma glucose results and including the same covariates as
36 37	183	used for Model 2 in the original analysis of the HAPO data ¹ – this could not be applied
38 39	184	to the Norwich and Atlantic DiP datasets as information on all HAPO covariates was not
40 41 42	185	available
43 44	186	ii. Prediction based only on OGTT plasma glucose results
45 46	187	Backward elimination of plasma glucose variables with non-significant coefficients was
47 48	188	undertaken to arrive at a 'final' logistic regression analysis to predict baseline risk for each
49 50 51	189	outcome for the base case analysis, although a sensitivity analysis is also presented where the
52 53	190	model was run with plasma glucose variables with non-significant coefficients retained. The
54 55	191	logistic regression analyses used to predict the baseline risk for each outcome are shown in the
56 57	192	Supplementary Report, Tables x2 to x7.
58 59 60		9

1	Ω^2	
	97	

194 Clinical effectiveness

For each evaluated diagnostic threshold inTable 1 the model determined whether a woman would be identified as having GDM based on her OGTT. If the woman was not identified as having GDM then outcome probabilities were based on the predicted baseline risk, but for women identified as having GDM the predicted baseline risk was modified to take account of the effects of treatment. Treatment effectiveness for most outcomes was estimated from a random-effects meta-analysis of two studies, the Australian Carbohydrate Intolerance Study (ACHOIS) and the Landon et al. trial.^{11, 12} Other published studies of treatment for GDM were adjudged to lack adequate randomisation.¹³ For the NICU outcome only the Landon et al. trial data were used as it was considered to more closely represent UK practice as all neonatal nursery admissions were utilised. Similarly, the incidence of pre-eclampsia seemed high in ACHOIS in both arms, and again only Landon et al. trial data were utilised. The treatment effects for each of the model's clinical outcomes are shown in Table 2 along with parameters for probabilistic sampling. The model assumes that the relative treatment effect will be the same irrespective of the absolute baseline risk. For deterministic analyses the point estimate of relative risk was used but in order to account for uncertainty in these point estimates, these relative risks were sampled from a log-normal distribution in the simulations undertaken for probabilistic sensitivity analysis (PSA).

Table 2: Relative treatment effects for model outcomes

|--|

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Shoulder dystocia	0.41	0.316	ACHOIS (2005), Landon (2009)
Caesarean section	0.88	0.095	ACHOIS (2005), Landon (2009)
NICU	0.77	0.194	Landon (2009)
Jaundice requiring phototherapy	0.83	0.136	ACHOIS (2005), Landon (2009)
Pre-eclampsia	0.46	0.345	Landon (2009)
Induction of Labour	1.16	0.126	ACHOIS (2005), Landon (2009)
214		1	1
215			

216	Costs
217	Costing was undertaken from the perspective of the NHS, was calculated for each woman in the
218	dataset being analysed and was made up of three components;
219	• the costs of the diagnostic test – not applied in the <i>no test/no treat</i> strategy
220	• the costs of treatment- applied to every woman diagnosed with GDM at a particular
221	threshold
222	• the costs associated with the various outcomes – with the cost for each woman being the
223	expected (or average) cost of the outcome based on her estimated risk
224	The costs calculated for each woman were then summed across the entire patient dataset to give
225	a total cost for a particular diagnostic threshold.
226	
227	Costs are presented in pounds sterling and were taken from published UK sources where
228	possible (cost year 2015). They have not been discounted as they are all assumed to occur
229	within 12 months of diagnosis. Model unit costs are reported in the Supplementary Report,
230	Table x14. The costing methodology and assumptions are described in greater detail elsewhere. ⁶
231	
232	Other event probabilities
233	Probabilities in decision analysis were used to calculate the expected costs and benefits of the
234	various comparators. Many of these probabilities stemmed from relative treatment effects but a
235	few additional event probabilities were included in the model in order to estimate certain costs.
236	These probabilities are shown in Table 3 and their source is described elsewhere. ⁶
237	
238	
239	
240	
	12

2		
3		
4		
5 6		
7		
8		
9		
10		
11		
12 13		
14		
15		
16		
17 10		
18 19		
20		
20 21		
22 23		
23 24		
24 25		
26		
26 27		
28		
29 30		
31		
32		
33		
34		
35 36		
37		
38		
39		
40 41		
41		
43		
44		
45		
46 47		
48		
49		
50		
51		
52 53		
53 54		
55		
56		
57		
58 59		
60		

241	Table 3: Model event	probability not	derived from patient	level regression
-----	----------------------	-----------------	----------------------	------------------

Event	Probability
Not requiring hypoglycaemic therapy when treated for GDM	36%
Risk of hypoglycaemia if taking hypoglycaemic therapy	20%
Risk of hypoglycaemia being severe (requiring hospitalisation)	5%

242

243 Quality Adjusted Life Years (QALYs)

Following previous studies^{6, 14} a QALY decrement of 2.2 was assigned to serious perinatal 244 245 complications (SPC), defined as per the ACHOIS study as a composite outcome of shoulder dystocia, death and birth trauma.¹¹ More detail on the derivation of this QALY loss is provided 246 247 in the Supplementary Report. The cost-effectiveness of a healthcare intervention is determined 248 by the opportunity cost of the health foregone on the basis that with a fixed health budget any 249 newly funded intervention would displace the least cost-effective treatment currently provided. 250 In the UK, NICE typically uses a threshold of £20,000 to £30,000 per QALY as a benchmark¹⁵ 251 for the opportunity cost of health foregone and this paper assesses cost-effectiveness 252 accordingly.

253

254 Sensitivity analysis

255

Probabilistic sensitivity analysis, using Monte Carlo simulation (with 2,000 iterations for each analysis), was undertaken in order to assess the impact of sampling uncertainty on model inputs. Parameters and distributions for the probabilistic sensitivity analysis are given in Table 2 and Table x14 in the supplementary report. For the logistic regression coefficients used to predict baseline risk, the Cholesky decomposition method¹⁶ was used to sample from a multivariate normal distribution in order to reflect correlations between the coefficients. The Cholesky

262 decomposition of the variance covariance matrices from the regression analyses used in the base

263 case probabilistic sensitivity analysis are given in Table x8 to x13 in the Supplementary Report.

Results

Table 4 shows the percentage of women diagnosed with GDM in the three populations using both of the evaluated diagnostic thresholds. In addition, for the HAPO (4) and Atlantic DiP datasets this is additionally broken down in the subgroups with and without NICE risk factors (RF).

Table 4: Percentage of women identified with GDM by threshold and population

Threshold name	Norwich (n=12,754)	HAPO all (n=6,163)	HAPO RF (n=3,549)	HAPO No RF (n=2,614)	DiP All (n=5,290)	DiP RF (n=1,988)	DiP No RF (n=3,302)
NICE 2015	7.0%	13.6%	17.7%	8.0%	13.1%	25.0%	5.9%
WHO 2013	13.9%	18.9%	25.7%	9.7%	21.2%	37.7%	11.2%
2013							

272 Detailed deterministic and probabilistic results for HAPO (4) with risk factors are shown in

Table 5, Table 6, Table 7 and Figure 2.

Table 5: Clinical outcomes for HAPO (4) population with NICE risk factors (n=3,549)

Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	49	67	759	345	219	146	974
NICE 2015	629	41	56	739	326	210	123	1,004
WHO 2013	912	39	54	731	321	207	117	1,016

Cost ^a	QALY ^a	Incremental	Incremental	ICER
		cost	QALY	
£0	0.00	n/a	n/a	n/a
£546,349	26.78	£546,349	26.78	£23,073
_	£0	£0 0.00	£0 0.00 n/a	£00.00n/an/a

Table 6: Deterministic analysis for the HAPO (4 centres) population with NICE risk factors

a) Costs and QALYs are measured relative to a baseline of No Treatment

Table 5 indicates that there was a relatively small difference in clinical outcomes contrasting NICE and WHO diagnostic criteria, despite there being a 45% increase in women diagnosed with GDM. Using the WHO 2013 criteria, instead of the NICE 2015 criteria, an additional 142 women would have been diagnosed with GDM, and treated in order to prevent 1 case of shoulder dystocia.

In the deterministic analysis the NICE 2015 diagnostic criteria would be considered cost-effective at a cost-effectiveness threshold of £30,000 per QALY (Table 6).

The probabilistic sensitivity analysis reached a similar conclusion, with the NICE 2015 diagnostic threshold having the highest probability of being the most cost-effective treatment and the highest NMB using a cost-effectiveness threshold of £30,000 per QALY (Table 7 and Figure 2). The analysis also suggested that no diagnosis/no treatment might be considered the most likely to be cost-effective when using a lower cost-effectiveness threshold of £20,000 per QALY. The probability of no diagnosis/no treatment being cost-effective falls sharply in the cost-effectiveness threshold range of £20,000 - £30,000 per QALY. As shown in the cost-effectiveness acceptability curve in Figure 2, the WHO 2013 diagnostic threshold becomes

more cost-effective as the cost-effectiveness threshold increases. Nevertheless, this would have to exceed £30,000 per QALY before becoming cost-effective, indicating that the further reduction in adverse outcomes, are achieved at an unacceptably high opportunity cost. The Supplementary Report plots the incremental cost and QALY outcomes of 2,000 simulations from the probabilistic analysis on the cost-effectiveness plane (see Figure x1). Whilst most points fall in the south-western quadrant, suggesting that WHO 2013 diagnostic criteria are likely to lead to additional QALYs when compared with NICE 2015 criteria, all points show that NICE 2015 criteria were associated with markedly lower costs.

308 Table 7: Probabilistic sensitivity analysis for HAPO (4) in a population with NICE risk factors

NMB ^a CE threshold £30,000 per QALY	Probability cost- effective CE threshold £20,000 per	Probability cost- effective CE threshold WTP = £30,000
£486	QALY 55.5%	per QALY 19.8%
£230,798 £178,231	42.1%	53.5% 26.8%
	CE threshold £30,000 per QALY £486	CE threshold effective £30,000 per CE threshold QALY £20,000 per QALY £486 £486 55.5% £230,798 42.1%

a) NMB is measured relative to the least costly and least effective strategy in each simulation

Summaries of results for all of the model populations and more detailed results are provided inthe Supplementary Report.

313 Tables x16 and x17 in the Supplementary Report show that in both the HAPO (4) and Atlantic

314 DiP populations with NICE risk factors, the NICE diagnostic threshold is the most cost-

315 effective strategy at a cost-effectiveness threshold of £30,000 per QALY. The NICE 2015

BMJ Open

316	diagnostic threshold has ICERs of less than £30,000 per QALY, and in the probabilistic
317	sensitivity analysis it has the highest net monetary benefit and the highest probability of being
318	the most cost-effective. For HAPO (4) the results are similar if baseline risks are estimated
319	using logistic regression based on all covariates or a logistic regression just using plasma
320	glucose levels.
321	
322	The results also suggested that universal screening would not be cost-effective as, when
323	compared to risk factor screening (as recommended in NICE guidelines), the additional women
324	included in such an approach would be those without risk factors and the model demonstrates
325	that the ICERs for diagnosis and treatment are all well in excess of £30,000 per QALY;
326	markedly so when using WHO 2013 diagnostic thresholds. These conclusions were supported
327	by an analysis of the Norwich dataset (see Supplementary Report).
328	
329	It was not possible to stratify the Norwich dataset according to risk factors, and therefore the
330	ICERs presented relate to a comparison between no screening/treatment and universal screening
331	and treatment. However, the results were consistent with those for HAPO (4) and Atlantic DiP.
332	First, they showed that universal screening was not cost-effective even when compared to an
333	alternative of no screening/no treatment. Second, the ICERs for the whole population were a
334	weighted average of the populations with and without risk factors. The ICER for the population
335	without risk factors would be higher than the ICER for the entire population, which was only
336	marginally below the £30,000 per QALY threshold.
337	
338	Deterministic sensitivity analysis

As part of a sensitivity analysis the deterministic models were re-run using the logistic
regression models without backward elimination of glucose variables with non-significant
coefficients, and these analyses are summarised in the Supplementary Report.

343 Discussion

In the NICE guideline analysis, 14 alternative diagnostic thresholds were compared and there was no single optimal diagnostic threshold which clearly emerged⁶. This is not surprising given the small differences in patient outcomes between them. In that analysis the previous WHO 1999 criteria emerged as a relatively cost-effective strategy. However, the Guideline Development Group rejected a fasting threshold of 7.0 mmol/L as there was a wide clinical consensus that this was too high, as 6.1-7.0 mmol/L is diagnostic of impaired fasting glycaemia in the non-pregnant population. Intervention studies had used a lower fasting threshold than 7.0 mmol/L as a basis for inclusion, and therefore made a case for intervention at lower levels. Based upon detailed cost effectiveness analysis of all the options, the Guideline Development Group ultimately decided on recommending a fasting plasma glucose of 5.6 mmol/L and a 2 hour plasma glucose of 7.8 mmol/L. In this paper, we have restricted our analysis of cost-effectiveness to the WHO 2013 and NICE 2015 criteria (with a no screening/treatment baseline also included) as these two recommendations have the most clinical currency at present.

All of the analyses presented in this paper suggest that, in a population with NICE risk factors, the NICE 2015 diagnostic criteria for GDM could be considered cost-effective relative to no screening/no treatment and to WHO 2013 diagnostic thresholds when using a cost-effectiveness threshold of £30,000 per QALY. The analyses also show that no screening/no treatment is costeffective in populations without NICE risk factors, suggesting that universal screening does not represent value for money, at least in a UK setting.

BMJ Open

One of the limitations of our analysis was that the 2-hour threshold was restricted to the historical WHO 1999 2-hour definition of 7.8mmol/l, or the new WHO 2013 criteria of 8.5 mmol/l. It is conceivable that a 2-hour threshold lying between these values might outperform both. Our greater focus, though was on the optimal fasting level as this is where the greatest controversy lies with respect to potentially missed treatment opportunities.

As noted by the proponents of WHO 2013 diagnostic criteria for GDM, using a lower fasting plasma glucose threshold would by definition detect more cases. Furthermore, because we assumed in the model that the relative treatment effect would be the same in additionally diagnosed cases, it follows that such a threshold could potentially yield the lowest number of adverse outcomes and the greatest QALY gain. However, our analysis suggests that the relatively small additional gains are not justified by the substantially higher costs that such lower thresholds would require.

A key driver of our results were the logistic regression models which were used to predict baseline risk. For the outcomes included in this study these regression models suggested that the 2-hour plasma glucose was a much more important predictor of adverse outcomes than the fasting plasma glucose, something we were unaware of when selecting the model's clinical outcomes. For the regression models fitted to predict baseline risk in the HAPO (4) dataset with covariates and backward elimination of the OGTT plasma glucose variables (Model 1 base case analysis regressions in Supplementary Tables x2 to x7), the Hosmer-Lemeshow Goodness of Fit Test did not indicate evidence of poor fit (p > 0.05). However, there was evidence of poor fit (p < 0.05) for the regression models of caesarean section and NICU admission where the prediction was based only on OGTT plasma glucose results (Model 2 base case analysis

regressions in Supplementary Tables x2 to x7). Nevertheless, as indicated in Supplementary Table x16 and x17, the choice of prediction model did not have a large bearing on costeffectiveness.

We consider that our analysis which builds on previous modelling^{6, 14} is one of the most comprehensive assessments of the cost-effectiveness of diagnostic thresholds for GDM yet undertaken, and will hopefully contribute to the WHO's expectation "that a substantial body of new data will emerge in the near future, providing currently scarce health and economic evaluation of the recommended criteria applied to various populations and with different approaches (universal screening, screening only women at high risk, diagnostic testing only)".⁴

A number of commentators ^{17, 18} have recently advocated universal screening for GDM. The essence of the argument is based upon the number of cases of GDM that would be missed with selective screening, and the subsequent reduced opportunity to prevent a serious perinatal outcome. Of course it is true that universal screening will detect more cases, although the absolute numbers will depend upon the thresholds used to define GDM. Table 5 shows that many more women would need to be diagnosed in order to prevent a single adverse outcome. However, in the context of finite health care resources, it must be accepted that it may be cost-effective to miss some cases. Epidemiological measures such as number needed to treat (or number needed to screen in this case) implicitly recognise that a goal of health care systems cannot be to maximize health gain without any consideration of cost. Identifying missed cases carries an opportunity cost and it may be that those resources would achieve greater benefit if employed elsewhere in the health care system. If a population is divided into those with risk factors and those without risk factors, then the prevalence of GDM must be lower in the group without risk factors (and the number needed to screen higher) with concomitantly lower cost-

BMJ Open

effectiveness. However, the comparative cost-effectiveness of screening in those with and without risk factors is not only affected by the respective prevalence in the two groups, but also differences in severity. In those diagnosed with GDM and who had risk factors there were, as anticipated, greater levels of hyperglycaemia than in those without risk factors. As shown in Table x31 in the Supplementary Report, 'true positives' or identified cases (risk factor present and GDM) had higher plasma glucose values than 'false negatives' or missed cases (risk factors absent and GDM) when defining GDM positives according to WHO 2013 diagnostic thresholds. We would therefore expect the women with risk factors and GDM to be at greater risk of adverse outcomes than the women with GDM without risk factors as a result of their higher plasma glucose levels. So the "cases" missed with selective screening would have, on average, fewer adverse outcomes than in "cases" in a population with risk factors. So the ICER would be

427 greater in the population without risk factors because prevalence is lower and cases have fewer428 adverse outcomes.

Our analysis, by splitting the HAPO (4) and Atlantic DiP datasets into those with and without risk factors, was able to evaluate the cost-effectiveness of moving from risk factor screening to universal screening. Whilst diagnosis in populations with risk factors was shown to be cost-effective at a threshold of £30,000 per QALY, it was never cost-effective to diagnose and treat in those without risk factors. Table 4 indicates the large differences that exist in prevalence between the populations with and without risk factors. Our analysis suggests that the cost-effectiveness threshold would have to substantially exceed currently accepted UK norms for universal screening to be considered cost-effective. Although the NICE risk factor approach could not be replicated exactly, we felt that the approximation used was acceptable, as the only

women who would be omitted from the model risk factor population were multiparous and
would have had a large baby previously and/or a past history of GDM. This approximation
would over-estimate slightly the benefits of universal screening, as the baseline risk in a group
designated as being without NICE risk factors present would be over-stated.

A previous study⁸ from Spain using WHO 2013 diagnostic criteria suggested cost effectiveness compared with a two-step protocol using the Carpenter – Coustan thresholds. However, this was largely based upon estimates of reduction of caesarean section rates of 50% which we find implausible based upon changes in diagnostic criteria alone, noting that ACHOIS and Landon et al. found only a 4% and 21% reduction in caesarean section respectively as a result of treating gestational diabetes. The Spanish study did not consider other alternative thresholds, and was a retrospective, before and after analysis which has been criticised by the Cochrane Collaboration as it does not control for possible changes in important variables, such as clinical management, over time.¹⁹

A recently published UK Health Technology Assessment (HTA)¹⁰ suggested that the identification of gestational diabetes for treatment is not cost-effective, in which case finding a cost-effective threshold becomes somewhat redundant. Although the HTA followed a similar approach to our analysis there were some differences which could explain the different conclusions. In our analysis, jaundice was included as an outcome and the relative treatment effect would have tended to lower the incremental costs of intervention as a result of reduced rates of phototherapy. This was not included as an outcome in the HTA. Instrumental delivery was included as an outcome in the HTA but not in our analysis. While instrumental delivery rates could in theory be increased by treatment, as there will be more vaginal births, this could be counteracted by those mothers not treated delivering larger babies vaginally requiring

BMJ Open

464	assistance; this would be in accord with the HTA meta-analysis which failed to demonstrate a
465	treatment effect on instrumental delivery rates. In addition the HTA reported smaller treatment
466	effects for NICU admission and pre-eclampsia. Unlike our analysis, the HTA did not assume
467	100% uptake of the OGTT and that may also have led to a smaller estimate of treatment benefit.
468	However, the differences should not be over-emphasised. Like the HTA our results would not
469	support the identification and treatment of gestational diabetes if a cost-effectiveness threshold
470	of £20,000 per QALY was used. However, it was the view of the Guideline Development
471	Group that the clinical benefit of identifying and treating women with GDM is widely practiced,
472	and that a no identification/no treat policy would not be acceptable to patients or health care
473	providers. As such, the Group felt that the higher cost threshold of $\pounds 30,000$ was justified.
474	
475	Our model has a number of limitations particularly with respect to the valuation of health
476	outcomes. We did not include large for gestational age as an outcome because it was felt that
477	shoulder dystocia was the relevant immediate complication of interest, and that possible long
478	term metabolic consequences for the offspring were hard to quantify and therefore difficult to
479	incorporate within the model. As previously noted, the QALY loss from a serious perinatal
480	complication used in this analysis is likely to be overstated because of the relatively large
481	weight given to death based on the intervention studies. ¹⁴ HAPO failed to show an association
482	between perinatal mortality and plasma glucose levels, which may mean that perinatal mortality
483	reduction is less amenable to reduction by treatment than other serious perinatal complications.
484	In this respect the cost-effectiveness of diagnosing and treating GDM may be over-stated. On
485	the other hand, the model does not take account of any potential long term effects on the
486	offspring (e.g. adiposity and the likelihood of subsequent pathology) as these effects are
487	difficult to quantify but may under-estimate the QALY gain from diagnosis and treatment. A
488	US study ²⁰ considered the potential long-term benefits to the mother whereby a diagnosis of

GDM averts or delays onset of Type 2 diabetes mellitus, but this was not incorporated into our model as we did not consider that the relationship was sufficiently well established at this time. However, to the extent that such a relationship does exist our model would also underestimate the QALY gain from a diagnosis of GDM. A recent review has, however, questioned the association between maternal glycaemia and subsequent cardio-metabolic outcomes in offspring in humans²¹ and a recent follow-up study failed to find evidence of a reduction in childhood obesity or metabolic dysfunction at five years in the offspring of women treated for mild gestational diabetes in the study of Landon et al ^{12, 22}.

Despite these caveats, we feel our analysis represents a robust analysis of the cost-effectiveness of the NICE versus the WHO 2013 diagnostic thresholds for GDM based upon our current understanding of the impact of intervention in women with GDM in the UK population. We acknowledge completely that this analysis cannot be the final word on the subject, and that further health economic evaluation is required to either corroborate our findings or to challenge them. Nevertheless, our analysis represents a constructive and evidence based contribution to establishing cost effective diagnostic thresholds for GDM and will hopefully lead to more research to clarify this important but vexed area of clinical diagnosis.

507 Conclusions

The results presented in this analysis, based on a UK setting, do not suggest that the diagnostic thresholds for GDM adopted by the WHO are cost-effective. On the other hand they do provide some support for the cost-effectiveness of the diagnostic criteria adopted by NICE when compared to either no screening/treatment and to WHO 2013 diagnostic criteria. Furthermore, according to this analysis, universal screening would seem to offer poor value for money and

1 2		
3 4	513	does not appear cost-effective compared to the current NICE guidance of targeting high risk
5 6	514	women.
7 8 9	515	
10 11		
12 13 14		
14 15 16		
17 18		
19 20 21		
21 22 23		
24 25		
26 27 28		
28 29 30		
31 32		
33 34 35		
36 37		
38 39		
40 41 42		
42 43 44		
45 46		
47 48 49		
49 50 51		
52 53		
54 55 56		
56 57 58		
59 60		25
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

516	Acknowledgements
517	We are grateful to Professor DR McCance and Professor HD McIntyre for allowing us to use
518	their local datasets from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) trial and
519	to Professor F Dunne for allowing us to use her Atlantic DiP dataset.
520	We are also grateful to Professor David James who provided clinical support during the
521	development of the updated NICE guideline on Diabetes in Pregnancy.
522	
523	Competing interests
524	All authors have completed the ICMJE uniform disclosure form at
525	http://www.icmje.org/coi_disclosure.pdf and declare:
526	
527	Funding: Some of this work was undertaken by the now defunct National Collaborating Centre
528	for Women's and Children's Health (subsumed within the National Guideline Alliance from 1st
529	April 2016), which received funding from NICE. The views expressed in this publication are
530	those of the authors and not necessarily those of the institute. Revisions to the guideline model
531	after the guideline was published and drafting of the manuscript was done in the author's own
532	time and was not funded.
533	
534	National Institute for Health and Care Excellence (2015). Diabetes in pregnancy: management
535	from preconception to the postnatal period. Available from
536	https://www.nice.org.uk/guidance/ng3
537	PBJ and SBR are employees of the National Guideline Alliance (part of the RCOG), which
538	receives its funding from NICE.
539	MJAM, KS, AD and RWB received travel expenses from NICE for attending clinical guideline
540	development meetings

BMJ Open

541	Author contribution
542	Paul Jacklin designed and developed the health economic model, undertook the health
543	economic analysis, wrote the first draft of the manuscript and incorporated edits from co-
544	authors. Mike Maresh provided clinical input into the design of the health economic model;
545	read, commented and edited various draft of the manuscripts. Katharine Stanley supplied the
546	Norwich dataset, provided clinical input into the design of the health economic model; read,
547	commented and edited various draft of the manuscripts. Anne Dornhorst provided clinical input
548	into the design of the health economic model; read, commented and edited various draft of the
549	manuscripts. Chris Patterson provided statistical advice, undertook statistical analysis of the
550	HAPO dataset; read, commented and edited various drafts of the manuscript. Shona Burman-
551	Roy reviewed the clinical literature, contributed to discussions of model design; read,
552	commented and edited various drafts of the manuscript. Rudy Bilous chaired the NICE
553	guideline, provided clinical input into the design of the health economic model; read,
554	commented and edited various draft of the manuscripts.
555	
556	Transparency declaration
557	The lead author, Paul Jacklin, affirms that this manuscript is an honest, accurate, and
558	transparent account of the study being reported; that no important aspects of the study have
550	been emitted; and that any discremencies from the study as planned (and if relevant, registered)

- been omitted; and that any discrepancies from the study as planned (and, if relevant, registered)
- 560 have been explained.

562 Exclusive License

- 563 "I Paul Jacklin The Corresponding Author of this article contained within the original
- 564 manuscript which includes any diagrams & photographs within and any related or stand alone
- 565 film submitted (the Contribution") has the right to grant on behalf of all authors and does grant

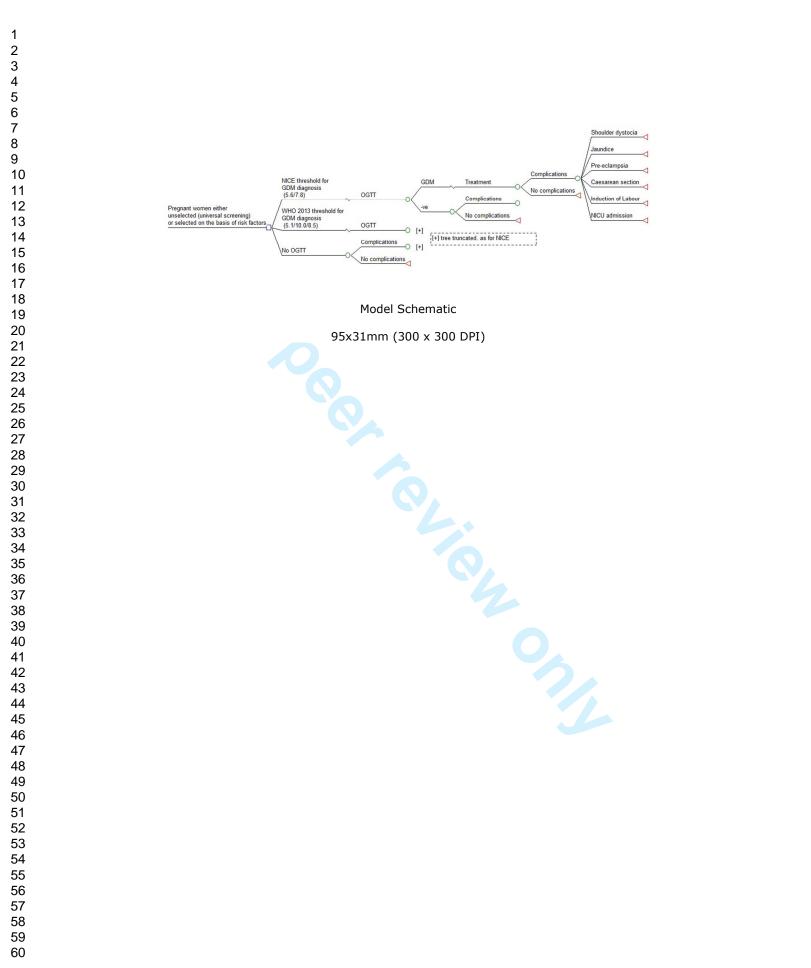
- on behalf of all authors, a licence to the BMJ Publishing Group Ltd and its licencees, to permit
- this Contribution (if accepted) to be published in the BMJ and any other BMJ Group products
- and to exploit all subsidiary rights, as set out in our licence set out at:
- <text> http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-
- open-access-and-permission-reuse."

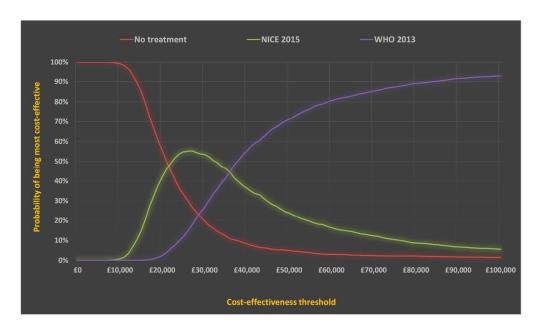
Data sharing Statement

- Potential for data sharing (the health economic model) can be discussed with study
- investigators.

References

1


BMJ Open


3 4
4
5
6
7
8
9
10
11
12
13 14
15
16
17
18
19
20
21
22
23
20 21 22 23 24 25
26
27
27 28 29
29
30
31 32 33
32
33
34 35
36
37
38
39
40
41
42
43 44
44 45
46
47
48
49
50
51
52 53
53 54
54 55
55 56
57
58
59
60

576 1. Metzger BE, Lowe LP, Dyer AR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J 577 Med 2008;358:1991-2002. 578 2. Farrar D, Simmonds M, Bryant M, et al. Hyperglycaemia and risk of adverse perinatal 579 outcomes: systematic review and meta-analysis. BMJ. 2016;354:i4694. doi: 10.1136/bmj.i4694. 580 3. Metzger BE, Gabbe SG, Persson B, et al. International Association of Diabetes and Pregnancy 581 Study Groups recommendations on the diagnosis and classification of hyperglycemia in 582 pregnancy. Diabetes Care 2010;33:676-82. 583 4. WHO Health organisation, 2013. Diagnostic criteria and classification of hyperglycaemia first 584 detected in pregnancy WHO/NMH/MND/13.2 585 http://apps.who.int/iris/bitstream/10665/85975/1/WHO NMH MND 13.2 eng.pdf. 586 5. American College of Obstetricians and Gynecologists. Practice Bulletin 137: Mellitus. Obstet 587 Gynecol 2013; 122: 406-16 588 6. National Institute for Health and Care Excellence (NICE) (2015) Diabetes in pregnancy: 589 management of diabetes and its complications from preconception to the postnatal period. 590 Clinical guideline NG3 (2015). Available from 591 www.nice.org.uk/guidance/ng3/resources/diabetes-in-pregnancy-management-of-diabetes-592 and-itscomplications-from-preconception-to-the-postnatal-period-51038446021, accessed 593 February 2016 594 7. Meek CL, Lewis HB, Patient C, Murphy HR, Simmons D. Diagnosis of gestational diabetes: falling 595 through the net. Diabetologia 2015;Sep;58(9):2003-12 596 8. Duran A, Sáenz S, Torrejón MJ et al. Introduction of IADPSG criteria for the screening and 597 diagnosis of gestational diabetes mellitus results in improved pregnancy outcomes at a lower 598 cost in a large cohort of pregnant women: the St. Carlos Gestational Diabetes Study. Diabetes 599 Care 2014;37(9):2442-2450. doi: 10.2337/dc14-0179.

600	9.	Herman WH. Insights offered by economic analyses. <i>Diabetes Care</i> . 2014 Sep;37(9):2424-6. doi:
601		10.2337/dc14-1232.
602	10.	Farrar D, Simmonds M, Griffin S et al. The identification and treatment of women with
603		hyperglycaemia in pregnancy: an analysis of individual participant data, systematic reviews,
604		meta-analyses and an economic evaluation. Health Technol Assess. 2016 Nov;20(86):1-348.
605	11.	Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment of
606		gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 2005;352:2477-86.
607	12.	Landon MB, Spong CY, Thom E, et al. A multicenter, randomized trial of treatment for mild
608		gestational diabetes. N Engl J Med 2009;361:1339-48
609	13.	Horvath K, Koch K, Jeitler K et al. Effects of treatment in women with gestational diabetes
610		mellitus: systematic review and meta-analysis. BMJ (Clin Res Ed) 2010;340:c1395
611	14.	Round, J.A., Jacklin, P., Fraser, R.B., Hughes, R.G., Mugglestone, M.A., Holt, R.I. Screening for
612		gestational diabetes mellitus: cost-utility of different screening strategies based on a woman's
613		individual risk of disease, <i>Diabetologia</i> 2011,54(2), 256-263. doi: 10.1007/s00125-010-1881-y
614	15.	National Institute for Health and Care Excellence. Developing NICE guidelines: the manual.
615		October 2014 (<u>https://www.nice.org.uk/media/default/about/what-we-do/our-</u>
616		programmes/developing-nice-guidelines-the-manual.pdf)
617	16.	Briggs A, Claxton K, Sculpher M. Decision Modelling for Health Economic Evaluation. Oxford:
618		Oxford University Press; 2006
619	17.	Avalos GE, Owens LA, Dunne F. Applying Current Screening Tools for Gestational Diabetes
620		Mellitus to a European Population: Is It Time for Change? <i>Diabetes Care</i> . 2013 Oct;36(10):3040-
621		4. doi: 10.2337/dc12-2669. Epub 2013 Jun 11.
622	18.	Simmons D, Moses RG. Gestational Diabetes Mellitus: To Screen or Not to Screen? Is this really
623		still a question? Diabetes Care. 2013 Oct;36(10):2877-2878
624	19.	Armstrong R, Waters E, Doyle J (editors). Chapter 21: Reviews in health promotion and public
625		health. In Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of
		30

1			
2 3	626		Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011.
4			
5 6	627		Available from www.cochrane-handbook.org. Accessed June 2015
7 8	628	20.	Werner EF, Pettker CM, Zucerwise et al. Screening for gestational diabetes mellitus: are the
9 10	629		criteria proposed by the international association of the Diabetes and Pregnancy Study Groups
11 12 13	630		cost-effective? Diabetes Care. 2012 Mar;35(3):529-35. doi: 10.2337/dc11-1643.
13 14 15	631	21.	Donovan LE, Cundy T. Does exposure to hyperglycaemia in utero increase the risk of obesity
16 17	632		and diabetes in the offspring? A critical reappraisal. Diabetic Medicine. 2015 Mar;32(3):295-
18 19	633		304. doi: 10.1111/dme.12625. Epub 2014 Dec 17.
20 21	634	22.	Landon MB, Rice MM, Varner MW et al. Mild gestational diabetes mellitus and long-term child
22 23	635		health. Diabetes Care. 2015 Mar;38(3):445-52. doi: 10.2337/dc14-2159. Epub 2014 Nov 20.
24 25	()(Trealth. Diabetes Care. 2013 Mai ;38(3).445-52. doi: 10.2337/0014-2139. Epub 2014 Nov 20.
26	636		
27 28			
29	637		
30 31			
32	638		
33	620		
34 35	639		
36			
37			
38 39			
40			
41 42			
43			
44			
45 46			
47			
48			
49 50			
51			
52			
53 54			
55			
56			
57 58			
59			
60			31
		Fo	or peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Cost-effectiveness acceptability curve indicating the probability of a threshold or a no diagnosis/no treatment strategy being cost-effective at different cost-effectiveness thresholds for the HAPO (4) centres population with risk factors

1 Supplementary Report

2 This supplementary document provides further details about model parameter estimates and model

3 results.

Table x1. Ethnicity of women in patient datasets and of UK

Ethnic group	HAPO (4) centres	Atlantic DiP	Norfolk ^a	UK⁵
White	79%	93%	96.5%	87%
Black	2%	2%	0.5%	3%
Asian	13%	4%	1.6%	7%
Other	6%	1%	1.6%	3%

 (a) Our Norwich dataset did not include data on ethnicity and the values presented here are census data for Norfolk (Estimated from 2011 Census: Ethnic group, local authorities in the United Kingdom. Office for National Statistics. 11 October 2013)

(b) Included for comparative purposes (2011 Census: Ethnic group, local authorities in the United Kingdom. Office for National Statistics. 11 October 2013)

11 Multivariable prediction models to estimate baseline risk

Model 1 includes the covariates used in the original analysis of the HAPO data whilst Model 2 is restricted to plasma glucose variables (Tables x2 to Tables x7). In the base case analysis, backward elimination of plasma glucose variables with non-significant coefficients from the prediction models was undertaken. A sensitivity analysis was undertaken retaining all plasma glucose variables. For each model Hosmer-Lemeshow goodness-of-fit statistics are presented and predicted probabilities are used to derive the area under the receiver-operating characteristic (ROC) curve as an indicator of the

18 model's discriminatory ability.

2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
12
13
14
15
16
17
10
18
19
20
21
21
22
23
24
25
26
27
21
28
29
30
31
22
32
33
33 34
33 34 35
33 34 35 36
33 34 35 36
33 34 35 36 37
33 34 35 36 37 38
33 34 35 36 37 38 39
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 21 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 8 \\ 19 \\ 21 \\ 22 \\ 22 \\ 24 \\ 25 \\ 6 \\ 7 \\ 8 \\ 9 \\ 30 \\ 12 \\ 33 \\ 33 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$
40
40 41
40 41 42
40 41 42 43
40 41 42 43 44
40 41 42 43 44 45
40 41 42 43 44 45
40 41 42 43 44 45
40 41 42 43 44 45
40 41 42 43 44 45 46 47 48
40 41 42 43 44 45 46 47 48 49
40 41 42 43 44 45 46 47 48 49
40 41 42 43 44 45 46 47 48 49
40 41 42 43 44 45 46 47 48 49
40 41 42 43 44 45 46 47 48 49 50 51 52
40 41 42 43 44 45 46 47 48 49

20 Table x2. Logistic regression models to predict neonatal shoulder dystocia

	Co-efficient b (Standard error (SE(b))				
	Мо	del 1	Model 2		
	(all covariates)		(blood glucose covariates)		
Variable	Base case analysis	Sensitivity analysis	Base case analysis	Sensitivity analysis	
Centre (Manchester v Belfast)	1.151 (0.423)	1.151 (0.424)	-	-	
(Brisbane v Belfast)	0.505 (0.489)	0.562 (0.491)	-	-	
(Newcastle v Belfast)	1.604 (0.472)	1.622 (0.472)	-	-	
Age at OGTT (yr)	-0.023 (0.024)	-0.022 (0.024)	-	-	
BMI at OGTT (kg/m ²)	-0.006 (0.023)	-0.011 (0.024)	-	-	
Smoker (Yes v No)	-0.480 (0.409)	-0.477 (0.409)	-	-	
Drinker (Yes v No)	-0.101 (0.317)	-0.107 (0.317)	-	-	
Family history DM (Yes v No)	-0.006 (0.184)	-0.008 (0.187)	-	-	
Gestational age at OGTT (wk)	-0.111 (0.091)	-0.114 (0.092)	-	-	
Neonate gender (F v M)	-1.321 (0.292)	-1.316 (0.292)	-	-	
Family history HBP (Yes v No) ^a	-	-	-	-	
Maternal UTI (Yes v No) ^a	-	-	-	-	
Mean Blood Pressure (mmHg)	-0.006 (0.015)	-0.007 (0.015)	-	-	
Hospital admission before delivery (Yes v No)	0.173 (0.266)	0.175 (0.267)	-	-	
Parity (1 v 0)	-0.118 (0.420)	-0.108 (0.420)	-	-	
(2+ v 0)	0.456 (0.412)	0.469 (0.414)	-	-	
(Unknown v 0)	-0.026 (0.399)	-0.013 (0.399)	-	-	
Fasting blood glucose ^b	-	0.151 (0.112)	-	0.166 (0.110)	
1-hr blood glucose ^b	-	-0.138 (0.165)	-	-0.152 (0.163)	
2-hr blood glucose ^b	0.223 (0.100)	0.222 (0.152)	0.267 (0.097)	0.265 (0.151)	
Constant	0.925 (3.025)	1.139 (3.508)	-4.467 (0.122)	-4.475 (0.122)	
Hosmer-Lemeshow goodness- of-fit test	χ ² = 2.94, df=8; P=0.94	χ ² = 6.36, df=8; P=0.61	χ ² = 4.99, df=8; P=0.76	χ ² = 11.51, df=8; P=0.18	
Area under the ROC curve (95% CI)	0.75 (0.70, 0.80)	0.76 (0.70, 0.81)	0.58 (0.51, 0.65)	0.60 (0.53, 0.67)	

(a) Omitted from HAPO model for shoulder dystocia

(b) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for shoulder dystocia arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47); 1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

Table x3. Logistic regression models to predict caesarean section

		Co-efficient b (Sta	ndard error (SE(b))	
	Model 1 (all covariates)		Model 2 (blood glucose covariates)	
Variable	Base case analysis	Sensitivity analysis	Base case analysis	Sensitivity analysis
Centre (Manchester v Belfast)	-0.494 (0.092)	-0.495 (0.092)	-	-
(Brisbane v Belfast)	-0.099 (0.098)	-0.114 (0.100)	-	-
(Newcastle v Belfast)	-0.681 (0.140)	-0.692 (0.141)	-	-
Age at OGTT (yr)	0.034 (0.007)	0.034 (0.007)	-	-
BMI at OGTT (kg/m ²)	0.039 (0.007)	0.039 (0.007)	-	-
Smoker (Yes v No)	-0.304 (0.106)	-0.292 (0.106)	-	-
Drinker (Yes v No)	-0.028 (0.087)	-0.025 (0.087)	-	-
Family history DM (Yes v No)	0.050 (0.057)	0.052 (0.057)	-	-
Gestational age at OGTT (wk)	0.004 (0.029)	0.004 (0.029)	-	-
Neonate gender (F v M)	-0.205 (0.071)	-0.205 (0.071)	-	-
Family history HBP (Yes v No) ^a	-	-	-	-
Maternal UTI (Yes v No) ^a	-	-	-	-
Mean Blood Pressure (mmHg)	0.003 (0.004)	0.003 (0.004)	-	-
Hospital admission before delivery (Yes v No)	0.514 (0.079)	0.510 (0.079)	-	-
Parity (1 v 0) ^a	-	-	-	-
(2+ v 0) ^a	-	-	-	-
(Unknown v 0) ^a	-	-	-	-
Fasting blood glucose ^b	-	-0.009 (0.044)	-	0.053 (0.040
1-hr blood glucose ^b	0.144 (0.037)	0.101 (0.051)	0.138 (0.046)	0.119 (0.048
2-hr blood glucose ^b	-	0.071 (0.048)	0.123 (0.046)	0.113 (0.046
Constant	-3.518 (0.947)	-3.509 (0.950)	-1.435 (0.035)	-1.433 (0.03
Hosmer-Lemeshow goodness- of-fit test	χ ² = 1.88, df=8; P=0.99	χ ² = 5.11, df=8; P=0.75	χ ² = 16.56, df=8; P=0.04	χ ² = 17.66, df=8; P=0.0
Area under the ROC curve (95% CI)	0.65 (0.63, 0.66)	0.65 (63, 0.66)	0.58 (0.56, 0.60)	0.58 (0.57, 0.60

(a) Omitted from HAPO model for caesarean section

30 (b) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for caesarean
 31 section arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) =

4.60(0.47); 1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

2	
3	
1	
-	
5	
6	
7	
8	
à	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 5 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 0 \\ 31 \\ 23 \\ 34 \\ 35 \\ 36 \\ 78 \\ 9 \\ 9 \\ 0 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 9 \\ 31 \\ 33 \\ 34 \\ 35 \\ 36 \\ 78 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 9 \\ 31 \\ 33 \\ 34 \\ 35 \\ 36 \\ 78 \\ 9 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	
10	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
33	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

36 **Table x4.** Logistic regression models to predict neonatal intensive care unit admissions

	Co-efficient b (Standard error (SE(b))										
	Moc (all cova		Moc (blood glucos								
Variable	Base case analysis	Sensitivity analysis	Base case analysis	Sensitivity analysis							
Centre (Manchester v Belfast)	0.894 (0.159)	0.889 (0.159)	-	-							
(Brisbane v Belfast)	1.393 (0.161)	1.400 (0.163)	-	-							
(Newcastle v Belfast)	1.153 (0.190)	1.163 (0.191)	-	-							
Age at OGTT (yr)	0.013 (0.009)	0.012 (0.009)	-	-							
BMI at OGTT (kg/m ²)	0.025 (0.009)	0.024 (0.009)	-	-							
Smoker (Yes v No)	0.209 (0.130)	0.201 (0.130)	-	-							
Drinker (Yes v No)	-0.025 (0.117)	-0.023 (0.117)	-	-							
Family history DM (Yes v No)	0.033 (0.069)	0.038 (0.069)	-	-							
Gestational age at OGTT (wk)	-0.050 (0.038)	-0.052 (0.038)	-	-							
Neonate gender (F v M)	-0.304 (0.094)	-0.302 (0.094)	-	-							
Family history HBP (Yes v No) ^a	-	-	-	-							
Maternal UTI (Yes v No) ^a	-	-	-	-							
Mean Blood Pressure (mmHg)	0.006 (0.006)	0.006 (0.006)	-	-							
Hospital admission before delivery (Yes v No)	0.794 (0.097)	0.792 (0.097)	-	-							
Parity (1 v 0)	-0.474 (0.148)	-0.474 (0.148)	-	-							
(2+ v 0)	-0.490 (0.157)	-0.493 (0.157)	-	-							
(Unknown v 0)	-0.084 (0.135)	-0.086 (0.135)	-	-							
Fasting blood glucose ^b	-	-0.003 (0.054)	-	-0.025 (0.05							
1-hr blood glucose ^b	-	0.082 (0.067)	-	0.078 (0.064							
2-hr blood glucose ^b	0.159 (0.045)	0.107 (0.063)	0.208 (0.041)	0.167 (0.060							
Constant	-3.181 (1.236)	-3.061 (1.243)	-2.374 (0.046)	-2.375 (0.04							
Hosmer-Lemeshow goodness- of-fit test	χ ² = 14.18, df=8; P=0.08	χ ² = 11.41, df=8; P=0.18	χ ² = 22.16, df=8; P=0.005	χ ² = 12.72, df=8; P=0.1							
Area under the ROC curve (95% CI)	0.71 (0.69, 0.73)	0.71 (0.69, 0.73)	0.57 (0.55, 0.60)	0.57 (0.55, 0.60							

37 (a) Omitted from HAPO model for neonatal intensive care unit admissions

38 (b) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for neonatal

39 intensive care unit admissions arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose

40 mean (SD) = 4.60(0.47); 1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

41

42

43 Table x5. Logistic regression models to predict jaundice

	Co-efficient b (Standard error (SE(b))										
	Мос	lel 1	Мос	lel 2							
	(all cova	ariates)	(blood glucos	e covariates)							
Variable	Base case analysis	Sensitivity analysis	Base case analysis	Sensitivity analysis							
Centre (Manchester v Belfast)	0.407 (0.157)	0.410 (0.157)	-	-							
(Brisbane v Belfast)	0.449 (0.171)	0.420 (0.173)	-	-							
(Newcastle v Belfast)	-0.315 (0.259)	-0.332 (0.259)	-	-							
Age at OGTT (yr)	0.005 (0.011)	0.005 (0.011)	-	-							
BMI at OGTT (kg/m ²)	-0.011 (0.011)	-0.009 (0.012)	-	-							
Smoker (Yes v No)	0.082 (0.161)	0.093 (0.162)	-	-							
Drinker (Yes v No)	-0.514 (0.163)	-0.508 (0.163)	-	-							
Family history DM (Yes v No)	-0.060 (0.094)	-0.060 (0.094)	-	-							
Gestational age at OGTT (wk)	-0.078 (0.047)	-0.077 (0.047)	-	-							
Neonate gender (F v M)	-0.116 (0.113)	-0.115 (0.113)	-	-							
Family history HBP (Yes v No) ^a	-	-	-	-							
Maternal UTI (Yes v No) ^a	-	-	-	-							
Mean Blood Pressure (mmHg)	0.018 (0.007)	0.018 (0.007)	-	-							
Hospital admission before delivery (Yes v No)	0.867 (0.116)	0.865 (0.116)	-	-							
Parity (1 v 0)	-0.382 (0.185)	-0.380 (0.185)	-	-							
(2+ v 0)	-0.526 (0.200)	-0.526 (0.200)	-	-							
(Unknown v 0)	0.078 (0.165)	0.078 (0.165)	-	-							
Fasting blood glucose ^b	-	-0.055 (0.066)	-	-0.063 (0.063							
1-hr blood glucose ^b	0.216 (0.056)	0.192 (0.079)	0.237 (0.052)	0.199 (0.078							
2-hr blood glucose ^b	-	0.073 (0.074)	-	0.102 (0.072							
Constant	-1.927 (1.522)	-2.014 (1.526)	-2.846 (0.057)	-2.850 (0.05							
Hosmer-Lemeshow goodness- of-fit test	χ ² = 8.42, df=8; P=0.39	χ ² = 7.96, df=8; P=0.44	χ ² = 2.47, df=8; P=0.96	χ ² = 10.40, df=8; P=0.2							
Area under the ROC curve (95% CI)	0.68 (0.65, 0.71)	0.68 (0.65, 0.71)	0.57 (0.54, 0.60)	0.58 (0.55, 0.61)							

45 (a) Omitted from HAPO model for jaundice
46 (b) Blood glucose values are 'standardised'

(b) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for jaundice arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47); 1-hour

plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

51 Table x6. Logistic regression models to predict pre-eclampsia

	Co-efficient b (Standard error (SE(b))										
	Мо	del 1	Mod	lel 2							
	(all cov	ariates)	(blood glucos	e covariates)							
Variable	Base case analysis	Sensitivity analysis	Base case analysis	Sensitivity analysis							
Centre (Manchester v Belfast)	-0.784 (0.192)	-0.800 (0.193)	-	-							
(Brisbane v Belfast)	-0.308 (0.200)	-0.277 (0.202)	-	-							
(Newcastle v Belfast)	-0.685 (0.278)	-0.667 (0.278)	-	-							
Age at OGTT (yr)	-0.009 (0.015)	-0.011 (0.015)	-	-							
BMI at OGTT (kg/m ²)	0.101 (0.011)	0.097 (0.012)	-	-							
Smoker (Yes v No)	-0.556 (0.245)	-0.569 (0.246)	-	-							
Drinker (Yes v No)	-0.170 (0.194)	-0.168 (0.194)	-	-							
Family history DM (Yes v No)	-0.004 (0.127)	0.006 (0.127)	-	-							
Gestational age at OGTT (wk)	-0.092 (0.059)	-0.096 (0.059)	-	-							
Neonate gender (F v M)	0.173 (0.147)	0.174 (0.147)	-	-							
Family history HBP (Yes v No)	0.233 (0.150)	0.230 (0.150)	-	-							
Maternal UTI (Yes v No)	0.734 (0.211)	0.721 (0.211)	-	-							
Mean Blood Pressure (mmHg) ^a	-	-	-	-							
Hospital admission before delivery (Yes v No) ^a	-	-	-	-							
Parity (1 v 0)	-0.291 (0.240)	-0.292 (0.240)	-	-							
(2+ v 0)	-0.701 (0.271)	-0.703 (0.271)	-	-							
(Unknown v 0)	0.026 (0.224)	0.023 (0.224)	-	-							
Fasting blood glucose ^b	-	0.062 (0.078)	0.201 (0.065)	0.183 (0.06							
1-hr blood glucose ^b	-	0.065 (0.104)	-	0.083 (0.09							
2-hr blood glucose ^b	0.272 (0.067)	0.195 (0.096)	0.196 (0.072)	0.150 (0.09							
Constant	-3.370 (1.842)	-3.107 (1.855)	-3.453 (0.075)	-3.455 (0.07							
Hosmer-Lemeshow goodness- of-fit test	χ ² = 5.46, df=8; P=0.71	χ ² = 8.02, df=8; P=0.43	χ ² = 12.00, df=8; P=0.15	χ ² = 15.98, df=8; P=0.0							
Area under the ROC curve (95% CI)	0.75 (0.72, 0.78)	0.75 (0.72, 0.79)	0.65 (0.61, 0.68)	0.65 (0.61, 0.68							

53 (a) Omitted from HAPO model for pre-eclampsia
54 (b) Blood glucose values are 'standardised' - so the

(b) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for pre-eclampsia arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47); 1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

Table x7. Logistic regression models to predict induction of labour

	Co-efficient b (Standard error (SE(b))										
	Мо	del 1	Model 2								
	(all cov	ariates)	(blood glucose covariates)								
Variable	Base case analysis	Sensitivity analysis	Base case analysis								
Centre (Manchester v Belfast)	-0.476 (0.077)	-0.476 (0.077)	-								
(Brisbane v Belfast)	-0.337 (0.085)	-0.333 (0.087)	-								
(Newcastle v Belfast)	-0.387 (0.109)	-0.384 (0.110)	-								
Age at OGTT (yr)	0.006 (0.006)	0.006 (0.006)	-								
BMI at OGTT (kg/m²)	0.039 (0.006)	0.039 (0.006)	-								
Smoker (Yes v No)	0.051 (0.082	0.051 (0.082)	-								
Drinker (Yes v No)	0.079 (0.072)	0.079 (0.072)	-								
Family history DM (Yes v No)	0.016 (0.048)	0.016 (0.048)	-								
Gestational age at OGTT (wk)	0.011 (0.024)	0.011 (0.024)	-								
Neonate gender (F v M)	-0.038 (0.059)	-0.038 (0.059)	-								
Family history HBP (Yes v No) ^a	-	-	-								
Maternal UTI (Yes v No) ^a	-	-	-								
Mean Blood Pressure (mmHg)	0.008 (0.004)	0.008 (0.004)	-								
Hospital admission before delivery (Yes v No)	0.608 (0.066)	0.608 (0.066)	-								
Parity (1 v 0)	-0.363 (0.101)	-0.363 (0.101)	-								
(2+ v 0)	-0.193 (0.105)	-0.193 (0.105)	-								
(Unknown v 0)	0.141 (0.094)	0.141 (0.094)	-								
Fasting blood glucose ^b	-	0.009 (0.037)	0.079 (0.033)								
1-hr blood glucose ^b	-0.108 (0.041)	-0.111 (0.043)	-0.093 (0.041)								
2-hr blood glucose ^b	0.096 (0.041)	0.094 (0.041)	0.100 (0.040)								
Constant	-3.050 (0.794)	-3.037 (0.796)	-1.032 (0.029)								
Hosmer-Lemeshow goodness- of-fit test	χ ² = 9.08, df=8; P=0.34	χ ² = 9.42 df=8; P=0.31	χ ² = 9.83 df=8; P=0.28								
Area under the ROC curve (95% Cl)	0.63 (0.61, 0.65)	0.63 (0.61, 0.65)	0.53 (0.51, 0.55)								

(a) Omitted from HAPO model for induction of labour

(b) Blood glucose values are 'standardised' - so the exponential of the coefficient represents the odds ratio for induction of

labour arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47);

1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

BMJ Open

Table x8. Cholesky decomposition of shoulder dystocia variance covariance matrix (Model 1, base case)

7 8 9 10 11		Constant	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Age at OGTT (yr)	BMI AT OGTT (kø/m2)	Smoker	Drinker	Family History DM	Gestational age at OGTT (wk)	Neonatal gender	Mean Blood Pressure	Parity (1 v 0)	Parity (2+ v 0)	Parity (Unknown v 0)	Hospital admission hefore	2-hr blood glucose
12	Constant	3.025																
13	Centre (Manchester v Belfast)	-0.104	0.410															
14 15	(Brisbane v Belfast)	-0.129	0.335	0.331														
16	(Newcastle v Belfast)	-0.135	0.334	0.074	0.295													
17 18	Age at OGTT (yr)	-0.005	-0.001	0.000	0.000	0.024												
19	BMI AT OGTT (kg/m2)	-0.001	-0.001	-0.001	-0.001	0.001	0.023											
20 21	Smoker	-0.012	0.031	0.001	-0.003	0.047	0.006	0.404										
22	Drinker	0.001	0.014	-0.006	-0.020	-0.051	0.008	-0.018	0.311									
23 24	Family History DM	-0.023	0.012	-0.022	-0.018	-0.005	0.000	-0.009	-0.012	0.179								
25	Gestational age at OGTT (wk)	-0.080	-0.009	-0.001	0.006	-0.017	-0.007	-0.002	-0.001	-0.008	0.037							
26 27	Neonatal gender (F v M)	-0.037	-0.010	-0.006	-0.010	-0.002	0.009	0.003	-0.001	-0.005	-0.080	0.278						
28	Mean Blood Pressure (mmHg)	-0.004	-0.001	0.000	-0.002	-0.002	-0.006	0.000	0.000	-0.001	-0.011	-0.004	0.004					
29	Parity (1 v 0)	-0.038	0.014	0.011	-0.029	-0.024	-0.017	0.009	-0.013	0.006	-0.084	-0.020	-0.318	0.253				
30 31	(2+ v 0)	-0.026	0.007	0.025	-0.018	-0.082	-0.043	0.000	0.006	0.011	-0.072	-0.027	-0.317	0.021	0.229			
32	(Unknown v 0)	-0.052	0.019	0.005	-0.020	0.028	0.004	0.015	0.001	0.006	-0.090	-0.026	-0.311	0.020	0.026	0.219		
33 34	Hospital admission before delivery	-0.008	-0.007	-0.016	-0.006	0.005	-0.033	-0.006	0.007	-0.002	-0.002	0.004	-0.063	-0.061	-0.071	-0.079	0.225	
35 36	2-hr blood glucose	0.012	-0.003	-0.003	0.005	-0.016	-0.015	0.009	0.006	0.013	0.004	0.004	-0.003	-0.007	-0.021	-0.002	-0.015	0.091
37	66																	
38 39 40	67 68																	
41																		
42 43									8									
44				For	heer rev	iow only	/ - http:/	/hmione		om/site	/about/g	uideling	as yhtmi					
45 46				101			/ - mup./	, sinjope		Sill Sile	aboury		JANUIII					

Table x9. Cholesky decomposition of caesarean section variance covariance matrix (Model 1, base case)

	Constant	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Аge at ОGTT (yr)	BMI AT OGTT (kg/m2)	Smoker	Drinker	Family History DM	Gestational age at OGTT	Neonatal gender	Mean Blood Pressure	Hospital admission	1-hr blood glucose
Constant	0.947													
Centre (Manchester v Belfast)	-0.020	0.089												
(Brisbane v Belfast)	-0.028	0.047	0.082											
(Newcastle v Belfast)	-0.028	0.048	0.025	0.126										
Age at OGTT (yr)	-0.001	0.000	0.000	0.000	0.007									
BMI AT OGTT (kg/m ²)	-0.001	-0.001	0.000	0.000	0.000	0.007								
Smoker	-0.004	0.010	0.004	0.001	0.013	0.000	0.104							
Drinker	0.001	0.004	0.000	-0.002	-0.011	0.004	-0.006	0.086						
Family History DM	-0.006	0.006	-0.005	-0.002	-0.003	0.000	-0.003	-0.003	0.056					
Gestational age at OGTT (wk)	-0.026	-0.001	0.000	0.001	-0.005	-0.002	-0.001	-0.001	-0.003	0.011				
Neonate gender	-0.009	-0.001	-0.002	0.000	-0.002	0.002	0.002	-0.001	-0.001	-0.020	0.067			
Mean Blood Pressure (mmHg)	-0.001	0.000	0.000	0.000	-0.001	-0.002	0.000	0.000	0.000	-0.003	-0.001	0.001		
Hospital admission before delivery	-0.003	-0.004	-0.007	-0.001	0.004	-0.009	-0.003	0.004	-0.001	0.000	0.000	-0.042	0.065	
1-hr blood glucose	0.005	-0.001	0.002	0.002	-0.006	-0.006	0.000	0.001	0.005	0.003	0.002	-0.003	-0.003	0.035
70														

(Mancheste rv Belfast) Centre (Mancheste r v Belfast) Centre (Mancheste r v Belfast)	Age at OGTT (yr) BMI AT OGTT (kg/m2)	Smoker Drinker	Family History DM	Gestational age at OGTT (wk) Neonatal gender	Mean Blood Pressure	Parity (1 v 0)	Parity (2+ v 0)	Parity (Unknown v 0)	Hospital admission	2-hr blood
54										
15 0.102										
15 0.042 0.137										
0.000 0.000	0.009									
0.000 0.000	0.000 0.009									
12 0.002 -0.001	0.018 -0.001	0.128								
04 -0.002 -0.004	-0.017 0.006	-0.007 0.115								
04 -0.008 -0.003	-0.003 0.000	-0.004 -0.003	0.068							
03 -0.001 0.002	-0.007 -0.002	-0.001 -0.001	-0.004	0.015						
03 -0.004 -0.002	-0.002 0.003	0.000 -0.001	-0.001	-0.025 0.090						
00 0.000 -0.001	-0.001 -0.002	0.000 0.000	0.000	-0.004 -0.001	0.001					
06 0.004 -0.009	-0.009 -0.005	0.002 -0.003	0.002	-0.024 -0.004	-0.103	0.102				
02 0.011 -0.005	-0.032 -0.015	-0.002 0.003	0.003	-0.021 -0.006	-0.102	0.012	0.111			
0.003 -0.005	0.010 0.002	0.006 0.001	0.002	-0.025 -0.006	-0.101	0.011	0.011	0.081		
001 -0.005 0.000	0.004 -0.012	-0.003 0.005	0.000	-0.001 0.000	-0.033	-0.028	-0.025	-0.032	0.075	
0.000 0.001	-0.007 -0.006	0.004 0.002	0.005	0.003 0.002	-0.002	-0.002	-0.006	0.000	-0.006	0.0
			10							

45
46
47

Table x11. Cholesky decomposition of jaundice variance covariance matrix (Model 1, base case)

	Constant	Centre (Mancheste r v Belfast)	Centre (Brisbane v Belfast)	Centre (Newcastle v Belfast)	Age at OGTT (yr)	BMIAT OGTT //m/m3/	Smoker	Drinker	Family History DM	Gestational age at OGTT (wk)	Neonatal gender	Mean Blood Pressure	Parity (1 v 0)	Parity (2+ v 0)	Parity (Unknown v 0)	Hospital admission	1-hr blood glucose
Constant	1.522																
Centre (Manchester v Belfast)	-0.038	0.153															
(Brisbane v Belfast)	-0.049	0.102	0.128														
(Newcastle v Belfast)	-0.055	0.102	0.041	0.228													
Age at OGTT (yr)	-0.002	0.000	0.000	0.000	0.011												
BMI AT OGTT (kg/m2)	-0.001	-0.001	-0.001	0.000	0.000	0.011											
Smoker	-0.011	0.017	0.003	-0.001	0.023	0.000	0.158										
Drinker	0.003	0.004	0.000	-0.002	-0.020	0.006	-0.011	0.161									
Family History DM	-0.011	0.010	-0.010	-0.003	-0.005	-0.001	-0.004	-0.005	0.092								
Gestational age at OGTT (wk)	-0.042	-0.003	0.000	0.002	-0.008	-0.004	-0.001	-0.001	-0.005	0.018							
Neonatal gender (F v M)	-0.014	-0.003	-0.003	-0.002	-0.002	0.004	0.002	-0.001	0.000	-0.031	0.108						
Mean Blood Pressure (mmHg)	-0.002	0.000	0.000	0.000	-0.001	-0.003	0.000	0.000	0.000	-0.005	-0.002	0.002					
Parity (1 v 0)	-0.016	0.010	0.008	-0.006	-0.011	-0.007	0.001	-0.001	0.003	-0.032	-0.007	-0.128	0.126				
(2+ v 0)	-0.008	0.002	0.014	-0.004	-0.039	-0.016	-0.003	0.005	0.006	-0.030	-0.009	-0.127	0.016	0.144			
(Unknown v 0)	-0.021	0.013	0.006	-0.004	0.012	0.003	0.005	0.002	0.002	-0.034	-0.008	-0.126	0.015	0.013	0.094		
Hospital admission before delivery	-0.006	-0.003	-0.008	-0.002	0.005	-0.016	-0.004	0.003	-0.001	-0.002	0.001	-0.040	-0.034	-0.028	-0.042	0.089	
1-hr blood glucose	0.007	-0.001	0.004	0.003	-0.008	-0.009	0.003	0.001	0.008	0.004	0.003	-0.004	-0.004	-0.009	-0.001	-0.008	0.051
75																	
								11									

5

Table x12. Cholesky decomposition of pre-clampsia variance covariance matrix (Model 1, base case)

7 8 9 10 11		Constant	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Age at OGTT (yr)	BMIAT OGTT (kø/m2)	Smoker	Drinker	Family History DM	Gestational age at OGTT (wk)	Neonatal gender (F v M)	Parity (1 v 0)	Parity (2+ v 0)	Parity (Unknown v 0)	Family History HBP	Maternal UTI	2-hr blood glucose
12	Constant	1.842																
13 14	Centre (Manchester v Belfast)	-0.045	0.187															
15	(Brisbane v Belfast)	-0.059	0.083	0.173														
16 17	(Newcastle v Belfast)	-0.072	0.085	0.053	0.249													
18 19	Age at OGTT (yr)	-0.004	0.000	0.000	0.000	0.015												
20	BMI AT OGTT (kg/m2)	-0.002	-0.001	-0.001	-0.002	0.000	0.010											
21 22	Smoker	-0.010	0.019	0.002	0.001	0.026	0.001	0.243										
23	Drinker	0.002	0.007	-0.002	-0.004	-0.023	0.007	-0.009	0.192									
24 25	Family History DM	-0.017	0.013	-0.009	-0.006	-0.009	-0.001	-0.004	-0.004	0.124								
23 26 27	Gestational age at OGTT (wk)	-0.054	-0.003	0.000	0.002	-0.013	-0.012	-0.001	-0.001	-0.008	0.011							
28	Neonatal gender (F v M)	-0.023	-0.004	-0.006	-0.007	-0.003	0.009	0.001	-0.002	-0.001	-0.106	0.099						
29 30	Parity (1 v 0)	-0.020	0.013	0.016	-0.006	-0.014	-0.011	0.003	-0.001	0.001	-0.121	-0.123	0.163					
30 31	(2+ v 0)	-0.011	-0.001	0.020	-0.005	-0.047	-0.030	0.000	0.000	0.007	-0.117	-0.120	0.042	0.199				
32	(Unknown v 0)	-0.029	0.014	0.013	-0.004	0.017	0.002	0.006	0.001	0.000	-0.122	-0.125	0.036	0.025	0.127			
33 34	Family History HBP	-0.009	0.000	0.006	-0.005	-0.017	-0.014	0.001	-0.001	0.023	-0.034	-0.037	-0.060	-0.038	-0.048	0.108		
35	Maternal UTI	-0.004	-0.012	0.031	0.002	0.015	-0.001	-0.014	0.004	0.009	-0.021	-0.022	-0.030	-0.018	-0.028	-0.052	0.193	
36 37	2-hr blood glucose	0.006	-0.004	0.002	0.001	-0.012	-0.009	0.005	0.004	0.008	-0.006	-0.004	-0.006	-0.011	-0.002	-0.012	-0.009	0.061
38	77																	
39 40																		
40																		
42 43									12									
43 44				F			h	///			/ahout/au		a da fara l					

	Constant	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfact)	Centre (Mancheste r v Belfast)	Age at OGTT (yr)	BMI AT OGTT (ke/m 2)	Smoker	Drinker	Family History DM	Gestational age at OGTT	Neonatal gender (F v	Mean Blood Pressure	Parity (1 v 0)	Parity (2+ v 0)	Parity (Unknown v 0)	d Hospital admission	1-hr blood glucose	2-hr blood glucose
Constant	0.794																	
Centre (Manchester v Belfast)	-0.018	0.074																
(Brisbane v Belfast)	-0.024	0.039	0.072															
(Newcastle v Belfast)	-0.024	0.039	0.020	0.097														
Age at OGTT (yr)	-0.001	0.000	0.000	0.000	0.006													
BMI AT OGTT (kg/m2)	0.000	0.000	0.000	0.000	0.000	0.006												
Smoker	-0.005	0.008	0.002	0.001	0.013	0.001	0.081											
Drinker	0.001	0.003	0.000	-0.002	-0.010	0.003	-0.006	0.071										
Family History DM	-0.006	0.005	-0.004	-0.002	-0.002	0.000	-0.002	-0.003	0.047									
Gestational age at OGTT (wk)	-0.021	-0.001	0.000	0.001	-0.004	-0.002	-0.001	0.000	-0.003	0.010								
Neonatal gender (F v M)	-0.007	-0.002	-0.002	-0.001	-0.001	0.002	0.001	-0.001	-0.001	-0.016	0.056							
Mean Blood Pressure (mmHg)	-0.001	0.000	0.000	0.000	-0.001	-0.001	0.000	0.000	0.000	-0.003	-0.001	0.001						
Parity (1 v 0)	-0.008	0.008	0.005	-0.004	-0.006	-0.004	0.000	-0.002	0.001	-0.020	-0.005	-0.075	0.061					
(2+ v 0)	-0.004	0.004	0.008	-0.002	-0.020	-0.010	-0.002	0.001	0.002	-0.019	-0.006	-0.075	0.005	0.067				
(Unknown v 0)	-0.012	0.007	0.003	-0.002	0.006	0.001	0.002	0.001	0.001	-0.021	-0.005	-0.075	0.005	0.004	0.050			
Hospital admission before delivery	-0.004	-0.004	-0.005	-0.001	0.002	-0.007	-0.002	0.003	0.000	-0.001	0.000	-0.017	-0.017	-0.016	-0.020	0.055		
1-hr blood glucose	0.004	0.000	0.004	0.002	-0.004	-0.003	-0.001	0.000	0.003	0.001	0.001	0.000	0.001	-0.001	0.001	0.000	0.040	
2-hr blood glucose	0.001	0.000	-0.003	-0.001	-0.001	-0.002	0.004	0.001	0.001	0.002	0.000	-0.001	0.000	-0.002	0.001	-0.001	-0.027	0.030
79																		

80 Table x14: Model unit costs

Category	Cost	Standard Error	Distribution ^a	Source
2 sample OGTT	£8.07	n/a	n/a	NICE 2015 ^b
3 sample OGTT	£12.11	n/a	n/a	NICE 2015 ^b
Rapilose OGTT solution	£3.48	n/a	n/a	BNF July 2016 ^c
Health Care Assistant Band 3 (per hour)	£25	n/a	n/a	Unit Costs of Health and Social Care 2015 ^d
Nurse Band 7 (per hour of patient contact)	£147	n/a	n/a	Unit Costs of Health and Social Care 2015 ^d
Dietician	£38	n/a	n/a	Unit Costs of Health and Social Care 2015 ^d
Antenatal appointment	£96	£9.07	Normal	NHS Reference Costs 2014-15 ^e
Ultrasound scan	£112	£7.65	Normal	NHS Reference Costs 2014-15 ^e
Rapid acting insulin	£0.02	n/a	n/a	BNF June 2016 ^c
Regular insulin	£0.02	n/a	n/a	BNF June 2016 ^c
Needles	£0.10	n/a	n/a	NHS Drugs Tariff June 2016 ^f
Lancets	£0.03	n/a	n/a	NHS Drugs Tariff June 2016 ^f
Strips	£0.18	n/a	n/a	NHS Drugs Tariff June 2016 ^f
Treatment of GDM	£987	n/a	n/a	Calculated
Severe hypoglycaemia	£650	n/a	n/a	NHS Reference Costs 2014-15 ^e
Admission to NICU	£1,176	£38	Normal	NHS Reference Costs 2014-15 ^e
Caesarean section	£982	£80	Normal	NHS Reference Costs 2014-15 ^e
Neonatal death	£777	£39	Normal	NHS Reference Costs 2014-15 ^e
Shoulder dystocia	£1,394	£79	Normal	NHS Reference Costs 2014-15 ^e
Birth trauma	£1,394	£79	Normal	NHS Reference Costs 2014-15 ^e
Serious perinatal complication (death, shoulder dystocia, birth trauma)	£1,347	n/a	n/a	Calculated
Phototherapy	£788	£72	Normal	NHS Reference Costs 2014-15 ^e
Pre-eclampsia	£4,750	n/a	n/a	NICE 2015 ^b

 (a) The method used to obtain standard errors and the choice of a normal distribution for probabilistic sampling is described in detail in the NICE 2015 guideline⁶

BMJ Open

> (b) National Institute for Health and Care Excellence (NICE) (2015) Diabetes in pregnancy: management of diabetes and its complications from preconception to the postnatal period. Clinical guideline NG3 (2015).

(c) British National Formulary. July 2016. https://www.medicinescomplete.com/mc/bnf/current/ (accessed 4 Aug 2016).

(d) Unit Costs of Health and Social Care 2015. Personal Social Services Research Unit, The University of Kent, 2015.

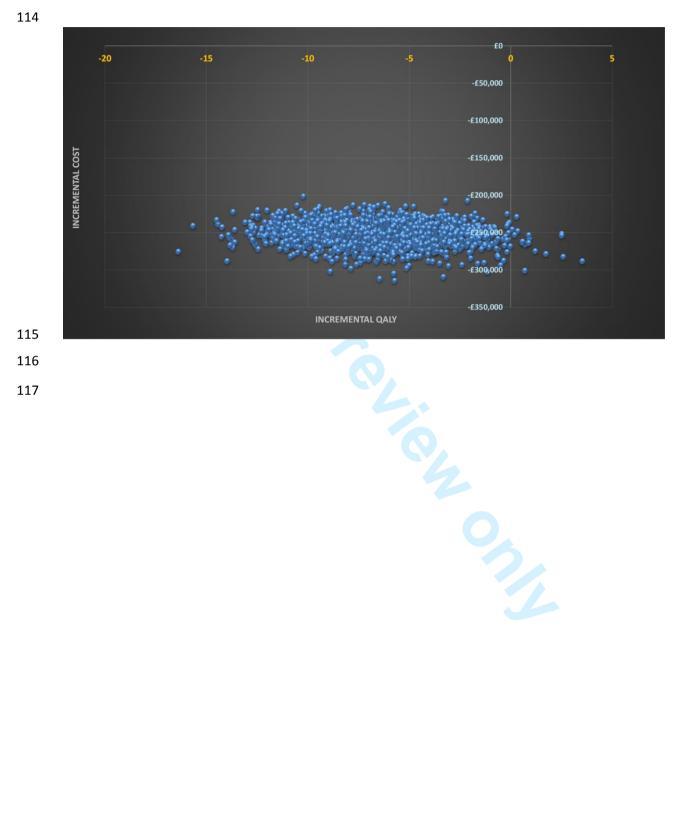
(e) Department of Health. NHS reference costs: financial year 2014–2015. https://www.gov.uk/government/publications/nhs-reference-costs-2014-to-2015, Department of Health, 2015.

(f) NHS Electronic Drug Tariff, August 2016. http://www.drugtariff.nhsbsa.nhs.uk/#/00336026-DD 1/DD00336022/Home (accessed 4 Aug 2016).

OALYs

93	A QALY loss was estimated for each individual component (shoulder dystocia, death and birth trauma)
94	of the composite serious perinatal outcome, which was used in the ACHOIS study. ¹¹ A weighting for
95	each individual component was derived according to their relative frequency in the selected studies to
96	assess treatment effectiveness. ^{11, 12} These were then used in order to derive a weighted average for a
97	serious perinatal complication as shown in Table x15. QALY losses from a serious perinatal complication
98	could be experienced over a lifetime and therefore an annual discount rate of 3.5% was applied in line
99	with NICE methods. ¹⁹ For each patient, an expected QALY decrement is calculated based on their risk of
100	serious perinatal complications. These individual patient QALY decrements are then summed across all
101	patients to give the total QALY decrement for the patient dataset for each different diagnostic
102	threshold.

Table x15: QALY losses and weights from individual components of the composite outcome of serious perinatal complications


Complication	Weight	QALY	Weighted QALY
Death	0.08	25	2.00
Shoulder dystocia	0.73	0.2	0.15
Birth trauma	0.20	0.2	0.04

The analyses presented in this paper include a maternal health state utility which was estimated from quality of life data collected as part of the ACHOIS study. Whilst treatment conferred a small benefit in maternal health state utility, this was small in comparison to QALYs derived from infant outcomes. The

2 3 4	109	value of the maternal health state utility with and without treatment is the same as has been used
5 6	110	previously. ⁶
$\begin{array}{c} 7\\ 8\\ 9\\ 10\\ 11\\ 23\\ 14\\ 15\\ 16\\ 17\\ 8\\ 19\\ 20\\ 21\\ 22\\ 34\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 12\\ 33\\ 45\\ 36\\ 37\\ 38\\ 9\\ 40\\ 142\\ 43\\ 44\\ 56\\ 47\\ 8\\ 9\\ 50\\ 51\\ 52\\ 53\\ 55\\ 67\\ 58\\ 9\\ 60\\ \end{array}$		

111 Results for the HAPO (4) population with risk factors

Figure x1: Cost-effectiveness plane for NICE 2015 compared with WHO 2013 for HAPO (4) with riskfactors

2	
3	110

7

ß

Summary of results for each model population

Table x16: Summary of deterministic ICERs for each population with backward elimination of plasma glucose variables with non-significant coefficients

	All co	ovariates	Plasma glucose covariates							
Diagnostic threshold	HAPO Risk factor (n=3,549)	HAPO No Risk factor (n=2,614)	HAPO Risk factor (n=3,549)	HAPO No Risk factor (n=2,614)	Atlantic DiP Risk factor (n=1,988)	Atlantic DiP No Risk factor (n=3,302)	Norwich (n=12,754)			
No Freatment	-	-	-	-	-	-	-			
NICE 2015	£20,400	£36,878	£22,281	£30,449	£20,830	£31,136	£28,893			
VHO 2013	£33,596	£141,812	£36,473	£88,661	£35,941	£40,526	£37,918			

Table x17: Probability that a threshold is cost-effective at a threshold of £30,000 per QALY and the net monetary benefit in each population using regression models with backward elimination of

plasma glucose variables with non-significant coefficients

26											
27	All co	variates		Plasma glucose covariates							
2 Diagnostic	HAPO	HAPO	HAPO	HAPO	Atlantic DiP	Atlantic DiP	Norwich				
2 d hreshold	Risk factor	No Risk factor	Risk factor	No Risk factor	Risk factor	No Risk factor	(NMB)				
30	(NMB)	(NMB)	(NMB)	(NMB)	(NMB)	(NMB)					
3₽No	19.8%	78.0%	34.4%	66.5%	27.6%	68.6%	59.7%				
3 ² Treatment	(£486)	(£203)	(£361)	(£235)	(£326)	(£268)	(£938)				
33NICE	53.5%	22.0%	53.3%	33.4%	58.3%	25.3%	29.6%				
32015	(£230,798)	(-£57,048)	(£108,074)	(-£32,878)	(£123,6000)	(-£34,626)	(-£78,394)				
3 5 VHO	26.8%	0.1%	12.4%	0.2%	14.2%	6.2%	10.8%				
36013	(£178,231)	(-£110,895)	(£18,317)	(-£76,674)	(£48,384)	(-£106,298)	(-£380,299)				
37 126											
38											
39											
40											
41											
42											
43											
44											
45											
46											
47											
48											
10											

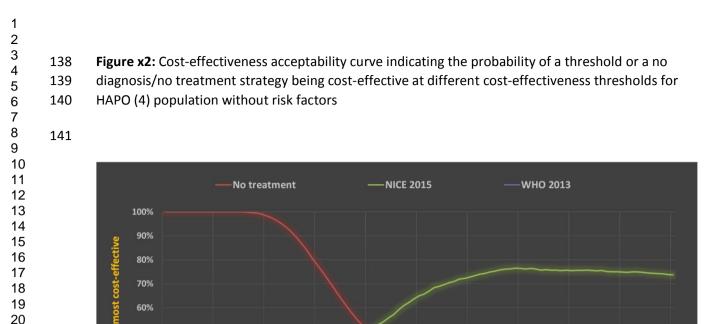
127 Results for the HAPO (4) population without risk factors

Table x18: Clinical outcomes for HAPO (4) population without NICE risk factors (n=2,614)

Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	24	34	466	188	126	55	647
NICE 2015	208	23	31	460	184	124	51	655
WHO 2013	253	23	31	459	184	123	51	657

Table x19: Deterministic analysis for HAPO (4) population without NICE risk factors (n=2,614)

Diagnostic	Cost ^a	QALY ^a	Incremental	Incremental	ICER
threshold			cost	QALY	
No Treatment	£0	0.00	n/a	n/a	n/a
NICE 2015	£238,074	6.46	£238,074	6.46	£36,878
WHO 2013	£297,364	6.87	£59,290	0.41	£141,812


 a) Costs and QALYs are measured relative to a baseline of No Treatment

133 Table x20: Probabilistic sensitivity analysis for HAPO (4) in a population without NICE risk factors

Diagnostic threshold	NMB ^a	Probability cost-effective
	CE threshold £30,000 per QALY	CE threshold £30,000 per QALY
No Treatment	£203	78.0%
NICE 2015	-£57,048	22.0%
WHO 2013	-£110,895	0.1%

a) NMB is measured relative to the least costly and least effective strategy in each simulation

Results for the Atlantic DiP population with risk factors

£20,000

£10,000

£0

Table 21: Clinical outcomes for Atlantic DiP population with NICE risk factors (n=1,988)

£30,000

£40,000

£50,000

Cost-effectiveness threshold

£60,000

£70,000

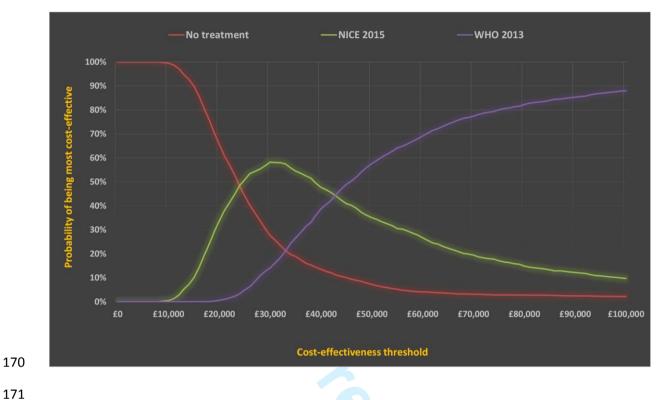
£80,000

£90,000

£100,000

			• •			· ·	,	
Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	25	34	408	177	122	73	522
NICE 2015	497	19	26	391	163	116	56	545
WHO 2013	749	17	24	385	158	112	51	555
146								
147								
148								
149								
150								

Table x22: Deterministic analysis for the Atlantic DiP population with NICE risk factors (n=1,988)


Diagnostic threshold	Cost ^a	QALY ^a	Incremental cost	Incremental QALY	ICER
No Treatment	£0	0.00	n/a	n/a	n/a
NICE 2015	£414,714	19.91	£414,714	17.46	£20,830
WHO 2013	£638,590	26.14	£223,876	6.23	£35,941

 a) Costs and QALYs are measured relative to a baseline of No Treatment

Table x23: Probabilistic sensitivity analysis for Atlantic in a population with NICE risk factors

	Diagnostic threshold	NMB ^a	Probability cost-effective
		CE threshold £30,000 per QALY	CE threshold £30,000 per QALY
	No Treatment	£326	27.6%
	NICE 2015	£123,600	58.3%
	WHO 2013	£48,384	14.2%
155	a) NMB is measured re	elative to the least costly and least effective str	rategy in each simulation
156			
157			
158			
159			
160			
161			
162			
163			
164			
165			
166			

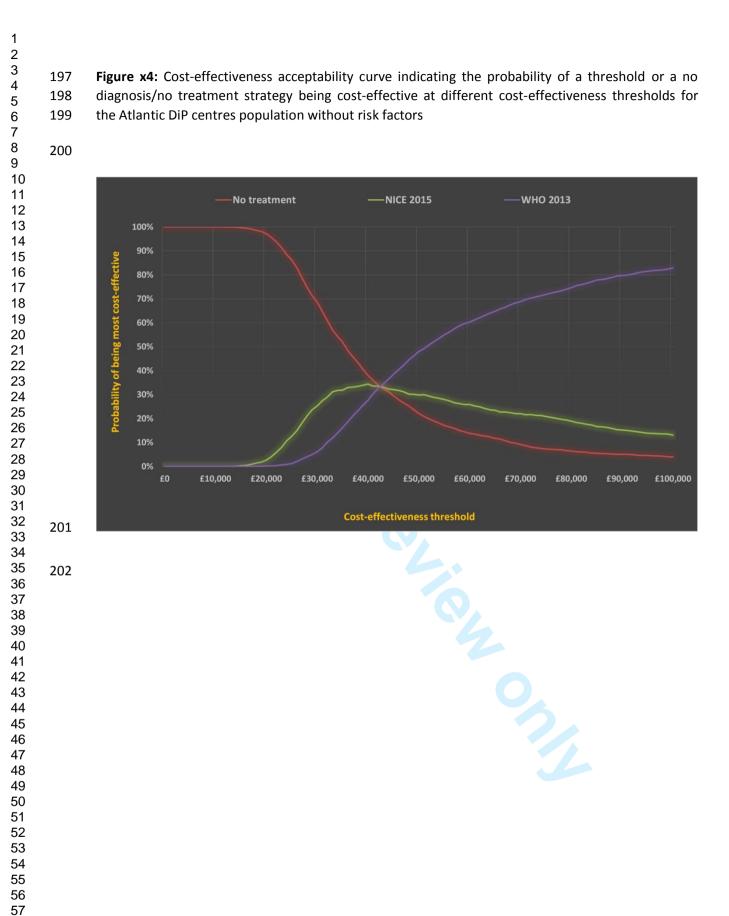
Figure x3: Cost-effectiveness acceptability curve indicating the probability of a threshold or a no diagnosis/no treatment strategy being cost-effective at different cost-effectiveness thresholds for the Atlantic DiP centres population with risk factors

172 Results for the Atlantic DiP population without risk factors

Table x24: Clinical outcomes for Atlantic DiP population without NICE risk factors (n=3,302)

39 40	Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
41 42 43	No Treatment	0	33	45	575	254	168	84	828
44 45	NICE 2015	194	31	42	569	248	166	79	837
46 47 48	WHO 2013	371	30	41	564	245	163	76	844
49 50	174		•						
51 52	175								
53 54	176								
55 56	177								
57 58	178								
59 60	179								
	180								

Table x25: Deterministic analysis for the Atlantic DiP population without NICE risk factors (n=3,302)


Diagnostic threshold	Cost ^a	QALY ^a	Incremental cost	Incremental QALY	ICER
No Treatment	£0	0.00	n/a	n/a	n/a
NICE 2015	£231,633	7.44	£231,633	7.44	£31,136
WHO 2013	£402,014	11.64	£170,381	4.20	£40,526

 a) Costs and QALYs are measured relative to a baseline of No Treatment

Table x26: Probabilistic sensitivity analysis for the Atlantic DiP population without NICE risk factors

	Diagnostic threshold	NMB ^a	Probability cost-effective
		CE threshold £30,000 per QALY	CE threshold £30,000 per QALY
	No Treatment	£268	68.6%
	NICE 2015	-£34,626	25.3%
	WHO 2013	-£106,298	6.2%
185	a) NMB is measured i	relative to the least costly and least effective s	trategy in each simulation
186			
187			
188			
189			
190			
191			
192			
193			
194			
195			
196			

BMJ Open

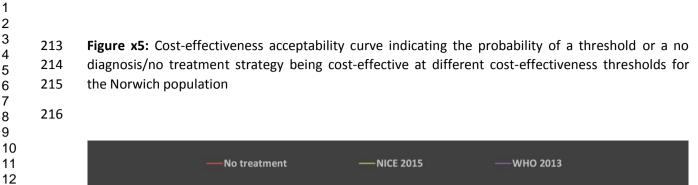
Results for the Norwich population

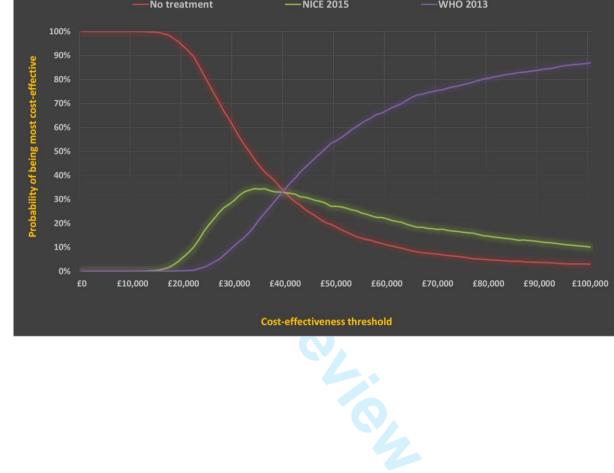
Table x27: Clinical outcomes for Norwich population (n=12,754)

Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	132	182	2,333	1,005	699	346	3,173
NICE 2015	888	122	168	2,305	981	687	318	3,214
WHO 2013	1,771	117	161	2,283	965	676	301	3,248
205		-	•	·	•	•	•	•

Table x28: Deterministic analysis for the Norwich population (n=12,754)

Cost ^a	QALY ^a	Incremental	Incremental	ICER
		cost	QALY	
£0	0.00	n/a	n/a	n/a
£979,903	33.91	£979,903	33.91	£28,893
£1,803,196	55.63	£823,293	21.72	£37,918
	£0 £979,903	£0 0.00 £979,903 33.91	£0 0.00 n/a £979,903 33.91 £979,903	£0 0.00 n/a n/a £979,903 33.91 £979,903 33.91




Table x29: Probabilistic sensitivity analysis for the Norwich population

Diagnostic threshold	NMB ^a	Probability cost-effective
	CE threshold £30,000 per QALY	CE threshold £30,000 per QALY
No Treatment	£938	59.7%
NICE 2015	-£78,394	29.6%
WHO 2013	-£380,299	10.8%

a) NMB is measured relative to the least costly and least effective strategy in each simulation

BMJ Open

220 Deterministic sensitivity analysis

The cost-effectiveness of universal screening was not generally affected when the model was re-run using the regression models without backward elimination of non-significant variables with no screening/no treatment continuing to be the cost-effective option in populations not selected on the basis of NICE risk factors (see Table x30). In the Norwich population, universal screening was borderline cost-effective compared to no screening/no treatment at £30,000 per QALY but the same point remains that a risk factor subset in this population would have a lower ICER than that reported, and that a subset without risk factors, (i.e. those additionally incorporated as a result of universal screening compared to risk factor screening), would have a higher ICER. In populations with NICE risk factors the NICE 2015 diagnostic thresholds were still found to be cost-effective at a threshold of £30,000 per QALY, with broadly similar ICERs as previously. Similarly, the WHO 2013 diagnostic threshold was never found to be cost effective even in a population with risk factors.

Table x30: Summary of deterministic ICERs for each population without backward elimination of non-significant coefficients

5							
2	All cov	ariates		Plasr	na glucose cova	riates	
7 Diagnostic threshold 8	HAPO Risk factor	HAPO No Risk factor	HAPO Risk factor	HAPO No Risk factor	Atlantic DiP Risk factor	Atlantic DiP No Risk factor	Norwich
9 0	(n=3,549)	(n=2,614)	(n=3,549)	(n=2,614)	(n=1,988)	(n=3,302)	(n=12,754)
No Treatment	_	-	-	-	-	-	-
SICE 2015	£20,162	£38,869	£21,786	£33,473	£19,557	£32,762	£27,354
Ъ WHO 2013	£30,734	£94,585	£32,267	£58,604	£35,285	£39,076	£38,402
4 234 5 6 7 235 8 9 0 1 2 3 3 4 5 5 6 7 8							

BMJ Open

Mean plasma glucose values according to risk factor status

Table x311: Mean plasma glucose values in HAPO (4) and Atlantic DiP population according to their risk factor status

		HAPO (4))		Atlantic D	iP
	Fasting	1-hour	2-hour	Fasting	1-hour	2-hou
True Positives	5.24	9.90	7.89	5.21	10.21	7.61
False Positives	4.50	7.20	5.95	4.33	6.75	5.33
True Negatives	4.44	6.95	5.78	3.92	5.99	4.76
False Negatives	4.89	9.52	7.41	4.90	9.51	7.12

9.51

CHEERS Statement

CHEERS checklist—Items to include when reporting economic evaluations of health interventions

Section/item	Item No	Recommendation	Reported on page No/ line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost- effectiveness analysis", and describe the interventions compared.	Yes Page 1 Line 2
Abstract	2	Provide a structured summary of objectives, perspective, setting, methods (including study design and inputs), results (including base case and uncertainty analyses), and conclusions.	Yes Page 2 Lines 30-56
Introduction	1		
Background and objectives	3	Provide an explicit statement of the broader context for the study.	Yes Page 5-6 Lines 93-105
		Present the study question and its relevance for health policy or practice decisions.	Yes Page 5 Lines 75-91
Methods			
Target population and subgroups	4	Describe characteristics of the base case population and subgroups analysed, including why they were chosen.	Yes Page 7-8 Lines 120- 153
Setting and location	5	State relevant aspects of the system(s) in which the decision(s) need(s) to be made.	Yes Page 7 Lines 120- 127
Study perspective	6	Describe the perspective of the study and relate this to the costs being evaluated.	Yes Page 12 Line 220
Comparators	7	Describe the interventions or strategies being compared and state why they were chosen.	Yes Page 6 Line 101-102; 109-110
Time horizon	8	State the time horizon(s) over which costs and consequences are being evaluated and say why appropriate.	Yes Page 12 Line 231
			Supp. Report

Section/item	Item No	Recommendation	Reported on page No/ line No
			Page 15 Line 90
Discount rate	9	Report the choice of discount rate(s) used for costs and outcomes and say why appropriate.	Yes Page 12 Line 231 Supp. Report
			Page 15 Line 90
Choice of health outcomes	10	Describe what outcomes were used as the measure(s) of benefit in the evaluation and their relevance for the type of analysis performed.	Yes Pages 8-9 Lines 155- 176
Measurement of effectiveness	11a	<i>Single study-based estimates:</i> Describe fully the design features of the single effectiveness study and why the single study was a sufficient source of clinical effectiveness data.	Yes Pages 10 Lines 205- 208
	11b	<i>Synthesis-based estimates:</i> Describe fully the methods used for identification of included studies and synthesis of clinical effectiveness data.	Yes Pages 10 Lines 202- 204
Measurement and valuation of preference based outcomes	12	If applicable, describe the population and methods used to elicit preferences for outcomes.	
Estimating resources and costs	13a	Single study-based economic evaluation: Describe approaches used to estimate resource use associated with the alternative interventions. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	
	13b		
Currency, price date, and conversion	14	Report the dates of the estimated resource quantities and unit costs. Describe methods for adjusting estimated unit costs to the year of reported costs if necessary. Describe methods for	Yes Page 12 Lines 231

Section/item	Item No	Recommendation	Reported on page No/ line No
		converting costs into a common currency base and the exchange rate.	
Choice of model	15	Describe and give reasons for the specific type of decision-analytical model used. Providing a figure to show model structure is strongly recommended.	Yes Page 6 Lines 109- 112; 114-116
Assumptions	16	Describe all structural or other assumptions underpinning the decision-analytical model.	Yes Page 8-9 Lines 155- 176
			Yes Page 13 Lines 247- 250
			Supp. Report Page 2-7
			Supp. Report Page 15 Lines 84-102
		Ċ.	+References to other sources
Analytical methods	17	Describe all analytical methods supporting the evaluation. This could include methods for dealing with skewed, missing, or censored data; extrapolation methods; methods for pooling data;	Yes Page 9-10 Lines 178- 195
		approaches to validate or make adjustments (such as half cycle corrections) to a model; and methods for handling population heterogeneity and uncertainty.	Yes Page 13-14 Lines 259- 266
			Supp. Report Page 2-7
Results			
Study parameters		Report the values, ranges, references, and, if used, probability distributions for all parameters. Report reasons or sources for distributions used to represent uncertainty where appropriate. Providing a table to show the input values is strongly recommended.	Yes Page 11 Lines 216- 217 Page 13

1 2 3	
4 5 6 7	
8 9 10 11	
12 13 14	
8 9 10 11 12 13 14 15 16 17 18	
19 20 21 22	
19 20 21 22 23 24 25 26 27 28 29 30	
27 28 29 30	
31	
32 33 34 35 36 37 38	
39 40 41 42	
43 44 45 46	
47 48 49 50	
51 52 53 54	
55 56 57 58	
59 60	

Santion/it	Item No	Decommon detion	Reported on page No/ line
Section/item		Recommendation	No Lines 244- 245
			Supp. Report Page 2-15
Incremental costs and outcomes	19	For each intervention, report mean values for the main categories of estimated costs and outcomes of interest, as well as mean differences between the comparator groups. If applicable, report incremental cost-effectiveness ratios.	Yes Page 15 Lines 280- 282 Supp. Report
			Page 17-25
Characterising uncertainty	20a	<i>Single study-based economic evaluation:</i> Describe the effects of sampling uncertainty for the estimated incremental cost and incremental effectiveness parameters, together with the impact of methodological assumptions (such as discount rate, study perspective).	
	20b	<i>Model-based economic evaluation:</i> Describe the effects on the results of uncertainty for all input parameters, and uncertainty related to the structure of the model and assumptions.	Yes Supp. Report Page 17 Lines 116- 119
		2	Supp. Report Page 26 Lines 225- 227
Characterising heterogeneity	21	If applicable, report differences in costs, outcomes, or cost-effectiveness that can be explained by variations between subgroups of patients with different baseline characteristics or other observed variability in effects that are not reducible by more information.	Yes Supp. Report Page 17 Lines 111- 114
Discussion			
Study findings, limitations, generalisability, and current knowledge	22	Summarise key study findings and describe how they support the conclusions reached. Discuss limitations and the generalisability of the	Yes Pages 18-25

Item Section/item No		Recommendation	Reported on page No/ line No
		findings and how the findings fit with current knowledge.	
Other			
Source of funding	23	Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non-monetary sources of support.	Yes Page 26 Lines 541- 546
Conflicts of interest	24	study contributors in accordance with journal	Yes Page 26 Lines 537- 539

Committee of Medical Journal Editors recommendations. **BMJ Open**

BMJ Open

A COST EFFECTIVENESS COMPARISON OF THE NICE 2015 AND WHO 2013 DIAGNOSTIC CRITERIA FOR WOMEN WITH GESTATIONAL DIABETES WITH AND WITHOUT RISK FACTORS

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016621.R2
Article Type:	Research
Date Submitted by the Author:	09-Jun-2017
Complete List of Authors:	Jacklin, Paul; Royal College of Obstetricians and Gynaecologists, National Guideline Alliance Maresh, Michael; Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre Patterson, Chris; Queen's University Belfast, Centre for Public Health Stanley, Katharine; Norfolk and Norwich University Hospitals NHS Foundation Trust, Department of Obstetrics and Gynaecology Dornhorst, Anne; Hammersmith Hospital, Department of Investigative Medicine Burman-ROY, Shona; Royal College of Obstetricians and Gynaecologists, National Guideline Alliance Bilous, Rudy; Newcastle University Medicine Malaysia
Primary Subject Heading :	Health economics
Secondary Subject Heading:	Diabetes and endocrinology, Obstetrics and gynaecology, Diagnostics
Keywords:	HEALTH ECONOMICS, DIABETES & ENDOCRINOLOGY, OBSTETRICS

SCHOLARONE[™] Manuscripts

2 3	1	Title:
4 5	2	
6	2	A COST EFFECTIVENESS COMPARISON OF THE NICE 2015 AND WHO 2013
7 8	3	DIAGNOSTIC CRITERIA FOR WOMEN WITH GESTATIONAL DIABETES WITH AND
9 10 11	4	WITHOUT RISK FACTORS
12 13	5	
14 15	6	Authors: PB Jacklin ¹ , MJA Maresh ² , CC Patterson ³ , KP Stanley ⁴ , A Dornhorst ⁵ , S Burman-
16 17	7	Roy ¹ , RW Bilous ⁶
18 19	8	
20 21	9	Institutions:
22 23	10	1. Royal College of Obstetricians and Gynaecologists, London NW1 4RG, UK
24	11	2. St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust,
25 26	12	Manchester Academic Health Science Centre, Manchester M13 9WL, UK
27	13	3. Centre for Public Health, Queen's University Belfast, Room 3.014, ICS Block B, Grosvenor Road,
28 29	14	Belfast BT12 6BJ, UK
30	15	4. Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospitals NHS
31 32	16	Foundation Trust, Colney Ln, Norwich NR4 7UY, UK
33 34	17	5. Faculty of Medicine, Department of Investigative Medicine, Hammersmith Hospital, Imperial
35	18	College London, London, UK
36 37 38	19	6. Newcastle University Medicine Malaysia, Johor, Malaysia
39 40	20	
41	21	Corresponding author:
42	22	
43 44	23	Paul Jacklin
45	24	e-mail: <u>pjacklin@rcog.org.uk</u>
46 47	25	
48 49	26	Abstract: 287 words
50 51	27	Main text: 5420 words
52 53	28	
54 55	29	
56		
57 58		
58 59		
60		1

30 Abstract

Objectives To compare the cost effectiveness of The National Institute for Health and Care
Excellence (NICE) 2015 and the World Health Organisation (WHO) 2013 diagnostic thresholds
for gestational diabetes (GDM).

Setting: The analysis was from the perspective of the National Health Service (NHS) in
England and Wales.

37 Participants: 6,221 patients from four of the Hyperglycaemia and Adverse Pregnancy
38 Outcomes (HAPO) study centres (2 UK, 2 Australian), 6,308 patients from the Atlantic
39 Diabetes in Pregnancy (DiP) study and 12,755 patients from UK clinical practice

40 Primary and secondary outcome measures planned: The incremental cost per quality
41 adjusted life year (QALY), net monetary benefit (NMB) and the probability of being cost42 effective at cost-effectiveness thresholds of £20,000 and £30,000 per QALY

Results. In a population of pregnant women from the four HAPO study centres, and utilising NICE defined risk factors for GDM, diagnosing GDM using NICE 2015 criteria had a NMB of £239,902 (relative to no treatment) at a cost-effectiveness threshold of £30,000 per QALY compared to WHO 2013 criteria which had a NMB of £186,675. NICE 2015 criteria had a 51.5% probability of being cost-effective compared to the WHO 2013 diagnostic criteria which had a 27.6% probability of being cost-effective (no treatment had a 21.0% probability of being cost-effective). For women without NICE risk factors in this population the NMB for NICE 2015 and WHO 2013 criteria were both negative relative to no treatment, and no treatment had a 78.1% probability of being cost effective.

Conclusion The NICE 2015 diagnostic criteria for GDM can be considered cost-effective 53 relative to the WHO 2013 alternative at a cost-effectiveness (CE) threshold of £30,000 per 54 QALY. Universal screening for GDM was not found to be cost-effective relative to screening 55 based on NICE risk factors.

1		
2		
3	56	
4	00	
5	57	Karranda Cost Effectionen Costational Dichates Convering Dich Festers Disease
6	57	Keywords: Cost Effectiveness, Gestational Diabetes, Screening, Risk Factors, Diagnosis
7		
	58	
8		
9	59	
10	39	
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
১ । ১১		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
43		
44 45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59 60		2
60		3
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
		Presentation and an and and

Page 4 of 65

BMJ Open

Strengths and limitations of this study This economic evaluation addresses an important clinical and policy issue. The existing economic evidence is limited and WHO have stated that studies of this type are needed to inform a future update of their guideline • Our paper has used patient-level data from the influential HAPO study for an economic analysis which has not been previously been published in a peer reviewed journal This analysis provides clear evidence that universal screening is not cost-effective in the UK This analysis suggests that the NICE diagnostic criteria for GDM are more cost-. effective than the WHO criteria in the UK context Model conclusions are sensitive to uncertainties with respect to valuation of health • outcomes and the possible long term metabolic consequences for offspring for which the evidence is debated and which are hard to quantify

BMJ Open

73 Introduction

The diagnostic glycaemic thresholds for GDM remain the subject of considerable debate. The original definition was based upon maternal risk for developing postpartum diabetes, but subsequent thresholds have concentrated on complications during pregnancy and the health of the offspring. The publication of the HAPO study¹ demonstrated a linear association between increasing levels of maternal hyperglycaemia and adverse perinatal outcomes with no obvious threshold, an association that has also been observed in subsequent analyses.² The discussion around the diagnostic criteria that should define GDM has intensified. New diagnostic thresholds were proposed by the International Association of Diabetes in Pregnancy Study Group (IADPSG)³ based upon the HAPO study levels of plasma glucose when fasting, and at 1 and 2 hours after an oral 75g glucose load that were associated with covariate adjusted odds ratio of 1.75 relative to the mean glucose value in the whole HAPO cohort on three offspring outcomes: exceeding the 90th centile for birth weight, for cord serum C-peptide concentration and for percent fetal body fat. These diagnostic criteria have been subsequently adopted by the WHO.⁴ However, they remain controversial and have not been supported by bodies such as the National Institutes for Health and the American College of Obstetricians.⁵ Furthermore, WHO has acknowledged that they will have to be revisited in the near future in the light of new studies reporting their cost-effectiveness.⁴

In 2015 NICE published updated guidance on Diabetes in Pregnancy⁶ which included recommendations on diagnostic thresholds for GDM which differ from those adopted by WHO. These NICE thresholds were informed by an economic evaluation of the type that WHO considered important to inform future recommendations, but have attracted criticism in the UK⁷ and elsewhere. Data from a published Spanish study⁸ have been widely cited^{7, 9} in support of the

BMJ Open

97 cost effectiveness of the WHO criteria, although a UK analysis has more recently suggested that

98 it is not cost-effective to identify gestational diabetes for treatment.¹⁰

In this paper we compared the cost-effectiveness of NICE 2015 and WHO 2013 diagnostic thresholds for GDM, as these are new thresholds proposed by national and international bodies. The analysis was undertaken using a revised version of the health economic model developed for the NICE guideline and was based upon data from the UK and Australian HAPO Study centres.

106 Methods

107 Model description

A decision analytic framework was used to evaluate the cost effectiveness of two recently proposed diagnostic thresholds for GDM, together with a no diagnosis/no treatment option (See Table 1). A schematic of the model is shown in Figure 1. Cost-effectiveness was evaluated using both deterministic and probabilistic sensitivity analysis.

- *Table 1*: Diagnostic thresholds for plasma glucose evaluated in the economic model

Threshold name	Fasting (mmol/L)	1-hour (mmol/L)	2-hour (mmol/L)	
No diagnosis/no treatment	-	-	-	
NICE 2015	≥5.6	-	≥7.8	
WHO 2013	≥5.1	≥10.0	≥8.5	

Population

116 The model population comprised women of gestational age 24-28 weeks without pre-existing

117 diabetes. The analysis utilised individual patient data from three datasets which, although not

BMJ Open

restricted to the UK, provide a representative cross section of the demographic and patient characteristics that would be found in the UK (Table x1 in the Supplementary Report provides a breakdown of ethnic groups in each of our datasets). The analyses were run separately for each dataset and, where possible, for subgroups with and without risk factors for GDM within a dataset.

i. HAPO – a dataset from the two UK (Manchester and Belfast) and two Australian
(Brisbane and Newcastle) centres of the HAPO Study, referred to as HAPO (4)

ii. Norwich – these data were routinely collected between 2008 and February 2014 on
women who had an oral glucose tolerance test (OGTT) on the basis of the presence of one or
more risk factors for GDM. The results were obtained from laboratory records with no
identifiers. Risk factors in addition to those recommended by NICE were used e.g. women with
polycystic ovary syndrome, previous stillbirth or recurrent glycosuria.

131 iii. Atlantic Diabetes in Pregnancy (Atlantic DiP) – these data were collected between 2007
132 and 2013 as part of a research initiative in the Republic of Ireland intended to improve
133 pregnancy outcomes for women with diabetes before, during and after pregnancy.

For the HAPO (4) and Atlantic DiP datasets the populations were stratified according to whether or not they had NICE risk factors for GDM (body mass index (BMI) above 30 kg/m², previous baby with birthweight \geq 4.5 kg, previous GDM, first-degree relative with diabetes and minority ethnic family origin with a high prevalence of diabetes). This facilitated a comparison of the cost-effectiveness of universal screening for GDM when compared with a risk factor approach.

BMJ Open

The NICE risk factor approach could not be replicated exactly because the patient data used in the model do not include information on previous offspring birth weight, and the HAPO (4) dataset does not provide information on previous GDM. Similarly the Atlantic DIP dataset does not include data on previous macrosomia or previous GDM. Therefore, the comparison in the model was between universal screening and a subset of NICE risk factors. Our Norwich dataset only included the plasma glucose values from a three point (fasting, 1 and 2 hour) OGTT and therefore it was not possible to assess cost-effectiveness according to the presence of risk factors in this group. Permission was obtained from the relevant Caldecott Guardian to use anonymised patient OGTT data from the Norfolk and Norwich University Hospitals NHS Foundation Trust for the analysis. The principle investigators from the Australian (Professor HD McIntyre) and British (Professor DR McCance) centres of the HAPO study and the principle investigator of the Atlantic DiP (Professor F Dunne) study gave permission for anonymised patient data from their studies to be used in the analysis. *Clinical outcomes* The agreed outcomes for the economic model were selected prior to model development by the NICE Guideline Development Group. They were: Shoulder dystocia (SD) – this was used to estimate serious perinatal complications i. (SPC), a broader composite outcome (death, shoulder dystocia and birth trauma) used as a primary outcome in clinical trials. The estimation of SPC from shoulder dystocia has been described elsewhere.⁶ ii. Caesarean section (CS) iii. Neonatal intensive care unit (NICU) admission

BMJ Open

167 iv. Jaundice requiring phototherapy (Jaund)

- 168 v. Pre-eclampsia (PE)
- 169 vi. Induction of labour (IOL)

Outcomes were prioritised for inclusion in the model if they had a direct impact on health related quality of life and/or cost. Birth weight was not included because there were few longterm outcome data for modelling any risk benefit of a reduction in birth weight for future diabetes and other health outcomes in the offspring.

In addition, outcomes were only included if the relationship with plasma glucose levels had been established in the HAPO study, and also that they had been assessed in intervention studies used to derive treatment effect size estimates. Possible double counting of certain outcomes was taken into account (e.g. preterm birth and NICU admission). The final list of outcomes included in the model was therefore a pragmatic one.

181 Baseline risk

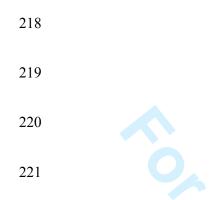
Logistic regression analyses of patient data from HAPO (4) were used to predict a baseline risk for all six outcomes for each woman, based on their characteristics including their OGTT results. In the HAPO study the OGTT was blinded to the carers, unless there was overt diabetes, thus allowing direct comparison of the OGTT with perinatal outcomes without intermediate treatment effects for those meeting the new diagnostic criteria for GDM.

187 For each of the six outcomes, 2 logistic analyses to predict risk were assessed:

Prediction based on OGTT plasma glucose results and including the same covariates as
 used for Model 2 in the original analysis of the HAPO data¹ – this could not be applied
 to the Norwich and Atlantic DiP datasets as information on all HAPO covariates was not
 available

BMJ Open

192 ii. Prediction based only on OGTT plasma glucose results


Backward elimination of plasma glucose variables with non-significant coefficients was undertaken to arrive at a 'final' logistic regression analysis to predict baseline risk for each outcome for the base case analysis, although a sensitivity analysis is also presented where the model was run with plasma glucose variables with non-significant coefficients retained. The logistic regression analyses used to predict the baseline risk for each outcome are shown in the Supplementary Report, Tables x2 to x7.

200 Clinical effectiveness

For each evaluated diagnostic threshold inTable 1 the model determined whether a woman would be identified as having GDM based on her OGTT. If the woman was not identified as having GDM then outcome probabilities were based on the predicted baseline risk, but for women identified as having GDM the predicted baseline risk was modified to take account of the effects of treatment. Treatment effectiveness for most outcomes was estimated from a random-effects meta-analysis of two studies, the Australian Carbohydrate Intolerance Study (ACHOIS) and the Landon et al. trial.^{11, 12} Other published studies of treatment for GDM were adjudged to lack adequate randomisation.¹³ For the NICU outcome only the Landon et al. trial data were used as it was considered to more closely represent UK practice as all neonatal nursery admissions were utilised. Similarly, the incidence of pre-eclampsia seemed high in ACHOIS in both arms, and again only Landon et al. trial data were utilised. The treatment effects for each of the model's clinical outcomes are shown in Table 2 along with parameters for probabilistic sampling. The model assumes that the relative treatment effect will be the same irrespective of the absolute baseline risk. For deterministic analyses the point estimate of relative risk was used but in order to account for uncertainty in these point estimates, these

BMJ Open

- 216 relative risks were sampled from a log-normal distribution in the simulations undertaken for
 - 217 probabilistic sensitivity analysis (PSA).

Table 2: Relative treatment effects for model outcomes

Outcome	Relative risk (RR)	Standard error (log RR)	Source
Shoulder dystocia	0.41	0.316	ACHOIS (2005), Landon (2009)
Caesarean section	0.88	0.095	ACHOIS (2005), Landon (2009)
NICU	0.77	0.194	Landon (2009)
Jaundice requiring phototherapy	0.83	0.136	ACHOIS (2005), Landon (2009)
Pre-eclampsia	0.46	0.345	Landon (2009)
Induction of Labour	1.16	0.126	ACHOIS (2005), Landon (2009)

BMJ Open

225	Costs
226	Costing was undertaken from the perspective of the NHS, was calculated for each woman in the
227	dataset being analysed and was made up of three components;
228	• the costs of the diagnostic test – not applied in the <i>no test/no treat</i> strategy
229	• the costs of treatment- applied to every woman diagnosed with GDM at a particular
230	threshold
231	• the costs associated with the various outcomes – with the cost for each woman being the
232	expected (or average) cost of the outcome based on her estimated risk
233	The costs calculated for each woman were then summed across the entire patient dataset to give
234	a total cost for a particular diagnostic threshold.
235	
236	Costs are presented in pounds sterling and were taken from published UK sources where
237	possible (cost year 2015). They have not been discounted as they are all assumed to occur
238	within 12 months of diagnosis. Model unit costs are reported in the Supplementary Report,
239	Table x14. The costing methodology and assumptions are described in greater detail elsewhere. ⁶
240	
241	Other event probabilities
242	Probabilities in decision analysis were used to calculate the expected costs and benefits of the
243	various comparators. Many of these probabilities stemmed from relative treatment effects but a
244	few additional event probabilities were included in the model in order to estimate certain costs.
245	These probabilities are shown in Table 3 and their source is described elsewhere. ⁶
246	
247	
248	
249	
	12

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
9 10 11 12 13 14 15 16 17 18	
16	
17	
18	
19	
20	
20 21 22	
21	
22	
23	
24	
25	
26	
27	
25 26 27 28 29 30 31	
20	
29	
30	
31	
32	
33	
32 33 34	
25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

250	Table 3: Model eve	nt probability not	t derived from patient	level regression
-----	--------------------	--------------------	------------------------	------------------

Probability
36%
20%
5%

251

252 Quality Adjusted Life Years (QALYs)

Following previous studies^{6, 14} a QALY decrement of 2.2 was assigned to serious perinatal 253 254 complications (SPC), defined as per the ACHOIS study as a composite outcome of shoulder dystocia, death and birth trauma.¹¹ More detail on the derivation of this QALY loss is provided 255 256 in the Supplementary Report. The cost-effectiveness of a healthcare intervention is determined 257 by the opportunity cost of the health foregone on the basis that with a fixed health budget any 258 newly funded intervention would displace the least cost-effective treatment currently provided. 259 In the UK, NICE typically uses a threshold of £20,000 to £30,000 per QALY as a benchmark¹⁵ 260 for the opportunity cost of health foregone and this paper assesses cost-effectiveness 261 accordingly.

262

263 Sensitivity analysis

264

Probabilistic sensitivity analysis, using Monte Carlo simulation (with 2,000 iterations for each analysis), was undertaken in order to assess the impact of sampling uncertainty on model inputs. Parameters and distributions for the probabilistic sensitivity analysis are given in Table 2 and Table x14 in the supplementary report. For the logistic regression coefficients used to predict baseline risk, the Cholesky decomposition method¹⁶ was used to sample from a multivariate normal distribution in order to reflect correlations between the coefficients. The Cholesky

271 decomposition of the variance covariance matrices from the regression analyses used in the base

case probabilistic sensitivity analysis are given in Table x8 to x13 in the Supplementary Report.

Results

Table **4** shows the percentage of women diagnosed with GDM in the three populations using both of the evaluated diagnostic thresholds. In addition, for the HAPO (4) and Atlantic DiP datasets this is additionally broken down in the subgroups with and without NICE risk factors (RF).

Table 4: Percentage of women identified with GDM by threshold and population

Threshold name	Norwich (n=12,754)	HAPO all (n=6,163)	HAPO RF (n=3,549)	HAPO No RF (n=2,614)	DiP All (n=5,290)	DiP RF (n=1,988)	DiP No RF (n=3,302)
NICE 2015	7.0%	13.6%	17.7%	8.0%	13.1%	25.0%	5.9%
WHO 2013	13.9%	18.9%	25.7%	9.7%	21.2%	37.7%	11.2%

281 Detailed deterministic and probabilistic results for HAPO (4) with risk factors are shown in

Table 5, Table 6, Table 7 and Figure 2.

Table 5: Clinical outcomes for HAPO (4) population with NICE risk factors (n=3,549)

Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	49	67	759	345	219	146	974
NICE 2015	629	41	56	739	326	210	123	1,004
WHO 2013	912	39	54	731	321	207	117	1,016

Diagnostic threshold	Cost ^a	QALY ^a	Incremental	Incremental	ICER	
			cost	QALY		
No Treatment	£0	0.00	n/a	n/a	n/a	
NICE 2015	£546,349	26.78	£546,349	26.78	£23,073	

Table 6: Deterministic analysis for the HAPO (4 centres) population with NICE risk factors

a) Costs and QALYs are measured relative to a baseline of No Treatment

Table 5 indicates that there was a relatively small difference in clinical outcomes contrasting NICE and WHO diagnostic criteria, despite there being a 45% increase in women diagnosed with GDM. Using the WHO 2013 criteria, instead of the NICE 2015 criteria, an additional 142 women would have been diagnosed with GDM, and treated in order to prevent 1 case of shoulder dystocia.

In the deterministic analysis the NICE 2015 diagnostic criteria would be considered cost-effective at a cost-effectiveness threshold of £30,000 per QALY (Table 6).

The probabilistic sensitivity analysis reached a similar conclusion, with the NICE 2015 diagnostic threshold having the highest probability of being the most cost-effective treatment and the highest NMB using a cost-effectiveness threshold of £30,000 per QALY (Table 7 and Figure 2). The analysis also suggested that no diagnosis/no treatment might be considered the most likely to be cost-effective when using a lower cost-effectiveness threshold of £20,000 per QALY. The probability of no diagnosis/no treatment being cost-effective falls sharply in the cost-effectiveness threshold range of £20,000 - £30,000 per QALY. As shown in the cost-effectiveness acceptability curve in Figure 2, the WHO 2013 diagnostic threshold becomes

more cost-effective as the cost-effectiveness threshold increases. Nevertheless, this would have to exceed £30,000 per QALY before becoming cost-effective, indicating that the further reduction in adverse outcomes, are achieved at an unacceptably high opportunity cost. The Supplementary Report plots the incremental cost and QALY outcomes of 2,000 simulations from the probabilistic analysis on the cost-effectiveness plane (see Figure x1). Whilst most points fall in the south-western quadrant, suggesting that WHO 2013 diagnostic criteria are likely to lead to additional QALYs when compared with NICE 2015 criteria, all points show that NICE 2015 criteria were associated with markedly lower costs.

- *Table 7:* Probabilistic sensitivity analysis for HAPO (4) in a population with NICE risk factors

Diagnostic threshold	NMB ^a CE threshold £30,000 per QALY	Probability cost- effective CE threshold £20,000 per QALY	Probability cost- effective CE threshold WTP = £30,000 per QALY
No Treatment	£0	54.1%	21.0%
NICE 2015	£239,902	43.3%	51.5%
WHO 2013	£186,675	2.7%	27.6%

a) NMB is measured relative to a baseline of no treatment

Summaries of results for all of the model populations and more detailed results are provided inthe Supplementary Report.

322 Tables x16 and x17 in the Supplementary Report show that in both the HAPO (4) and Atlantic

323 DiP populations with NICE risk factors, the NICE diagnostic threshold is the most cost-

324 effective strategy at a cost-effectiveness threshold of £30,000 per QALY. The NICE 2015

BMJ Open

325	diagnostic threshold has ICERs of less than £30,000 per QALY, and in the probabilistic
326	sensitivity analysis it has the highest net monetary benefit and the highest probability of being
327	the most cost-effective. For HAPO (4) the results are similar if baseline risks are estimated
328	using logistic regression based on all covariates or a logistic regression just using plasma
329	glucose levels.
330	
331	The results also suggested that universal screening would not be cost-effective as, when
332	compared to risk factor screening (as recommended in NICE guidelines), the additional women
333	included in such an approach would be those without risk factors and the model demonstrates
334	that the ICERs for diagnosis and treatment are all well in excess of £30,000 per QALY;
335	markedly so when using WHO 2013 diagnostic thresholds. These conclusions were supported
336	by an analysis of the Norwich dataset (see Supplementary Report).
337	
338	It was not possible to stratify the Norwich dataset according to risk factors, and therefore the
339	ICERs presented relate to a comparison between no screening/treatment and universal screening
340	and treatment. However, the results were consistent with those for HAPO (4) and Atlantic DiP.
341	First, they showed that universal screening was not cost-effective even when compared to an
342	alternative of no screening/no treatment. Second, the ICERs for the whole population were a
343	weighted average of the populations with and without risk factors. The ICER for the population
344	without risk factors would be higher than the ICER for the entire population, which was only
345	marginally below the £30,000 per QALY threshold.
346	
347	Deterministic sensitivity analysis
348	As part of a sensitivity analysis the deterministic models were re-run using the logistic
349	regression models without backward elimination of glucose variables with non-significant

coefficients, and these analyses are discussed in the Supplementary Report with the resultssummarised in Table x30.

353 Discussion

In the NICE guideline analysis, 14 alternative diagnostic thresholds were compared and there was no single optimal diagnostic threshold which clearly emerged⁶. This is not surprising given the small differences in patient outcomes between them. In that analysis the previous WHO 1999 criteria emerged as a relatively cost-effective strategy. However, the Guideline Development Group rejected a fasting threshold of 7.0 mmol/L as there was a wide clinical consensus that this was too high, as 6.1-7.0 mmol/L is diagnostic of impaired fasting glycaemia in the non-pregnant population. Intervention studies had used a lower fasting threshold than 7.0 mmol/L as a basis for inclusion, and therefore made a case for intervention at lower levels. Based upon detailed cost effectiveness analysis of all the options, the Guideline Development Group ultimately decided on recommending a fasting plasma glucose of 5.6 mmol/L and a 2 hour plasma glucose of 7.8 mmol/L. In this paper, we have restricted our analysis of cost-effectiveness to the WHO 2013 and NICE 2015 criteria (with a no screening/treatment baseline also included) as these two recommendations have the most clinical currency at present.

All of the analyses presented in this paper suggest that, in a population with NICE risk factors, the NICE 2015 diagnostic criteria for GDM could be considered cost-effective relative to no screening/no treatment and to WHO 2013 diagnostic thresholds when using a cost-effectiveness threshold of £30,000 per QALY. The analyses also show that no screening/no treatment is costeffective in populations without NICE risk factors, suggesting that universal screening does not represent value for money, at least in a UK setting. The slight differences in the costs and QALYs in the current analysis compared to the original NICE guideline are due to a

BMJ Open

375 combination of using updated cost data and a modification of the statistical analysis utilising the376 Cholesky decomposition (see methods).

One of the limitations of our analysis was that the 2-hour threshold was restricted to the historical WHO 1999 2-hour definition of 7.8mmol/l, or the new WHO 2013 criteria of 8.5 mmol/l. It is conceivable that a 2-hour threshold lying between these values might outperform both. Our greater focus, though was on the optimal fasting level as this is where the greatest controversy lies with respect to potentially missed treatment opportunities.

As noted by the proponents of WHO 2013 diagnostic criteria for GDM, using a lower fasting plasma glucose threshold would by definition detect more cases. Furthermore, because we assumed in the model that the relative treatment effect would be the same in additionally diagnosed cases, it follows that such a threshold could potentially yield the lowest number of adverse outcomes and the greatest QALY gain. However, our analysis suggests that the relatively small additional gains are not justified by the substantially higher costs that such lower thresholds would require.

A key driver of our results were the logistic regression models which were used to predict baseline risk. For the outcomes included in this study these regression models suggested that the 2-hour plasma glucose was a much more important predictor of adverse outcomes than the fasting plasma glucose, something we were unaware of when selecting the model's clinical outcomes. For the regression models fitted to predict baseline risk in the HAPO (4) dataset with covariates and backward elimination of the OGTT plasma glucose variables (Model 1 base case analysis regressions in Supplementary Tables x2 to x7), the Hosmer-Lemeshow Goodness of Fit Test did not indicate evidence of poor fit (p > 0.05). However, there was evidence of poor fit

400 (p < 0.05) for the regression models of caesarean section and NICU admission where the 401 prediction was based only on OGTT plasma glucose results (Model 2 base case analysis 402 regressions in Supplementary Tables x2 to x7). Nevertheless, as indicated in Supplementary 403 Table x16 and x17, the choice of prediction model did not have a large bearing on cost-404 effectiveness.

We consider that our analysis which builds on previous modelling^{6, 14} is, together with another
recently published UK analysis¹⁰, one of the most comprehensive assessments of the costeffectiveness of diagnostic thresholds for GDM yet undertaken, and will hopefully contribute to
the WHO's expectation "that a substantial body of new data will emerge in the near future,
providing currently scarce health and economic evaluation of the recommended criteria applied
to various populations and with different approaches (universal screening, screening only
women at high risk, diagnostic testing only)".⁴

A number of commentators ^{17, 18} have recently advocated universal screening for GDM. The essence of the argument is based upon the number of cases of GDM that would be missed with selective screening, and the subsequent reduced opportunity to prevent a serious perinatal outcome. Of course it is true that universal screening will detect more cases, although the absolute numbers will depend upon the thresholds used to define GDM. Table 5 shows that many more women would need to be diagnosed in order to prevent a single adverse outcome. However, in the context of finite health care resources, it must be accepted that it may be cost-effective to miss some cases. Epidemiological measures such as number needed to treat (or number needed to screen in this case) implicitly recognise that a goal of health care systems cannot be to maximize health gain without any consideration of cost. Identifying missed cases carries an opportunity cost and it may be that those resources would achieve greater benefit if

BMJ Open

employed elsewhere in the health care system. If a population is divided into those with risk factors and those without risk factors, then the prevalence of GDM must be lower in the group without risk factors (and the number needed to screen higher) with concomitantly lower cost-effectiveness. However, the comparative cost-effectiveness of screening in those with and without risk factors is not only affected by the respective prevalence in the two groups, but also differences in severity. In those diagnosed with GDM and who had risk factors there were, as anticipated, greater levels of hyperglycaemia than in those without risk factors. As shown in Table x31 in the Supplementary Report, 'true positives' or identified cases (risk factor present and GDM) had higher plasma glucose values than 'false negatives' or missed cases (risk factors absent and GDM) when defining GDM positives according to WHO 2013 diagnostic thresholds.

We would therefore expect the women with risk factors and GDM to be at greater risk of
adverse outcomes than the women with GDM without risk factors as a result of their higher
plasma glucose levels. So the "cases" missed with selective screening would have, on average,
fewer adverse outcomes than in "cases" in a population with risk factors. So the ICER would be
greater in the population without risk factors because prevalence is lower and cases have fewer
adverse outcomes.

444 Our analysis, by splitting the HAPO (4) and Atlantic DiP datasets into those with and without 445 risk factors, was able to evaluate the cost-effectiveness of moving from risk factor screening to 446 universal screening. Whilst diagnosis in populations with risk factors was shown to be cost-447 effective at a threshold of £30,000 per QALY, it was never cost-effective to diagnose and treat 448 in those without risk factors. Table 4 indicates the large differences that exist in prevalence

449 between the populations with and without risk factors. Our analysis suggests that the cost-

effectiveness threshold would have to substantially exceed currently accepted UK norms for
universal screening to be considered cost-effective. Although the NICE risk factor approach
could not be replicated exactly, we felt that the approximation used was acceptable, as the only
women who would be omitted from the model risk factor population were multiparous and
would have had a large baby previously and/or a past history of GDM. This approximation
would over-estimate slightly the benefits of universal screening, as the baseline risk in a group
designated as being without NICE risk factors present would be over-stated.

A previous study⁸ from Spain using WHO 2013 diagnostic criteria suggested cost effectiveness compared with a two-step protocol using the Carpenter – Coustan thresholds. However, this was largely based upon estimates of reduction of caesarean section rates of 50% which we find implausible based upon changes in diagnostic criteria alone, noting that ACHOIS and Landon et al. found only a 4% and 21% reduction in caesarean section respectively as a result of treating gestational diabetes. The Spanish study did not consider other alternative thresholds, and was a retrospective, before and after analysis which has been criticised by the Cochrane Collaboration as it does not control for possible changes in important variables, such as clinical management, over time.¹⁹

A recently published UK Health Technology Assessment (HTA)¹⁰ suggested that the identification of gestational diabetes for treatment is not cost-effective, in which case finding a cost-effective threshold becomes somewhat redundant. Although the HTA followed a similar approach to our analysis there were some differences which could explain the different conclusions. In our analysis, jaundice was included as an outcome and the relative treatment effect would have tended to lower the incremental costs of intervention as a result of reduced rates of phototherapy. This was not included as an outcome in the HTA. Instrumental delivery

Page 23 of 65

BMJ Open

475	was included as an outcome in the HTA but not in our analysis. While instrumental delivery
476	rates could in theory be increased by treatment, as there will be more vaginal births, this could
477	be counteracted by those mothers not treated delivering larger babies vaginally requiring
478	assistance; this would be in accord with the HTA meta-analysis which failed to demonstrate a
479	treatment effect on instrumental delivery rates. In addition the HTA reported smaller treatment
480	effects for NICU admission and pre-eclampsia. Unlike our analysis, the HTA did not assume
481	100% uptake of the OGTT and that would have led to a smaller estimate of treatment benefit.
482	We made the simplifying assumption of 100% OGTT uptake because the view of the Guideline
483	Development Group was that uptake would be much higher in a group screened on the basis of
484	risk factors. The HTA also assumed higher uptake of OGTT with risk factor screening
485	compared to universal screening but less than 100%. As we do not find universal screening to
486	be cost-effective then relaxing the assumption of 100% OGTT uptake would only re-inforce
487	that result. We investigated the impact of relaxing the assumption of 100% uptake in groups
488	screened on the basis of risk factors but found that it made a negligible difference to the results.
489	For example, in a deterministic analysis of the HAPO (4) with NICE risk factors, the ICER of
490	NICE 2015 relative to no screening/no treatment only increased from £20,400 per QALY with
491	100% OGTT uptake to £20,585 per QALY with 90% test uptake.
492	
403	However, the differences between this analysis and the HTA should not be over stated. Neither

However, the differences between this analysis and the HTA should not be over-stated. Neither
analysis suggests that universal screening for GDM is cost-effective and, like the HTA, our
results would not support the identification and treatment of gestational diabetes if a costeffectiveness threshold of £20,000 per QALY was used. However, it was the view of the
Guideline Development Group that the clinical benefit of identifying and treating women with
GDM is widely practiced, and that a no identification/no treat policy would not be acceptable to

patients or health care providers. As such, the Group felt that the higher cost threshold of£30,000 was justified.

Our model has a number of limitations particularly with respect to the valuation of health outcomes. We did not include large for gestational age as an outcome because it was felt that shoulder dystocia was the relevant immediate complication of interest, and that possible long term metabolic consequences for the offspring were hard to quantify and therefore difficult to incorporate within the model. As previously noted, the QALY loss from a serious perinatal complication used in this analysis is likely to be overstated because of the relatively large weight given to death based on the intervention studies.¹⁴ HAPO failed to show an association between perinatal mortality and plasma glucose levels, which may mean that perinatal mortality reduction is less amenable to reduction by treatment than other serious perinatal complications. In this respect the cost-effectiveness of diagnosing and treating GDM may be over-stated. On the other hand, the model does not take account of any potential long term effects on the offspring (e.g. adiposity and the likelihood of subsequent pathology) as these effects are difficult to quantify but may under-estimate the QALY gain from diagnosis and treatment. A US study²⁰ considered the potential long-term benefits to the mother whereby a diagnosis of GDM averts or delays onset of Type 2 diabetes mellitus, but this was not incorporated into our model as we did not consider that the relationship was sufficiently well established at this time. However, to the extent that such a relationship does exist our model would also underestimate the QALY gain from a diagnosis of GDM. A recent review has, however, questioned the association between maternal glycaemia and subsequent cardio-metabolic outcomes in offspring in humans²¹ and a recent follow-up study failed to find evidence of a reduction in childhood obesity or metabolic dysfunction at five years in the offspring of women treated for mild gestational diabetes in the study of Landon et al ^{12, 22}.

BMJ Open

3
4
5
6
7
8 9 10 11 12 13 14 15 16 17 18 9 20
à
10
10
11
12
13
14
15
16
17
18
10
19
20
20 21 22 23 24 25 26 27 28 29 30 31 32 33 35 36 37 38 940 41
22
23
24
25
26
20
21
28
29
30
31
32
22
33
34
35
36
37
38
39
10
40
41
42
43
44
45
46
47
48
48 49
50
51
52
53
54
55
56
57
58
59
60

525 Despite these caveats, we feel our analysis represents a robust analysis of the cost-effectiveness 526 of the NICE versus the WHO 2013 diagnostic thresholds for GDM based upon our current 527 understanding of the impact of intervention in women with GDM in the UK population. We 528 acknowledge completely that this analysis cannot be the final word on the subject, and that 529 further health economic evaluation is required to either corroborate our findings or to challenge 530 them. Nevertheless, our analysis represents a constructive and evidence based contribution to 531 establishing cost effective diagnostic thresholds for GDM and will hopefully lead to more 532 research to clarify this important but vexed area of clinical diagnosis.

533

524

534 Conclusions

The results presented in this analysis, based on a UK setting, do not suggest that the diagnostic thresholds for GDM adopted by the WHO are cost-effective. On the other hand they do provide some support for the cost-effectiveness of the diagnostic criteria adopted by NICE when compared to either no screening/treatment and to WHO 2013 diagnostic criteria. Furthermore, according to this analysis, universal screening would seem to offer poor value for money and does not appear cost-effective compared to the current NICE guidance of targeting high risk women.

543	Acknowledgements
544	We are grateful to Professor DR McCance and Professor HD McIntyre for allowing us to use
545	their local datasets from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) trial and
546	to Professor F Dunne for allowing us to use her Atlantic DiP dataset.
547	We are also grateful to Professor David James who provided clinical support during the
548	development of the updated NICE guideline on Diabetes in Pregnancy.
549	
550	Competing interests
551	All authors have completed the ICMJE uniform disclosure form at
552	http://www.icmje.org/coi_disclosure.pdf and declare:
553	
554	Funding: Some of this work was undertaken by the now defunct National Collaborating Centre
555	for Women's and Children's Health (subsumed within the National Guideline Alliance from 1st
556	April 2016), which received funding from NICE. The views expressed in this publication are
557	those of the authors and not necessarily those of the institute. Revisions to the guideline model
558	after the guideline was published and drafting of the manuscript was done in the author's own
559	time and was not funded.
560	
561	National Institute for Health and Care Excellence (2015). Diabetes in pregnancy: management
562	from preconception to the postnatal period. Available from
563	https://www.nice.org.uk/guidance/ng3
564	PBJ and SBR are employees of the National Guideline Alliance (part of the RCOG), which
565	receives its funding from NICE.
566	MJAM, KS, AD and RWB received travel expenses from NICE for attending clinical guideline
567	development meetings

BMJ Open

3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
$\begin{array}{c} 3\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 4\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 1\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 22\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 44\\ 1\\ 1\\ 1\\ 1\\ 2\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$
25
26
27
28
29
20
21
20
32
33
34
35
36
37
38
39
40
41
42
43
43 44
44 45
40
46
47
48
49
50
51
52
53
54
55
56
50
5/ 50
52 53 54 55 56 57 58 59 60
59
60

568	Author contribution
569	Paul Jacklin designed and developed the health economic model, undertook the health
570	economic analysis, wrote the first draft of the manuscript and incorporated edits from co-
571	authors. Mike Maresh provided clinical input into the design of the health economic model;
572	read, commented and edited various draft of the manuscripts. Katharine Stanley supplied the
573	Norwich dataset, provided clinical input into the design of the health economic model; read,
574	commented and edited various draft of the manuscripts. Anne Dornhorst provided clinical input
575	into the design of the health economic model; read, commented and edited various draft of the
576	manuscripts. Chris Patterson provided statistical advice, undertook statistical analysis of the
577	HAPO dataset; read, commented and edited various drafts of the manuscript. Shona Burman-
578	Roy reviewed the clinical literature, contributed to discussions of model design; read,
579	commented and edited various drafts of the manuscript. Rudy Bilous chaired the NICE
580	guideline, provided clinical input into the design of the health economic model; read,
581	commented and edited various draft of the manuscripts.
582	
583	Transparency declaration
584	The lead author, Paul Jacklin, affirms that this manuscript is an honest, accurate, and
585	transparent account of the study being reported; that no important aspects of the study have

- 586 been omitted; and that any discrepancies from the study as planned (and, if relevant, registered)
- 587 have been explained.

588

589 Exclusive License

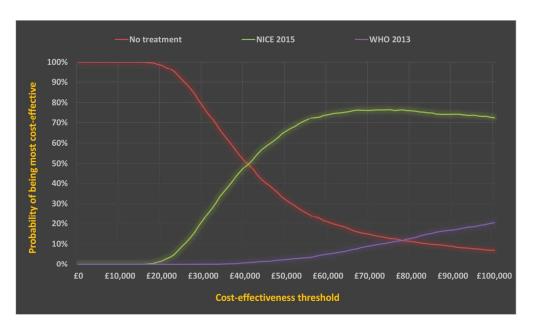
- 590 "I Paul Jacklin The Corresponding Author of this article contained within the original
- 591 manuscript which includes any diagrams & photographs within and any related or stand alone
- 592 film submitted (the Contribution") has the right to grant on behalf of all authors and does grant

- on behalf of all authors, a licence to the BMJ Publishing Group Ltd and its licencees, to permit
- this Contribution (if accepted) to be published in the BMJ and any other BMJ Group products
- and to exploit all subsidiary rights, as set out in our licence set out at:
- <text> http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-
- open-access-and-permission-reuse."

Data sharing Statement

- Potential for data sharing (the health economic model) can be discussed with study
- investigators.

BMJ Open


2 3	602	References
4	002	
5 6	603	1 Motzger PE Lowe LD Duer AP, et al. Hunorghycomia and adverse programmy outcomes. N Engl L
7	005	1. Metzger BE, Lowe LP, Dyer AR, et al. Hyperglycemia and adverse pregnancy outcomes. <i>N Engl J</i>
8 9	604	Med 2008;358:1991-2002.
10 11	605	2. Farrar D, Simmonds M, Bryant M, et al. Hyperglycaemia and risk of adverse perinatal
12 13	606	outcomes: systematic review and meta-analysis. BMJ. 2016;354:i4694. doi: 10.1136/bmj.i4694.
14 15 16	607	3. Metzger BE, Gabbe SG, Persson B, et al. International Association of Diabetes and Pregnancy
17 18	608	Study Groups recommendations on the diagnosis and classification of hyperglycemia in
19 20	609	pregnancy. Diabetes Care 2010;33:676-82.
21 22	610	4. WHO Health organisation, 2013. Diagnostic criteria and classification of hyperglycaemia first
23 24	611	detected in pregnancy WHO/NMH/MND/13.2
25 26 27	612	http://apps.who.int/iris/bitstream/10665/85975/1/WHO NMH MND 13.2 eng.pdf.
28 29	613	5. American College of Obstetricians and Gynecologists. Practice Bulletin 137: Mellitus. Obstet
30 31	614	Gynecol 2013; 122: 406-16
32 33	615	6. National Institute for Health and Care Excellence (NICE) (2015) Diabetes in pregnancy:
34 35	616	management of diabetes and its complications from preconception to the postnatal period.
36 37	617	Clinical guideline NG3 (2015). Available from
38 39 40	618	www.nice.org.uk/guidance/ng3/resources/diabetes-in-pregnancy-management-of-diabetes-
40 41 42	619	and-itscomplications-from-preconception-to-the-postnatal-period-51038446021, accessed
43 44	620	February 2016
45 46	621	7. Meek CL, Lewis HB, Patient C, Murphy HR, Simmons D. Diagnosis of gestational diabetes: falling
47 48	622	through the net. <i>Diabetologia</i> 2015;Sep;58(9):2003-12
49 50	623	8. Duran A, Sáenz S, Torrejón MJ et al. Introduction of IADPSG criteria for the screening and
51 52 53	624	diagnosis of gestational diabetes mellitus results in improved pregnancy outcomes at a lower
53 54 55	625	cost in a large cohort of pregnant women: the St. Carlos Gestational Diabetes Study. Diabetes
56 57 58	626	<i>Care</i> 2014;37(9):2442–2450. doi: 10.2337/dc14-0179.
59 60		29

			BMJ Open	Pa
1				
2 3	627	9.	Herman WH. Insights offered by economic analyses. Diabetes Care. 2014 Sep;37(9):2424-6. d	oi:
4 5 6	628		10.2337/dc14-1232.	
7 8	629	10.	Farrar D, Simmonds M, Griffin S et al. The identification and treatment of women w	ith
9 10	630		hyperglycaemia in pregnancy: an analysis of individual participant data, systematic review	NS,
11 12	631		meta-analyses and an economic evaluation. Health Technol Assess. 2016 Nov;20(86):1-348.	
13 14	632	11.	Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment	of
15 16	633		gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 2005;352:2477-86.	
17 18 19	634	12.	Landon MB, Spong CY, Thom E, et al. A multicenter, randomized trial of treatment for m	ild
20 21	635		gestational diabetes. N Engl J Med 2009;361:1339-48	
22 23	636	13.	Horvath K, Koch K, Jeitler K et al. Effects of treatment in women with gestational diaber	tes
24 25	637		mellitus: systematic review and meta-analysis. BMJ (Clin Res Ed) 2010;340:c1395	
26 27	638	14.	Round, J.A., Jacklin, P., Fraser, R.B., Hughes, R.G., Mugglestone, M.A., Holt, R.I. Screening	for
28 29 30	639		gestational diabetes mellitus: cost-utility of different screening strategies based on a woma	n's
30 31 32	640		individual risk of disease, <i>Diabetologia</i> 2011,54(2), 256-263. doi: 10.1007/s00125-010-1881-y	1
33 34	641	15.	National Institute for Health and Care Excellence. Developing NICE guidelines: the manual.	
35 36	642		October 2014 (<u>https://www.nice.org.uk/media/default/about/what-we-do/our-</u>	
37 38	643		programmes/developing-nice-guidelines-the-manual.pdf)	
39 40	644	16.	Briggs A, Claxton K, Sculpher M. Decision Modelling for Health Economic Evaluation. Oxfo	rd:
41 42 43	645		Oxford University Press; 2006	
44 45	646	17.	Avalos GE, Owens LA, Dunne F. Applying Current Screening Tools for Gestational Diabetes	
46 47	647		Mellitus to a European Population: Is It Time for Change? <i>Diabetes Care</i> . 2013 Oct;36(10):304	10-
48 49	648		4. doi: 10.2337/dc12-2669. Epub 2013 Jun 11.	
50 51	649	18.	Simmons D, Moses RG. Gestational Diabetes Mellitus: To Screen or Not to Screen? Is this real	ly
52 53	650		still a question? Diabetes Care. 2013 Oct;36(10):2877-2878	
54 55 56	651	19.	Armstrong R, Waters E, Doyle J (editors). Chapter 21: Reviews in health promotion and public	2
50 57 58	652		health. In Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of	
59 60			30	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	(50		
3 4	653		Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011.
5	654		Available from www.cochrane-handbook.org. Accessed June 2015
7 8	655	20.	Werner EF, Pettker CM, Zucerwise et al. Screening for gestational diabetes mellitus: are the
9 10	656		criteria proposed by the international association of the Diabetes and Pregnancy Study Groups
11 12 13	657		cost-effective? Diabetes Care. 2012 Mar;35(3):529-35. doi: 10.2337/dc11-1643.
13 14 15	658	21.	Donovan LE, Cundy T. Does exposure to hyperglycaemia in utero increase the risk of obesity
16 17	659		and diabetes in the offspring? A critical reappraisal. Diabetic Medicine. 2015 Mar;32(3):295-
18 19	660		304. doi: 10.1111/dme.12625. Epub 2014 Dec 17.
20 21	661	22.	Landon MB, Rice MM, Varner MW et al. Mild gestational diabetes mellitus and long-term child
22 23 24	662		health. Diabetes Care. 2015 Mar;38(3):445-52. doi: 10.2337/dc14-2159. Epub 2014 Nov 20.
24 25 26	663		
27 28			
29 30	664		
31 32	665		
33 34 35	666		Trealth. Diabetes care. 2015 Mar;58(3):445-52. doi: 10.2337/dc14-2159. Epub 2014 Nov 20.
36 37			
38			
39 40			
41 42			
43			
44 45			
46			
47 48			
49			
50			
51			
52 53			
54			
55			
56 57			
57 58			
59			
60			31
		Fo	or peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Cost-effectiveness acceptability curve indicating the probability of a threshold or a no diagnosis/no treatment strategy being cost-effective at different cost-effectiveness thresholds for the HAPO (4) centres population with risk factors

1 Supplementary Report

2 This supplementary document provides further details about model parameter estimates and model

3 results.

Table x1. Ethnicity of women in patient datasets and of UK

Ethnic group	HAPO (4) centres	Atlantic DiP	Norfolk ^a	UK⁵
White	79%	93%	96.5%	87%
Black	2%	2%	0.5%	3%
Asian	13%	4%	1.6%	7%
Other	6%	1%	1.6%	3%

(a) Our Norwich dataset did not include data on ethnicity and the values presented here are census data for Norfolk (Estimated from 2011 Census: Ethnic group, local authorities in the United Kingdom. Office for National Statistics. 11 October 2013)

(b) Included for comparative purposes (2011 Census: Ethnic group, local authorities in the United Kingdom. Office for National Statistics. 11 October 2013)

11 Multivariable prediction models to estimate baseline risk

Model 1 includes the covariates used in the original analysis of the HAPO data whilst Model 2 is restricted to plasma glucose variables (Tables x2 to Tables x7). In the base case analysis, backward elimination of plasma glucose variables with non-significant coefficients from the prediction models was undertaken. A sensitivity analysis was undertaken retaining all plasma glucose variables. For each model Hosmer-Lemeshow goodness-of-fit statistics are presented and predicted probabilities are used to derive the area under the receiver-operating characteristic (ROC) curve as an indicator of the

18 model's discriminatory ability.

20 Table x2. Logistic regression models to predict neonatal shoulder dystocia

		Co-efficient b (Sta	ndard error (SE(b))	
		del 1 ariates)		del 2 se covariates)
Variable	Base case analysis	Sensitivity analysis	Base case analysis	Sensitivity analysis
Centre (Manchester v Belfast)	1.151 (0.423)	1.151 (0.424)	-	-
(Brisbane v Belfast)	0.505 (0.489)	0.562 (0.491)	-	-
(Newcastle v Belfast)	1.604 (0.472)	1.622 (0.472)	-	-
Age at OGTT (yr)	-0.023 (0.024)	-0.022 (0.024)	-	-
BMI at OGTT (kg/m ²)	-0.006 (0.023)	-0.011 (0.024)	-	-
Smoker (Yes v No)	-0.480 (0.409)	-0.477 (0.409)	-	-
Drinker (Yes v No)	-0.101 (0.317)	-0.107 (0.317)	-	-
Family history DM (Yes v No)	-0.006 (0.184)	-0.008 (0.187)	-	-
Gestational age at OGTT (wk)	-0.111 (0.091)	-0.114 (0.092)	-	-
Neonate gender (F v M)	-1.321 (0.292)	-1.316 (0.292)	-	-
Family history HBP (Yes v No) ^a	-	-	-	-
Maternal UTI (Yes v No) ^a	-	-	-	-
Mean Blood Pressure (mmHg)	-0.006 (0.015)	-0.007 (0.015)	-	-
Hospital admission before delivery (Yes v No)	0.173 (0.266)	0.175 (0.267)	-	-
Parity (1 v 0)	-0.118 (0.420)	-0.108 (0.420)	-	-
(2+ v 0)	0.456 (0.412)	0.469 (0.414)	-	-
(Unknown v 0)	-0.026 (0.399)	-0.013 (0.399)	-	-
Fasting blood glucose ^b	-	0.151 (0.112)	-	0.166 (0.110
1-hr blood glucose ^b	-	-0.138 (0.165)	-	-0.152 (0.163
2-hr blood glucose ^b	0.223 (0.100)	0.222 (0.152)	0.267 (0.097)	0.265 (0.151
Constant	0.925 (3.025)	1.139 (3.508)	-4.467 (0.122)	-4.475 (0.122
Hosmer-Lemeshow goodness- of-fit test	χ ² = 2.94, df=8; P=0.94	χ ² = 6.36, df=8; P=0.61	χ ² = 4.99, df=8; P=0.76	χ ² = 11.51, df=8; P=0.1
Area under the ROC curve (95% CI)	0.75 (0.70, 0.80)	0.76 (0.70, 0.81)	0.58 (0.51, 0.65)	0.60 (0.53, 0.67)

(a) Omitted from HAPO model for shoulder dystocia

(b) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for shoulder dystocia arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47); 1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

Table x3. Logistic regression models to predict caesarean section

	Co-efficient b (Standard error (SE(b))										
	Мо	del 1		del 2							
	(all cov	ariates)	(blood glucos	se covariates)							
Variable	Base case analysis	Sensitivity analysis	Base case analysis	Sensitivity analysis							
Centre (Manchester v Belfast)	-0.494 (0.092)	-0.495 (0.092)	-	-							
(Brisbane v Belfast)	-0.099 (0.098)	-0.114 (0.100)	-	-							
(Newcastle v Belfast)	-0.681 (0.140)	-0.692 (0.141)	-	-							
Age at OGTT (yr)	0.034 (0.007)	0.034 (0.007)	-	-							
BMI at OGTT (kg/m ²)	0.039 (0.007)	0.039 (0.007)	-	-							
Smoker (Yes v No)	-0.304 (0.106)	-0.292 (0.106)	-	-							
Drinker (Yes v No)	-0.028 (0.087)	-0.025 (0.087)	-	-							
Family history DM (Yes v No)	0.050 (0.057)	0.052 (0.057)	-	-							
Gestational age at OGTT (wk)	0.004 (0.029)	0.004 (0.029)	-	-							
Neonate gender (F v M)	-0.205 (0.071)	-0.205 (0.071)	-	-							
Family history HBP (Yes v No) ^a	-	-	-	-							
Maternal UTI (Yes v No) ^a	-	-	-	-							
Mean Blood Pressure (mmHg)	0.003 (0.004)	0.003 (0.004)	-	-							
Hospital admission before delivery (Yes v No)	0.514 (0.079)	0.510 (0.079)	-	-							
Parity (1 v 0) ^a	-	-	-	-							
(2+ v 0) ^a	-	-	-	-							
(Unknown v 0)ª	-	-	-	-							
Fasting blood glucose ^b	-	-0.009 (0.044)	-	0.053 (0.040							
1-hr blood glucose ^b	0.144 (0.037)	0.101 (0.051)	0.138 (0.046)	0.119 (0.048							
2-hr blood glucose ^b	-	0.071 (0.048)	0.123 (0.046)	0.113 (0.046							
Constant	-3.518 (0.947)	-3.509 (0.950)	-1.435 (0.035)	-1.433 (0.03							
Hosmer-Lemeshow goodness- of-fit test	χ ² = 1.88, df=8; P=0.99	χ ² = 5.11, df=8; P=0.75	χ ² = 16.56, df=8; P=0.04	χ ² = 17.66, df=8; P=0.0							
Area under the ROC curve (95% Cl)	0.65 (0.63, 0.66)	0.65 (63, 0.66)	0.58 (0.56, 0.60)	0.58 (0.57, 0.60)							

(a) Omitted from HAPO model for caesarean section

30 (b) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for caesarean
 31 section arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) =

32 4.60(0.47); 1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

2
3
Δ
Ē
4 5 6 7 8
6
7
Q
0
9
10
11
40
12
13
14
15
10
16
17
18
9 10 11 12 13 14 15 16 17 18 19
19
20
20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 940
22
22
23
24
25
20
26
27
28
20
29
30
31
201
32
33
34
25
30
36
37
20
00
39
40
41
42
43
44
45
46
47
48
49
50
51 52
53
53 54
55
56
57

36 **Table x4.** Logistic regression models to predict neonatal intensive care unit admissions

		Co-efficient b (St	andard error (SE(b))	
	Mod	iel 1	Мос	lel 2
	(all cova	ariates)	(blood glucos	e covariates)
Variable	Base case analysis	Sensitivity analysis	Base case analysis	Sensitivity analysis
Centre (Manchester v Belfast)	0.894 (0.159)	0.889 (0.159)	-	-
(Brisbane v Belfast)	1.393 (0.161)	1.400 (0.163)	-	-
(Newcastle v Belfast)	1.153 (0.190)	1.163 (0.191)	-	-
Age at OGTT (yr)	0.013 (0.009)	0.012 (0.009)	-	-
BMI at OGTT (kg/m ²)	0.025 (0.009)	0.024 (0.009)	-	-
Smoker (Yes v No)	0.209 (0.130)	0.201 (0.130)	-	-
Drinker (Yes v No)	-0.025 (0.117)	-0.023 (0.117)	-	-
Family history DM (Yes v No)	0.033 (0.069)	0.038 (0.069)	-	-
Gestational age at OGTT (wk)	-0.050 (0.038)	-0.052 (0.038)	-	-
Neonate gender (F v M)	-0.304 (0.094)	-0.302 (0.094)	-	-
Family history HBP (Yes v No) ^a	-	-	-	-
Maternal UTI (Yes v No) ^a	-	-	-	-
Mean Blood Pressure (mmHg)	0.006 (0.006)	0.006 (0.006)	-	-
Hospital admission before delivery (Yes v No)	0.794 (0.097)	0.792 (0.097)	-	-
Parity (1 v 0)	-0.474 (0.148)	-0.474 (0.148)	-	-
(2+ v 0)	-0.490 (0.157)	-0.493 (0.157)	-	-
(Unknown v 0)	-0.084 (0.135)	-0.086 (0.135)	-	-
Fasting blood glucose ^b	-	-0.003 (0.054)	-	-0.025 (0.050)
1-hr blood glucose ^b	-	0.082 (0.067)	-	0.078 (0.064)
2-hr blood glucose ^b	0.159 (0.045)	0.107 (0.063)	0.208 (0.041)	0.167 (0.060)
Constant	-3.181 (1.236)	-3.061 (1.243)	-2.374 (0.046)	-2.375 (0.046)
Hosmer-Lemeshow goodness- of-fit test	χ ² = 14.18, df=8; P=0.08	χ ² = 11.41, df=8; P=0.18	χ ² = 22.16, df=8; P=0.005	χ ² = 12.72, df=8; P=0.12
Area under the ROC curve (95% CI)	0.71 (0.69, 0.73)	0.71 (0.69, 0.73)	0.57 (0.55, 0.60)	0.57 (0.55, 0.60)

37 (a) Omitted from HAPO model for neonatal intensive care unit admissions

38 (b) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for neonatal

39 intensive care unit admissions arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose

40 mean (SD) = 4.60(0.47); 1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

41

42

43 Table x5. Logistic regression models to predict jaundice

	Co-efficient b (Standard error (SE(b))										
	Мос	lel 1	Mod	lel 2							
	(all cova	ariates)	(blood glucos	e covariates)							
Variable	Base case analysis	Sensitivity analysis	Base case analysis	Sensitivity analysis							
Centre (Manchester v Belfast)	0.407 (0.157)	0.410 (0.157)	-	-							
(Brisbane v Belfast)	0.449 (0.171)	0.420 (0.173)	-	-							
(Newcastle v Belfast)	-0.315 (0.259)	-0.332 (0.259)	-	-							
Age at OGTT (yr)	0.005 (0.011)	0.005 (0.011)	-	-							
BMI at OGTT (kg/m²)	-0.011 (0.011)	-0.009 (0.012)	-	-							
Smoker (Yes v No)	0.082 (0.161)	0.093 (0.162)	-	-							
Drinker (Yes v No)	-0.514 (0.163)	-0.508 (0.163)	-	-							
Family history DM (Yes v No)	-0.060 (0.094)	-0.060 (0.094)	-	-							
Gestational age at OGTT (wk)	-0.078 (0.047)	-0.077 (0.047)	-	-							
Neonate gender (F v M)	-0.116 (0.113)	-0.115 (0.113)	-	-							
Family history HBP (Yes v No) ^a	-	-	-	-							
Maternal UTI (Yes v No) ^a	-	-	-	-							
Mean Blood Pressure (mmHg)	0.018 (0.007)	0.018 (0.007)	-	-							
Hospital admission before delivery (Yes v No)	0.867 (0.116)	0.865 (0.116)	-	-							
Parity (1 v 0)	-0.382 (0.185)	-0.380 (0.185)	-	-							
(2+ v 0)	-0.526 (0.200)	-0.526 (0.200)	-	-							
(Unknown v 0)	0.078 (0.165)	0.078 (0.165)	-	-							
Fasting blood glucose ^b	-	-0.055 (0.066)	-	-0.063 (0.06							
1-hr blood glucose ^b	0.216 (0.056)	0.192 (0.079)	0.237 (0.052)	0.199 (0.07							
2-hr blood glucose ^b	-	0.073 (0.074)	-	0.102 (0.07							
Constant	-1.927 (1.522)	-2.014 (1.526)	-2.846 (0.057)	-2.850 (0.05							
Hosmer-Lemeshow goodness- of-fit test	χ ² = 8.42, df=8; P=0.39	χ ² = 7.96, df=8; P=0.44	χ ² = 2.47, df=8; P=0.96	χ ² = 10.40, df=8; P=0.2							
Area under the ROC curve (95% Cl)	0.68 (0.65, 0.71)	0.68 (0.65, 0.71)	0.57 (0.54, 0.60)	0.58 (0.55, 0.61							

45 (a) Omitted from HAPO model for jaundice
46 (b) Blood glucose values are 'standardised'

(b) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for jaundice arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47); 1-hour

plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

51 Table x6. Logistic regression models to predict pre-eclampsia

	Co-efficient b (Standard error (SE(b))										
	Мо	del 1	Mod	lel 2							
	(all cov	ariates)	(blood glucos	e covariates)							
Variable	Base case analysis	Sensitivity analysis	Base case analysis	Sensitivity analysis							
Centre (Manchester v Belfast)	-0.784 (0.192)	-0.800 (0.193)	-	-							
(Brisbane v Belfast)	-0.308 (0.200)	-0.277 (0.202)	-	-							
(Newcastle v Belfast)	-0.685 (0.278)	-0.667 (0.278)	-	-							
Age at OGTT (yr)	-0.009 (0.015)	-0.011 (0.015)	-	-							
BMI at OGTT (kg/m ²)	0.101 (0.011)	0.097 (0.012)	-	-							
Smoker (Yes v No)	-0.556 (0.245)	-0.569 (0.246)	-	-							
Drinker (Yes v No)	-0.170 (0.194)	-0.168 (0.194)	-	-							
Family history DM (Yes v No)	-0.004 (0.127)	0.006 (0.127)	-	-							
Gestational age at OGTT (wk)	-0.092 (0.059)	-0.096 (0.059)	-	-							
Neonate gender (F v M)	0.173 (0.147)	0.174 (0.147)	-	-							
Family history HBP (Yes v No)	0.233 (0.150)	0.230 (0.150)	-	-							
Maternal UTI (Yes v No)	0.734 (0.211)	0.721 (0.211)	-	-							
Mean Blood Pressure (mmHg) ^a	-	-	-	-							
Hospital admission before delivery (Yes v No) ^a	-	-	-	-							
Parity (1 v 0)	-0.291 (0.240)	-0.292 (0.240)	-	-							
(2+ v 0)	-0.701 (0.271)	-0.703 (0.271)	-	-							
(Unknown v 0)	0.026 (0.224)	0.023 (0.224)	-	-							
Fasting blood glucose ^b	-	0.062 (0.078)	0.201 (0.065)	0.183 (0.068							
1-hr blood glucose ^b	-	0.065 (0.104)	-	0.083 (0.098							
2-hr blood glucose ^b	0.272 (0.067)	0.195 (0.096)	0.196 (0.072)	0.150 (0.090							
Constant	-3.370 (1.842)	-3.107 (1.855)	-3.453 (0.075)	-3.455 (0.075							
Hosmer-Lemeshow goodness- of-fit test	χ ² = 5.46, df=8; P=0.71	χ ² = 8.02, df=8; P=0.43	χ ² = 12.00, df=8; P=0.15	χ ² = 15.98, df=8; P=0.04							
Area under the ROC curve (95% CI)	0.75 (0.72, 0.78)	0.75 (0.72, 0.79)	0.65 (0.61, 0.68)	0.65 (0.61, 0.68)							

53 (a) Omitted from HAPO model for pre-eclampsia
54 (b) Blood glucose values are 'standardised' - so the

(b) Blood glucose values are 'standardised' – so the exponential of the coefficient represents the odds ratio for pre-eclampsia arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47); 1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

Table x7. Logistic regression models to predict induction of labour

	Co-efficient b (Standard error (SE(b))									
	Мо	del 1	Model 2							
	(all cov	ariates)	(blood glucose covariates							
Variable	Base case analysis	Sensitivity analysis	Base case analysis							
Centre (Manchester v Belfast)	-0.476 (0.077)	-0.476 (0.077)	-							
(Brisbane v Belfast)	-0.337 (0.085)	-0.333 (0.087)	-							
(Newcastle v Belfast)	-0.387 (0.109)	-0.384 (0.110)	-							
Age at OGTT (yr)	0.006 (0.006)	0.006 (0.006)	-							
BMI at OGTT (kg/m²)	0.039 (0.006)	0.039 (0.006)	-							
Smoker (Yes v No)	0.051 (0.082	0.051 (0.082)	-							
Drinker (Yes v No)	0.079 (0.072)	0.079 (0.072)	-							
Family history DM (Yes v No)	0.016 (0.048)	0.016 (0.048)	-							
Gestational age at OGTT (wk)	0.011 (0.024)	0.011 (0.024)	-							
Neonate gender (F v M)	-0.038 (0.059)	-0.038 (0.059)	-							
Family history HBP (Yes v No) ^a	-	-	-							
Maternal UTI (Yes v No) ^a	-	-	-							
Mean Blood Pressure (mmHg)	0.008 (0.004)	0.008 (0.004)	-							
Hospital admission before delivery (Yes v No)	0.608 (0.066)	0.608 (0.066)	-							
Parity (1 v 0)	-0.363 (0.101)	-0.363 (0.101)	-							
(2+ v 0)	-0.193 (0.105)	-0.193 (0.105)	-							
(Unknown v 0)	0.141 (0.094)	0.141 (0.094)	-							
Fasting blood glucose ^b	-	0.009 (0.037)	0.079 (0.033)							
1-hr blood glucose ^b	-0.108 (0.041)	-0.111 (0.043)	-0.093 (0.041)							
2-hr blood glucose ^b	0.096 (0.041)	0.094 (0.041)	0.100 (0.040)							
Constant	-3.050 (0.794)	-3.037 (0.796)	-1.032 (0.029)							
Hosmer-Lemeshow goodness- of-fit test	χ ² = 9.08, df=8; P=0.34	χ ² = 9.42 df=8; P=0.31	χ ² = 9.83 df=8; P=0.28							
Area under the ROC curve	0.63	0.63	0.53							
(95% CI)	(0.61, 0.65)	(0.61, 0.65)	(0.53 (0.55)							

(a) Omitted from HAPO model for induction of labour

(b) Blood glucose values are 'standardised' - so the exponential of the coefficient represents the odds ratio for induction of

labour arising from a 1 Standard Deviation (SD) increase in plasma glucose (fasting plasma glucose mean (SD) = 4.60(0.47);

1-hour plasma glucose mean (SD) = 7.57(1.83); 2-hour plasma glucose mean (SD) = 6.21(1.44)

	Constant	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfact)	Age at OGTT (yr)	BMI AT OGTT (kg/m2)	Smoker	Drinker	Family History DM	Gestational age at OGTT (wk)	Neonatal gender	Mean Blood Pressure	Parity (1 v 0)	Parity (2+ v 0)	Parity (Unknown v 0)	Hospital admission hefore	z-hr blood glucose
Constant	3.025																
Centre (Manchester v Belfast)	-0.104	0.410															
(Brisbane v Belfast)	-0.129	0.335	0.331														
(Newcastle v Belfast)	-0.135	0.334	0.074	0.295													
Age at OGTT (yr)	-0.005	-0.001	0.000	0.000	0.024												
BMI AT OGTT (kg/m2)	-0.001	-0.001	-0.001	-0.001	0.001	0.023											
Smoker	-0.012	0.031	0.001	-0.003	0.047	0.006	0.404										
Drinker	0.001	0.014	-0.006	-0.020	-0.051	0.008	-0.018	0.311									
Family History DM	-0.023	0.012	-0.022	-0.018	-0.005	0.000	-0.009	-0.012	0.179								
Gestational age at OGTT (wk)	-0.080	-0.009	-0.001	0.006	-0.017	-0.007	-0.002	-0.001	-0.008	0.037							
Neonatal gender (F v M)	-0.037	-0.010	-0.006	-0.010	-0.002	0.009	0.003	-0.001	-0.005	-0.080	0.278						
Mean Blood Pressure (mmHg)	-0.004	-0.001	0.000	-0.002	-0.002	-0.006	0.000	0.000	-0.001	-0.011	-0.004	0.004					
Parity (1 v 0)	-0.038	0.014	0.011	-0.029	-0.024	-0.017	0.009	-0.013	0.006	-0.084	-0.020	-0.318	0.253				
(2+ v 0)	-0.026	0.007	0.025	-0.018	-0.082	-0.043	0.000	0.006	0.011	-0.072	-0.027	-0.317	0.021	0.229			
(Unknown v 0)	-0.052	0.019	0.005	-0.020	0.028	0.004	0.015	0.001	0.006	-0.090	-0.026	-0.311	0.020	0.026	0.219		
Hospital admission before delivery	-0.008	-0.007	-0.016	-0.006	0.005	-0.033	-0.006	0.007	-0.002	-0.002	0.004	-0.063	-0.061	-0.071	-0.079	0.225	
2-hr blood glucose	0.012	-0.003	-0.003	0.005	-0.016	-0.015	0.009	0.006	0.013	0.004	0.004	-0.003	-0.007	-0.021	-0.002	-0.015	0.091
66																	
67																	
68																	

Table x8. Cholesky decomposition of shoulder dystocia variance covariance matrix (Model 1, base case)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Table x9. Cholesky decomposition of caesarean section variance covariance matrix (Model 1, base case)

	Constant	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Age at OGTT (yr)	BMI AT OGTT (kg/m2)	Smoker	Drinker	Family History DM	Gestational age at OGTT	Neonatal gender	Mean Blood Pressure	Hospital admission	1-hr blood glucose
Constant	0.947													
Centre (Manchester v Belfast)	-0.020	0.089												
(Brisbane v Belfast)	-0.028	0.047	0.082											
(Newcastle v Belfast)	-0.028	0.048	0.025	0.126										
Age at OGTT (yr)	-0.001	0.000	0.000	0.000	0.007									
BMI AT OGTT (kg/m ²)	-0.001	-0.001	0.000	0.000	0.000	0.007								
Smoker	-0.004	0.010	0.004	0.001	0.013	0.000	0.104							
Drinker	0.001	0.004	0.000	-0.002	-0.011	0.004	-0.006	0.086						
Family History DM	-0.006	0.006	-0.005	-0.002	-0.003	0.000	-0.003	-0.003	0.056					
Gestational age at OGTT (wk)	-0.026	-0.001	0.000	0.001	-0.005	-0.002	-0.001	-0.001	-0.003	0.011				
Neonate gender	-0.009	-0.001	-0.002	0.000	-0.002	0.002	0.002	-0.001	-0.001	-0.020	0.067			
Mean Blood Pressure (mmHg)	-0.001	0.000	0.000	0.000	-0.001	-0.002	0.000	0.000	0.000	-0.003	-0.001	0.001		
Hospital admission before delivery	-0.003	-0.004	-0.007	-0.001	0.004	-0.009	-0.003	0.004	-0.001	0.000	0.000	-0.042	0.065	
1-hr blood glucose 70	0.005	-0.001	0.002	0.002	-0.006	-0.006	0.000	0.001	0.005	0.003	0.002	-0.003	-0.003	0.035

	Constant	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Аge at ОGTT (yr)	BMI AT OGTT (kg/m2)	Smoker	Drinker	Family History DM	Gestational age at OGTT (wk)	Neonatal gender	Mean Blood Pressure	Parity (1 v 0)	Parity (2+ v 0)	Parity (Unknown v 0)	d Hospital admission	2-hr blood glucose
onstant	1.236																
entre (Manchester v Belfast)	-0.037	0.154															
(Brisbane v Belfast)	-0.047	0.115	0.102														
(Newcastle v Belfast)	-0.050	0.115	0.042	0.137													
ge at OGTT (yr)	-0.002	0.000	0.000	0.000	0.009												
MI AT OGTT (kg/m2)	-0.001	0.000	0.000	0.000	0.000	0.009											
moker	-0.007	0.012	0.002	-0.001	0.018	-0.001	0.128										
rinker	0.002	0.004	-0.002	-0.004	-0.017	0.006	-0.007	0.115									
amily History DM	-0.008	0.004	-0.008	-0.003	-0.003	0.000	-0.004	-0.003	0.068								
estational age at OGTT (wk)	-0.034	-0.003	-0.001	0.002	-0.007	-0.002	-0.001	-0.001	-0.004	0.015							
eonatal gender (F v M)	-0.012	-0.003	-0.004	-0.002	-0.002	0.003	0.000	-0.001	-0.001	-0.025	0.090						
lean Blood Pressure (mmHg)	-0.002	0.000	0.000	-0.001	-0.001	-0.002	0.000	0.000	0.000	-0.004	-0.001	0.001					
arity (1 v 0)	-0.011	0.006	0.004	-0.009	-0.009	-0.005	0.002	-0.003	0.002	-0.024	-0.004	-0.103	0.102				
(2+ v 0)	-0.006	0.002	0.011	-0.005	-0.032	-0.015	-0.002	0.003	0.003	-0.021	-0.006	-0.102	0.012	0.111			
(Unknown v 0)	-0.016	0.008	0.003	-0.005	0.010	0.002	0.006	0.001	0.002	-0.025	-0.006	-0.101	0.011	0.011	0.081		
ospital admission before elivery	-0.005	-0.001	-0.005	0.000	0.004	-0.012	-0.003	0.005	0.000	-0.001	0.000	-0.033	-0.028	-0.025	-0.032	0.075	
-hr blood glucose	0.004	0.000	0.000	0.001	-0.007	-0.006	0.004	0.002	0.005	0.003	0.002	-0.002	-0.002	-0.006	0.000	-0.006	0.042
73																	

 Table x10.
 Cholesky decomposition of neonatal intensive care admission variance covariance matrix (Model 1, base case)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Table x11. Cholesky decomposition of jaundice variance covariance matrix (Model 1, base case)

)		Constant	Centre (Mancheste r v Belfast)	Centre (Brisbane v Belfast)	Centre (Newcastle v Belfast)	Age at OGTT (yr)	BMI AT OGTT (kg/m2)	Smoker	Drinker	Family History DM	Gestational age at OGTT (wk)	Neonatal gender	Mean Blood Pressure	Parity (1 v 0)	Parity (2+ v 0)	Parity (Unknown v 0)	Hospital admission	1-hr blood glucose
	Constant	1.522																
	Centre (Manchester v Belfast)	-0.038	0.153															
	(Brisbane v Belfast)	-0.049	0.102	0.128														
	(Newcastle v Belfast)	-0.055	0.102	0.041	0.228													
	Age at OGTT (yr)	-0.002	0.000	0.000	0.000	0.011												
	BMI AT OGTT (kg/m2)	-0.001	-0.001	-0.001	0.000	0.000	0.011											
	Smoker	-0.011	0.017	0.003	-0.001	0.023	0.000	0.158										
	Drinker	0.003	0.004	0.000	-0.002	-0.020	0.006	-0.011	0.161									
	Family History DM	-0.011	0.010	-0.010	-0.003	-0.005	-0.001	-0.004	-0.005	0.092								
	Gestational age at OGTT (wk)	-0.042	-0.003	0.000	0.002	-0.008	-0.004	-0.001	-0.001	-0.005	0.018							
	Neonatal gender (F v M)	-0.014	-0.003	-0.003	-0.002	-0.002	0.004	0.002	-0.001	0.000	-0.031	0.108						
	Mean Blood Pressure (mmHg)	-0.002	0.000	0.000	0.000	-0.001	-0.003	0.000	0.000	0.000	-0.005	-0.002	0.002					
	Parity (1 v 0)	-0.016	0.010	0.008	-0.006	-0.011	-0.007	0.001	-0.001	0.003	-0.032	-0.007	-0.128	0.126				
	(2+ v 0)	-0.008	0.002	0.014	-0.004	-0.039	-0.016	-0.003	0.005	0.006	-0.030	-0.009	-0.127	0.016	0.144			
	(Unknown v 0)	-0.021	0.013	0.006	-0.004	0.012	0.003	0.005	0.002	0.002	-0.034	-0.008	-0.126	0.015	0.013	0.094		
	Hospital admission before delivery	-0.006	-0.003	-0.008	-0.002	0.005	-0.016	-0.004	0.003	-0.001	-0.002	0.001	-0.040	-0.034	-0.028	-0.042	0.089	
	1-hr blood glucose	0.007	-0.001	0.004	0.003	-0.008	-0.009	0.003	0.001	0.008	0.004	0.003	-0.004	-0.004	-0.009	-0.001	-0.008	0.051
	75																	
								-	11									

Table x12. Cholesky decomposition of pre-clampsia variance covariance matrix (Model 1, base case)

	Constant	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Age at OGTT (yr)	BMI AT OGTT (kg/m2)	Smoker	Drinker	Family History DM	Gestational age at OGTT (wk)	Neonatal gender (F v M)	Parity (1 v 0)	Parity (2+ v 0)	Parity (Unknown v 0)	Family History HBP	Maternal UTI	2-hr blood glucose
Constant	1.842																
Centre (Manchester v Belfast)	-0.045	0.187															
(Brisbane v Belfast)	-0.059	0.083	0.173														
(Newcastle v Belfast)	-0.072	0.085	0.053	0.249													
Age at OGTT (yr)	-0.004	0.000	0.000	0.000	0.015												
BMI AT OGTT (kg/m2)	-0.002	-0.001	-0.001	-0.002	0.000	0.010											
Smoker	-0.010	0.019	0.002	0.001	0.026	0.001	0.243										
Drinker	0.002	0.007	-0.002	-0.004	-0.023	0.007	-0.009	0.192									
Family History DM	-0.017	0.013	-0.009	-0.006	-0.009	-0.001	-0.004	-0.004	0.124								
Gestational age at OGTT (wk)	-0.054	-0.003	0.000	0.002	-0.013	-0.012	-0.001	-0.001	-0.008	0.011							
Neonatal gender (F v M)	-0.023	-0.004	-0.006	-0.007	-0.003	0.009	0.001	-0.002	-0.001	-0.106	0.099						
Parity (1 v 0)	-0.020	0.013	0.016	-0.006	-0.014	-0.011	0.003	-0.001	0.001	-0.121	-0.123	0.163					
(2+ v 0)	-0.011	-0.001	0.020	-0.005	-0.047	-0.030	0.000	0.000	0.007	-0.117	-0.120	0.042	0.199				
(Unknown v 0)	-0.029	0.014	0.013	-0.004	0.017	0.002	0.006	0.001	0.000	-0.122	-0.125	0.036	0.025	0.127			
Family History HBP	-0.009	0.000	0.006	-0.005	-0.017	-0.014	0.001	-0.001	0.023	-0.034	-0.037	-0.060	-0.038	-0.048	0.108		
Maternal UTI	-0.004	-0.012	0.031	0.002	0.015	-0.001	-0.014	0.004	0.009	-0.021	-0.022	-0.030	-0.018	-0.028	-0.052	0.193	
2-hr blood glucose	0.006	-0.004	0.002	0.001	-0.012	-0.009	0.005	0.004	0.008	-0.006	-0.004	-0.006	-0.011	-0.002	-0.012	-0.009	0.061
77																	
								12									

BMJ Open

78	Table x13.	Cholesky decomposition of induction of labour variance covariance matrix (Model 1, base case)
----	------------	---

)		Constant	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Centre (Mancheste r v Belfast)	Аge at ОGTT (yr)	BMI AT OGTT (kg/m2)	Smoker	Drinker	Family History DM	Gestational age at OGTT	Neonatal gender (F v M)	Mean Blood Pressure	Parity (1 v 0)	Parity (2+ v 0)	Parity (Unknown v 0)	Hospital admission	1-hr blood glucose	2-hr blood glucose
1 2	Constant	0.794																	
3	Centre (Manchester v Belfast)	-0.018	0.074																
+ 5	(Brisbane v Belfast)	-0.024	0.039	0.072															
6	(Newcastle v Belfast)	-0.024	0.039	0.020	0.097														
/ 3	Age at OGTT (yr)	-0.001	0.000	0.000	0.000	0.006													
9	BMI AT OGTT (kg/m2)	0.000	0.000	0.000	0.000	0.000	0.006												
) 1	Smoker	-0.005	0.008	0.002	0.001	0.013	0.001	0.081											
2	Drinker	0.001	0.003	0.000	-0.002	-0.010	0.003	-0.006	0.071										
3 1	Family History DM	-0.006	0.005	-0.004	-0.002	-0.002	0.000	-0.002	-0.003	0.047									
5	Gestational age at OGTT (wk)	-0.021	-0.001	0.000	0.001	-0.004	-0.002	-0.001	0.000	-0.003	0.010								
5 7	Neonatal gender (F v M)	-0.007	-0.002	-0.002	-0.001	-0.001	0.002	0.001	-0.001	-0.001	-0.016	0.056							
, 3	Mean Blood Pressure (mmHg)	-0.001	0.000	0.000	0.000	-0.001	-0.001	0.000	0.000	0.000	-0.003	-0.001	0.001						
9	Parity (1 v 0)	-0.008	0.008	0.005	-0.004	-0.006	-0.004	0.000	-0.002	0.001	-0.020	-0.005	-0.075	0.061					
1	(2+ v 0)	-0.004	0.004	0.008	-0.002	-0.020	-0.010	-0.002	0.001	0.002	-0.019	-0.006	-0.075	0.005	0.067				
2	(Unknown v 0)	-0.012	0.007	0.003	-0.002	0.006	0.001	0.002	0.001	0.001	-0.021	-0.005	-0.075	0.005	0.004	0.050			
3 4 5	Hospital admission before delivery	-0.004	-0.004	-0.005	-0.001	0.002	-0.007	-0.002	0.003	0.000	-0.001	0.000	-0.017	-0.017	-0.016	-0.020	0.055		
5	1-hr blood glucose	0.004	0.000	0.004	0.002	-0.004	-0.003	-0.001	0.000	0.003	0.001	0.001	0.000	0.001	-0.001	0.001	0.000	0.040	
7	2-hr blood glucose	0.001	0.000	-0.003	-0.001	-0.001	-0.002	0.004	0.001	0.001	0.002	0.000	-0.001	0.000	-0.002	0.001	-0.001	-0.027	0.030
3 9	79																		
)																			
1 2																			
-									-										

80 Table x14: Model unit costs

Category	Cost	Standard Error	Distribution ^a	Source				
2 sample OGTT	£8.07	n/a	n/a	NICE 2015 ^b				
3 sample OGTT	£12.11	n/a	n/a	NICE 2015 ^b				
Rapilose OGTT solution	£3.48	n/a	n/a	BNF July 2016 ^c				
Health Care Assistant Band 3 (per hour)	£25	n/a	n/a	Unit Costs of Health and Social Care 2015 ^d				
Nurse Band 7 (per hour of patient contact)	£147	n/a	n/a	Unit Costs of Health and Social Care 2015 ^d				
Dietician	£38	n/a	n/a	Unit Costs of Health and Social Care 2015 ^d				
Antenatal appointment	£96	£9.07	Normal	NHS Reference Costs 2014-15 ^e				
Ultrasound scan	£112	£7.65	Normal	NHS Reference Costs 2014-15 ^e				
Rapid acting insulin	£0.02	n/a	n/a	BNF June 2016 ^c				
Regular insulin	£0.02	n/a	n/a	BNF June 2016 ^c				
Needles	£0.10	n/a	n/a	NHS Drugs Tariff June 2016 ^f				
Lancets	£0.03	n/a	n/a	NHS Drugs Tariff June 2016 ^f				
Strips	£0.18	n/a	n/a	NHS Drugs Tariff June 2016 ^f				
Treatment of GDM	£987	n/a	n/a	Calculated				
Severe hypoglycaemia	£650	n/a	n/a	NHS Reference Costs 2014-15 ^e				
Admission to NICU	£1,176	£38	Normal	NHS Reference Costs 2014-15 ^e				
Caesarean section	£982	£80	Normal	NHS Reference Costs 2014-15 ^e				
Neonatal death	£777	£39	Normal	NHS Reference Costs 2014-15 ^e				
Shoulder dystocia	£1,394	£79	Normal	NHS Reference Costs 2014-15 ^e				
Birth trauma	£1,394	£79	Normal	NHS Reference Costs 2014-15 ^e				
Serious perinatal complication (death, shoulder dystocia, birth trauma)	£1,347	n/a	n/a	Calculated				
Phototherapy	£788	£72	Normal	NHS Reference Costs 2014-15 ^e				
Pre-eclampsia	£4,750	n/a	n/a	NICE 2015 ^b				

 (a) The method used to obtain standard errors and the choice of a normal distribution for probabilistic sampling is described in detail in the NICE 2015 guideline⁶

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

83 84 85 86 87 88 89 90 91	 (b) National Institute for Health and Care Excellence (NICE) (2015) Diabetes in pregnancy: management of diabetes and its complications from preconception to the postnatal period. Clinical guideline NG3 (2015). (c) British National Formulary. July 2016. https://www.medicinescomplete.com/mc/bnf/current/ (accessed 4 Aug 2016). (d) Unit Costs of Health and Social Care 2015. Personal Social Services Research Unit, The University of Kent, 2015. (e) Department of Health. NHS reference costs: financial year 2014–2015. https://www.gov.uk/government/publications/nhs-reference-costs-2014-to-2015 , Department of Health, 2015. (f) NHS Electronic Drug Tariff, August 2016. http://www.drugtariff.nhsbsa.nhs.uk/#/00336026-DD_1/DD00336022/Home (accessed 4 Aug 2016).
92	QALYs
93	A QALY loss was estimated for each individual component (shoulder dystocia, death and birth trauma)
94	of the composite serious perinatal outcome, which was used in the ACHOIS study. ¹¹ A weighting for
95	each individual component was derived according to their relative frequency in the selected studies to

96 assess treatment effectiveness.^{11, 12} These were then used in order to derive a weighted average for a

97 serious perinatal complication as shown in Table x15. QALY losses from a serious perinatal complication

98 could be experienced over a lifetime and therefore an annual discount rate of 3.5% was applied in line

99 with NICE methods.¹⁹ For each patient, an expected QALY decrement is calculated based on their risk of

100 serious perinatal complications. These individual patient QALY decrements are then summed across all

101 patients to give the total QALY decrement for the patient dataset for each different diagnostic

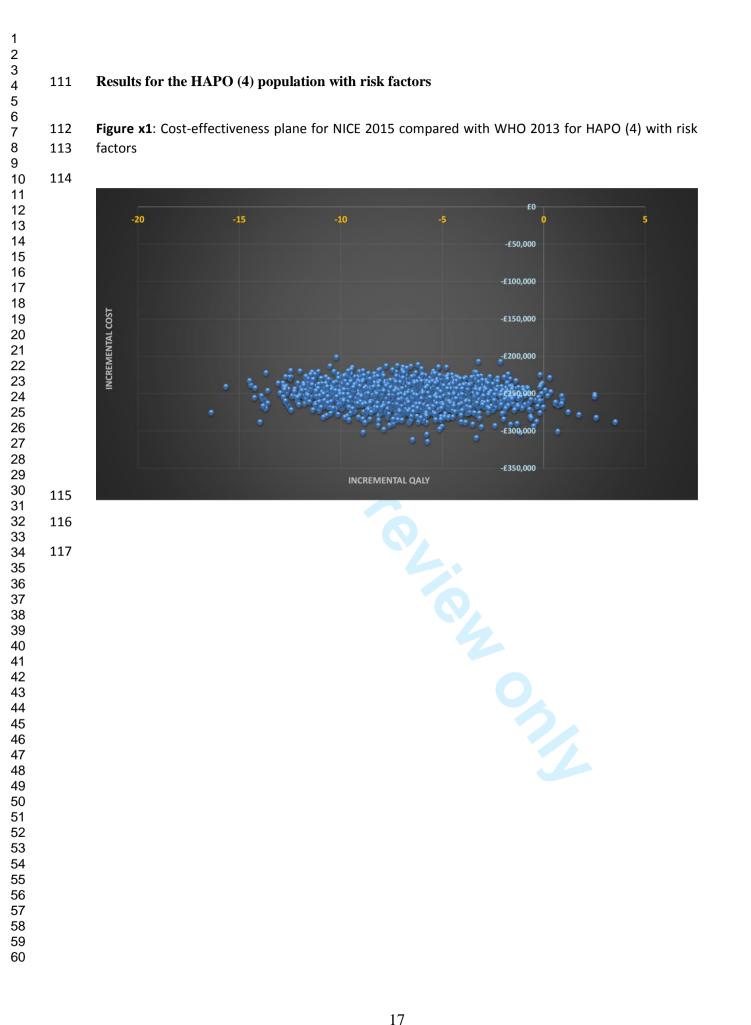

102 threshold.

Table x15: QALY losses and weights from individual components of the composite outcome of seriousperinatal complications

Complication	Weight	QALY	Weighted QALY
Death	0.08	25	2.00
Shoulder dystocia	0.73	0.2	0.15
Birth trauma	0.20	0.2	0.04

106 The analyses presented in this paper include a maternal health state utility which was estimated from 107 quality of life data collected as part of the ACHOIS study. Whilst treatment conferred a small benefit in 108 maternal health state utility, this was small in comparison to QALYs derived from infant outcomes. The

- value of the maternal health state utility with and without treatment is the same as has been used
- previously.6

Summary of results for each model population

Table x16: Summary of deterministic ICERs for each population with backward elimination of plasma glucose variables with non-significant coefficients

	All c	ovariates		Plasi	na glucose covar	iates	
Diagnostic threshold	HAPO Risk factor (n=3,549)	HAPO No Risk factor (n=2,614)	HAPO Risk factor (n=3,549)	HAPO No Risk factor (n=2,614)	Atlantic DiP Risk factor (n=1,988)	Atlantic DiP No Risk factor (n=3,302)	Norwich (n=12,754)
No Treatment	-	-	-	-	-	-	-
VICE 2015 WHO	£20,400	£36,878	£22,281	£30,449	£20,830	£31,136	£28,893
WHO 2013	£33,596	£141,812	£36,473	£88,661	£35,941	£40,526	£37,918

BMJ Open

Table x17: Probability that a threshold is cost-effective at a threshold of £30,000 per QALY and the net monetary benefit in each population using regression models with backward elimination of

plasma glucose variables with non-significant coefficients

26 27	All co	variates		Plasm	a glucose covaria	ates	
2Diagnostic	HAPO	HAPO	HAPO	HAPO	Atlantic DiP	Atlantic DiP	Norwich
2 ^{threshold}	Risk factor	No Risk factor	Risk factor	No Risk factor	Risk factor	No Risk factor	(NMB)
30	(NMB)	(NMB)	(NMB)	(NMB)	(NMB)	(NMB)	
β₽No	21.0%	78.1%	33.7%	69.3%	30.6%	70.0%	61.2%
3 ⁷ Treatment	(£0)	(£0)	(£0)	(£0)	(£0)	(£0)	(£0)
3 NICE	51.5%	21.9%	53.2%	30.7%	54.6%	23.5%	29.3%
32015	(£239,902)	(-£57,790)	(£104,075)	(£36,652)	(£113,042)	(-£37,716)	(-£96,248)
3 5 VHO	27.6%	0.1%	13.2%	0.1%	14.9%	6.6%	9.6%
3 6 013	(£186,675)	(-£111,179)	(£13,836)	(£79,581)	(£36,377)	(-£109,809)	(-£414,428)
37 126							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							

Results for the HAPO (4) population without risk factors

Table x18: Clinical outcomes for HAPO (4) population without NICE risk factors (n=2,614)

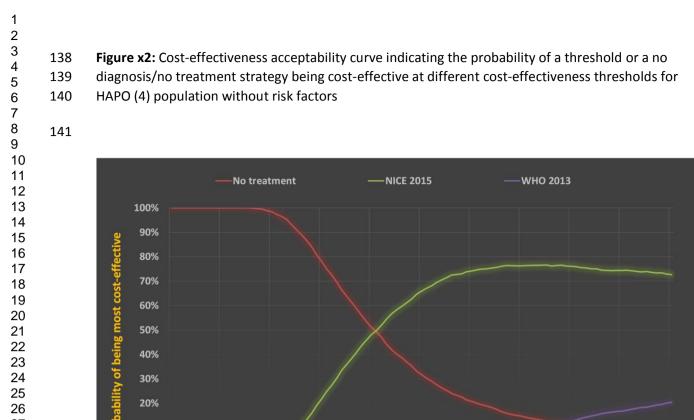
Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	24	34	466	188	126	55	647
NICE 2015	208	23	31	460	184	124	51	655
WHO 2013	253	23	31	459	184	123	51	657

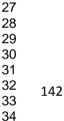
Table x19: Deterministic analysis for HAPO (4) population without NICE risk factors (n=2,614)

Diagnostic	Cost ^a	QALY ^a	Incremental	Incremental	ICER
threshold			cost	QALY	
No Treatment	£0	0.00	n/a	n/a	n/a
NICE 2015	£238,074	6.46	£238,074	6.46	£36,878
WHO 2013	£297,364	6.87	£59,290	0.41	£141,812

Costs and QALYs are measured relative to a baseline of No Treatment a)

Table x20: Probabilistic sensitivity analysis for HAPO (4) in a population without NICE risk factors


Diagnostic threshold	NMB ^a	Probability cost-effective
	CE threshold £30,000 per QALY	CE threshold £30,000 per QALY
No Treatment	£0	78.1%
NICE 2015	-£57,790	21.9%
WHO 2013	-£111,179	0.1%


NMB is measured relative to a baseline of no treatment a)

BMJ Open

£30,000 £40,000 £50,000 £60,000 £70,000 £80,000 £90,000 £100,000

Cost-effectiveness threshold

10%

0%

£0

£10,000

£20,000

143

35

36 37 38

39 40

41

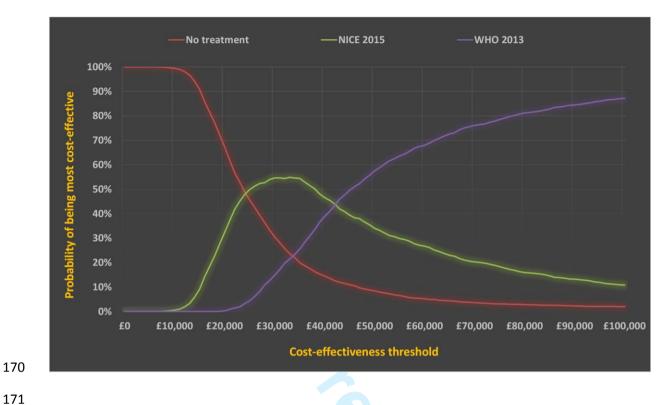
42

144 **Results for the Atlantic DiP population with risk factors**

145 **Table 21:** Clinical outcomes for Atlantic DiP population with NICE risk factors (n=1,988)

.3	Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
5 6 7	No Treatment	0	25	34	408	177	122	73	522
.7 .8 .9	NICE 2015	497	19	26	391	163	116	56	545
50 51	WHO 2013	749	17	24	385	158	112	51	555
52 53 54	146								
4 5 6	147								
7 8	148								
9	149								
	150								

Table x22: Deterministic analysis for the Atlantic DiP population with NICE risk factors (n=1,988)


Diagnostic	Cost ^a	QALY ^a	Incremental	Incremental	ICER
threshold			cost	QALY	
No Treatment	£0	0.00	n/a	n/a	n/a
NICE 2015	£414,714	19.91	£414,714	17.46	£20,830
WHO 2013	£638,590	26.14	£223,876	6.23	£35,941

a) Costs and QALYs are measured relative to a baseline of No Treatment

Table x23: Probabilistic sensitivity analysis for Atlantic in a population with NICE risk factors

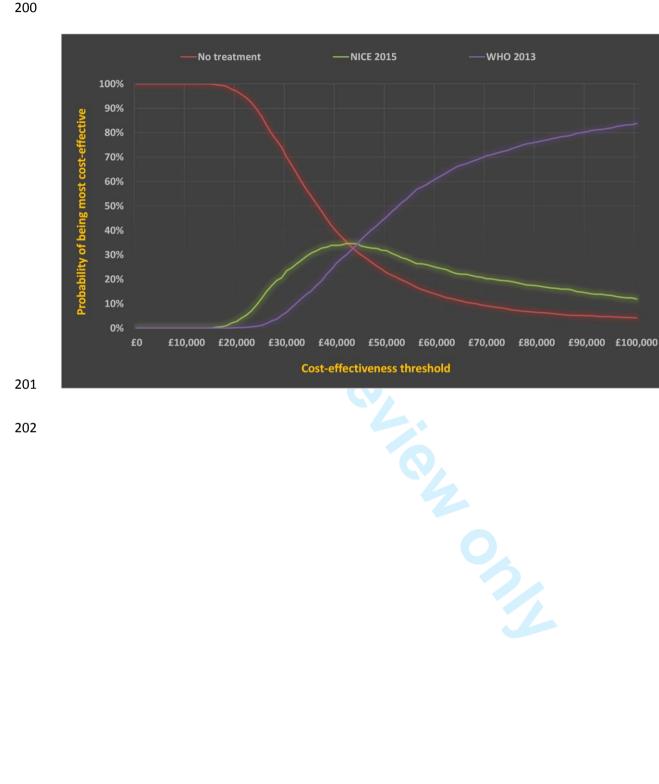
Diagnostic threshold	NMB ^a	Probability cost-effective
	CE threshold £30,000 per QALY	CE threshold £30,000 per QALY
No Treatment	£0	30.6%
NICE 2015	£113,042	54.3%
WHO 2013	£36,377	14.9%
a) NMB is measured re	lative to a baseline of no treatment	

Figure x3: Cost-effectiveness acceptability curve indicating the probability of a threshold or a no
 diagnosis/no treatment strategy being cost-effective at different cost-effectiveness thresholds for
 the Atlantic DiP centres population with risk factors

172 Results for the Atlantic DiP population without risk factors

Table x24: Clinical outcomes for Atlantic DiP population without NICE risk factors (n=3,302)

39 10	Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
11 12 13	No Treatment	0	33	45	575	254	168	84	828
4 5	NICE 2015	194	31	42	569	248	166	79	837
16 17 18	WHO 2013	371	30	41	564	245	163	76	844
9	174		1					1	
51 52	175								
53 54	176								
55 56	177								
6 7	178								
	-								
58 59	179								
58									


BMJ Open

	Diagnostic threshold	Cost ^a		QALY ^a	Incremental cost	Incremental QALY	ICER	
	No Treatment	£0		0.00	n/a	n/a	n/a	
	NICE 2015	£231,	633	7.44	£231,633	7.44	£31,136	
	WHO 2013	£402,	014	11.64	£170,381	4.20	£40,526	
.82	a) Costs and	QALYs are	measure	d relative to a b	aseline of No Treatment			
.83								
.84	Table x26: Probabilistic sensitivity analysis for the Atlantic DiP population without NICE risk fact							
	Diagnostic thr	NMB	a		Probability co	st-effective		
			CE tl	hreshold £3	0,000 per QALY	CE threshold £30,000 per QAI		
	No Treatment		£0	S		70.0%		
	NICE 2015		-£37,716			23.5%		
	WHO 2013		-£109	9,809		6.6%		
.85	a) NMB is m	easured i	relative 1	to a baseline o	f no treatment			
.86								
86 87 88								
.87								
87 88								
87 88 89 90								
87 88 89								

Page 56 of 65

BMJ Open

Figure x4: Cost-effectiveness acceptability curve indicating the probability of a threshold or a no diagnosis/no treatment strategy being cost-effective at different cost-effectiveness thresholds for the Atlantic DiP centres population without risk factors

Results for the Norwich population

Table x27: Clinical outcomes for Norwich population (n=12,754)

Diagnostic threshold	Diagnosed	SD	SPC	CS	NICU	Jaund	PE	IOL
No Treatment	0	132	182	2,333	1,005	699	346	3,173
NICE 2015	888	122	168	2,305	981	687	318	3,214
WHO 2013	1,771	117	161	2,283	965	676	301	3,248
205								

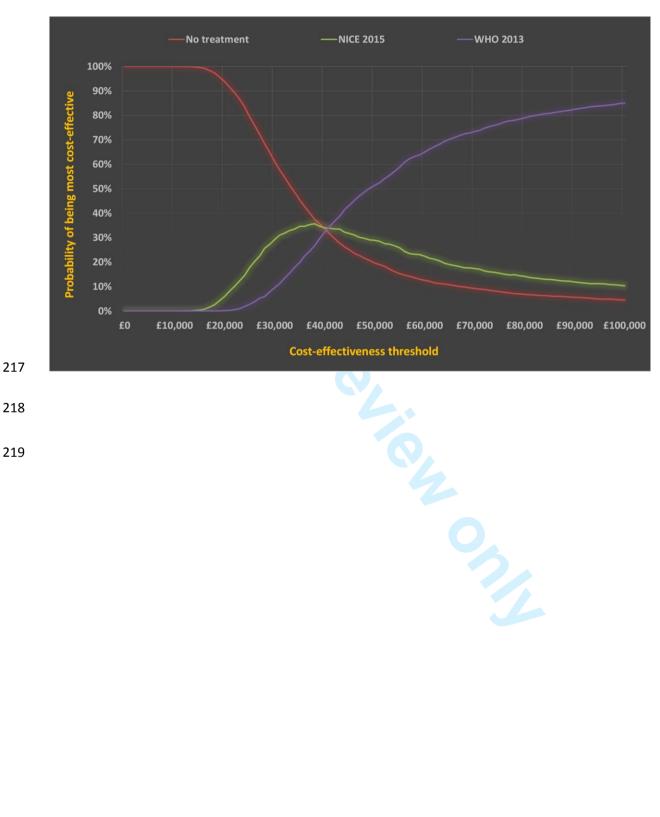
Table x28: Deterministic analysis for the Norwich population (n=12,754)

Diagnostic	Cost ^a	QALY ^a	Incremental	Incremental	ICER
threshold			cost	QALY	
No Treatment	£0	0.00	n/a	n/a	n/a
NICE 2015	£979,903	33.91	£979,903	33.91	£28,893
WHO 2013	£1,803,196	55.63	£823,293	21.72	£37,918

Table x29: Probabilistic sensitivity analysis for the Norwich population

a) NMB is measured relative to a baseline of no treatment

a) Costs and QALYs are measured relative to a baseline of No Treatment


Diagnostic threshold	NMB ^a	Probability cost-effective		
	CE threshold £30,000 per QALY	CE threshold £30,000 per QALY		
No Treatment	£0	61.2%		
NICE 2015	-£96,248	29.3%		
WHO 2013	-£414,428	9.6%		

5 211

 BMJ Open

Figure x5: Cost-effectiveness acceptability curve indicating the probability of a threshold or a no diagnosis/no treatment strategy being cost-effective at different cost-effectiveness thresholds for the Norwich population

-
3
4
5
6
7
8
9
10
2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18
12
13
1/
15
16
10
10
10
19
20
21
22
23
24
25
26
27
28
29
30
31
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 6
33
34
25
20

220 Deterministic sensitivity analysis

The cost-effectiveness of universal screening was not generally affected when the model was re-run 221 using the regression models without backward elimination of non-significant variables with no 222 223 screening/no treatment continuing to be the cost-effective option in populations not selected on the 224 basis of NICE risk factors (see Table x30). In the Norwich population, universal screening was 225 borderline cost-effective compared to no screening/no treatment at £30,000 per QALY but the same 226 point remains that a risk factor subset in this population would have a lower ICER than that 227 reported, and that a subset without risk factors, (i.e. those additionally incorporated as a result of 228 universal screening compared to risk factor screening), would have a higher ICER. In populations with NICE risk factors the NICE 2015 diagnostic thresholds were still found to be cost-effective at a 229 230 threshold of £30,000 per QALY, with broadly similar ICERs as previously. Similarly, the WHO 2013 231 diagnostic threshold was never found to be cost effective even in a population with risk factors.

Table x30: Summary of deterministic ICERs for each population without backward elimination of non-significant coefficients

35														
	All covariates Plasma glucose covariates							All covariates		All covariates Plasma glucose covariates				
₃₇ Diagnostic threshold 38	HAPO Risk factor	HAPO No Risk factor	HAPO Risk factor	HAPO No Risk factor	Atlantic DiP Risk factor	Atlantic DiP No Risk factor	Norwich							
39 10	(n=3,549)	(n=2,614)	(n=3,549)	(n=2,614)	(n=1,988)	(n=3,302)	(n=12,754)							
No Treatment	_	-	-	_		-	-							
NICE 2015	£20,162	£38,869	£21,786	£33,473	£19,557	£32,762	£27,354							
¥WHO 2013	£30,734	£94,585	£32,267	£58,604	£35,285	£39,076	£38,402							
44 234 45 46 47 235 48 49 50 51 52 53														

- 54 55
- 56 57
- 58
- 59 60

BMJ Open

236 Mean plasma glucose values according to risk factor status

Table x311: Mean plasma glucose values in HAPO (4) and Atlantic DiP population according to their
 risk factor status

			HAPO (4)			Atlantic DiF)
		Fasting	1-hour	2-hour	Fasting	1-hour	2-hour
	True Positives	5.24	9.90	7.89	5.21	10.21	7.61
	False Positives	4.50	7.20	5.95	4.33	6.75	5.33
	True Negatives	4.44	6.95	5.78	3.92	5.99	4.76
	False Negatives	4.89	9.52	7.41	4.90	9.51	7.12
0		<u> </u>					
1							

CHEERS Statement

CHEERS checklist—Items to include when reporting economic evaluations of health interventions

Section/item	Item No	Recommendation	Reported on page No/ line No
Title and abstract			
Title	5	Identify the study as an economic evaluation or use more specific terms such as "cost- effectiveness analysis", and describe the interventions compared.	Yes Page 1 Line 2
Abstract		Provide a structured summary of objectives, perspective, setting, methods (including study design and inputs), results (including base case and uncertainty analyses), and conclusions.	Yes Page 2 Lines 30-55
Introduction			
Background and objectives	3	Provide an explicit statement of the broader context for the study.	Yes Page 5-6 Lines 92-104
		Present the study question and its relevance for health policy or practice decisions.	Yes Page 5 Lines 74-90
Methods			
Target population and subgroups		Describe characteristics of the base case population and subgroups analysed, including why they were chosen.	Yes Page 6-8 Lines 116- 149
Setting and location	5	State relevant aspects of the system(s) in which the decision(s) need(s) to be made.	Yes Page6-7 Lines 116- 122
Study perspective		Describe the perspective of the study and relate this to the costs being evaluated.	Yes Page 12 Line 219
Comparators		Describe the interventions or strategies being compared and state why they were chosen.	Yes Page 6 Line 100-104; 108-111
Time horizon		State the time horizon(s) over which costs and consequences are being evaluated and say why appropriate.	Yes Page 12 Line 230
			Supp. Report

Section/item	Item No	Recommendation	Reported on page No/ line No
			Page 15 Line 90
Discount rate	9	Report the choice of discount rate(s) used for costs and outcomes and say why appropriate.	Yes Page 12 Line 230 Supp. Report
			Page 15 Line 90
Choice of health outcomes	10	Describe what outcomes were used as the measure(s) of benefit in the evaluation and their relevance for the type of analysis performed.	Yes Pages 8-9 Lines 152- 172
Measurement of effectiveness	11a		Yes Pages 10 Lines 202- 205
	11b	<i>Synthesis-based estimates:</i> Describe fully the methods used for identification of included studies and synthesis of clinical effectiveness data.	Yes Pages 10 Lines 199- 201
Measurement and valuation of preference based outcomes	12	If applicable, describe the population and methods used to elicit preferences for outcomes.	
Estimating resources and costs	13a	Single study-based economic evaluation: Describe approaches used to estimate resource use associated with the alternative interventions. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	
	13b	<i>Model-based economic evaluation:</i> Describe approaches and data sources used to estimate resource use associated with model health states. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	243 Supp. Report Page 14
Currency, price date, and conversion	14	Report the dates of the estimated resource quantities and unit costs. Describe methods for adjusting estimated unit costs to the year of reported costs if necessary. Describe methods for	Line 80 Yes Page 12 Lines 230

ו ס
2 3
3
4 5 6
5
6
7 8
8
ģ
8 9 10
10
11 12 13 14 15
12
13
14
15
16
17
10
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
19
20
21
22
23
24
25
20
20
21
28
29
30
31
31 32 33 34 35 36 37 38 39
33
24
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
4 5 50
51
52
53
54
55
56
57
58
50
59
60

Section/item	Item No	Recommendation	Reported on page No/ line No
		converting costs into a common currency base and the exchange rate.	
Choice of model	15	Describe and give reasons for the specific type of decision-analytical model used. Providing a figure to show model structure is strongly recommended.	Yes Page 6 Lines 108- 111; 113-114
Assumptions	16	Describe all structural or other assumptions underpinning the decision-analytical model.	Yes Page 8-9 Lines 151- 172 Yes Page 13 Lines 245-
		CO.	248 Supp. Report Page 2-7 Supp. Report Page 15 Lines 84-102
			+References to other sources
Analytical methods		evaluation. This could include methods for dealing with skewed, missing, or censored data; extrapolation methods; methods for pooling data; approaches to validate or make adjustments (such as half cycle corrections) to a model; and	Yes Page 9-10 Lines 174- 191 Yes Page 13-14 Lines 259- 266
			Supp. Report Page 2-7
Results			
Study parameters	18	to represent uncertainty where appropriate. Providing a table to show the input values is	Yes Page 11 Lines 215- 216 Page 13

Section/item	Item No	Recommendation	Reported on page No/ line No
			Lines 243- 244
			Supp. Report Page 2-15
Incremental costs and outcomes	19	6	Yes Page 15 Lines 279- 281 Supp. Report
Characterising uncertainty	20a	<i>Single study-based economic evaluation:</i> Describe the effects of sampling uncertainty for the estimated incremental cost and incremental effectiveness parameters, together with the impact of methodological assumptions (such as discount rate, study perspective).	Page 17-25
	20ь	<i>Model-based economic evaluation:</i> Describe the effects on the results of uncertainty for all input parameters, and uncertainty related to the structure of the model and assumptions.	Yes Supp. Report Page 17 Lines 116- 119 Supp. Report
			Page 26 Lines 225- 227
Characterising heterogeneity	21	If applicable, report differences in costs, outcomes, or cost-effectiveness that can be explained by variations between subgroups of patients with different baseline characteristics or other observed variability in effects that are not reducible by more information.	Yes Supp. Report Page 17 Lines 111- 114
Discussion]		
Study findings, limitations, generalisability, and current knowledge	22	Summarise key study findings and describe how they support the conclusions reached. Discuss limitations and the generalisability of the	Yes Pages 18-25

Section/item	Item No	Recommendation	Reported on page No/ line No
findings and how the findings fit with current knowledge.			
Other			
Source of funding		Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non-monetary sources of support.	Yes Page 26 Lines 547- 552
Conflicts of interest	0	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors recommendations.	Yes Page 26 Lines 557- 560