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Female Infertility Caused by Mutations
in the Oocyte-Specific Translational Repressor PATL2

Sateesh Maddirevula,!® Serdar Coskun,23° Saad Alhassan,* Atif Elnour,> Hessa S. Alsaif,!
Niema Ibrahim,! Firdous Abdulwahab,! Stefan T. Arold,® and Fowzan S. Alkurayal.7.8*

Infertility is a relatively common disorder of the reproductive system and remains unexplained in many cases. In vitro fertilization tech-
niques have uncovered previously unrecognized infertility phenotypes, including oocyte maturation arrest, the molecular etiology of
which remains largely unknown. We report two families affected by female-limited infertility caused by oocyte maturation failure.
Positional mapping and whole-exome sequencing revealed two homozygous, likely deleterious variants in PATL2, each of which fully
segregates with the phenotype within the respective family. PATL2 encodes a highly conserved oocyte-specific mRNP repressor of trans-
lation. Previous data have shown the strict requirement for PATL2 in oocyte-maturation in model organisms. Data gathered from the
families in this study suggest that the role of PATL2 is conserved in humans and expand our knowledge of the factors that are necessary

for female meiosis.

Infertility, a reproductive-system disorder defined by the
failure to achieve a clinical pregnancy after 12 months or
more of regular unprotected sexual intercourse, affects
10.7%-15.5% of couples.' Although infertility is highly
heterogeneous in etiology, investigating the cause is neces-
sary for guiding treatment options. Additionally, molecu-
lar understanding of infertility has the potential to reveal
fundamental insight into human reproduction. This is
particularly true when mechanical and hormonal causes
are excluded and abnormal cellular phenotypes are
observed, which is now possible with the advent of
in vitro fertilization (IVF) techniques. One example is the
discovery of TLE6 and PADI6 (MIM: 612399 and 610363,
respectively) mutations causing failure of zygote cleavage,
which revealed a critical role of the extracellular maternal
complex and zygotic gene activation in humans and their
conserved role in other species.””

The syndrome of oocyte maturation failure is an
extremely rare cause of primary female infertility: only a
few cases have been reported to date. This maturation
arrest can represent failure to complete any of the
various stages of meiosis I or IL.** The resulting incompe-
tence of the oocyte to be fertilized even with intracyto-
plasmic sperm injection poses a significant management
challenge. Several mutants (typically mice) have been
described as having a maturation-arrest phenotype.®"?
These include Cdc25b and Pde3a knockouts (KOs) that ar-
rest at the germinal vesicle (GV) stage, Meil, Cks2, Mlh1,
and Lfng KOs that arrest at meiosis I, and Smc1b and Mos
KOs that arrest at meiosis I1.°'® Interestingly, although
some of these mutants are associated with female-limited

sterility, others (e.g., Mei, Cks2, Mlh1, and Smc1b mutants)
display a sexually dimorphic infertility phenotype. No mu-
tations, however, have been reported in the human ortho-
logs of these genes in the context of infertility. Thus, it re-
mains unknown what causes maturation arrest in human
female individuals with infertility. In this study, we suggest
that PATL2 (MIM: 614661) mutations are one such etiol-
ogy on the basis of human genetics data and the gene’s es-
tablished role in oocyte maturation in model organisms.
Affected individuals were recruited after providing
informed consent under a research protocol approved by
King Faisal Specialist Hospital and Research Center
(KFSHRC) research advisory council 2121053. Meiosis I
maturation arrest was defined as the failure of resumption
of meiosis after controlled ovarian stimulation and follic-
ular maturation triggering by luteinizing hormone and hu-
man chorionic gonadotropin. Venous blood samples were
obtained from the index individuals and available relatives
in each family for DNA extraction. For positional mapping,
the Axiom SNP Chip (Affymetrix) platform was used
for genome-wide genotyping. Runs of homozygosity
(ROHs) > 1 Mb were considered surrogates of autozygosity
by AutoSNPa.'* Linkage analysis was performed with the
easyLINKAGE package under a fully penetrant auto-
somal-recessive female-limited model.'®> For exome anal-
ysis, we selected the index individual from each family.
The samples were prepared according to the preparation
guide of the Agilent SureSelect Target Enrichment Kit,
and the resulting libraries were sequenced with the Illu-
mina HiSeq 2000 sequencer. The Genome Analysis Toolkit
was used for variant calling. We considered only variants
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Identification of Individuals with a Phenotype Involving Oocyte Maturation Arrest

(A and B) Images of an immature oocyte with a germinal vesicle (A, white circle) and a mature oocyte with a polar body (B, yellow circle)

from a normal woman.

(C-E) Images of immature oocytes from the individual with a maturation arrest phenotype from family 1. (C) An oocyte retrieved from a
stimulated ovary. (D and E) Immature oocytes after 24 (D) and 48 (E) hr culture in in vitro maturation media indicate failure in matura-
tion. Pedigrees of family 1 (F) and family 2 (G) are shown. WES was performed on the index individual (indicated by a red box) in each

family.

that are novel or very rare (minor allele frequency [MAF] <
0.001) in the ExAC Browser and 2,379 Saudi exomes. We
also performed computational structural analysis of candi-
date variants. Sequences were retrieved from UniProt. We
used SwissModel to produce homology models.'® RaptorX
was used for prediction of secondary structures and protein
disorders."” Models were manually inspected, and muta-
tions were evaluated with PyMOL.

Family 1 consists of two Arab sisters (IV:18 and 1V:19,
currently 35 and 27 years of age, respectively) who
presented with primary infertility but regular menstrual
cycles to our IVF center at KFSHRC. The index individual
(IV:19) had a 7-year history of primary infertility. She had
undergone seven failed IVF cycles, each with an adequate
number of retrieved eggs (5-23 oocytes), but all arrested
in meiosis I, as indicated by the presence of a GV (Figures
1C-1E, Movie S1, and Supplemental Note; Figures 1A and
1B and Movie S2 show normal meiosis I for comparison).
Hormone levels were measured on the third day of the

cycle, and her follicle-stimulating hormone (FSH) level
was 6.6 IU/L. There was no indication of polycystic ovary
disorder on hormonal or imaging studies. Oocytes were
cultured in the in vitro maturation media, but there was
no progress on meiotic maturation for 48 hr. Her sister
(IV:18) also had a 6-year history of primary infertility.
She had undergone one IVF cycle, and four retrieved
eggs were arrested in meiosis I (Figures S1A-S1C). Like
her sister, she lacked features of polycystic ovary disorder,
and her FSH level was 5.6 IU/L on the third day of the cy-
cle. Although consanguinity was denied, both parents
belong to the same tribe. Please refer to the Supplemental
Note for detailed clinical information.

Family 2 also consists of two Arab sisters with primary
infertility. The index individual (II:4), 33 years old, pre-
sented to the IVF center at Habib Medical Group Hospi-
tal and underwent five trials of failed intrauterine insem-
ination followed by an unsuccessful IVF cycle. A total
of 20 oocytes were retrieved, but none were mature
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Figure 2. Identification of PATL2 Variants in Individuals with a Phenotype Involving Oocyte Maturation Arrest

(A) Shared haplotypes (chr15: 42,254,070-45,702,800; UCSC Genome Browser hg19) of the affected members from family 1 (IV:19 and
IV:18) and family 2 (II:4 and II:5). Yellow lines indicate heterozygous SNPs. Red lines indicate rare homozygous SNPs. The lower panel
shows genes that are within the shared ROH region. The position of PATL2 (chrl5: 44,966,961-45,003,514; UCSC Genome Browser
hg19) is highlighted with a red circle.

(B) Genome-wide linkage analysis showing a chr15 peak with a pLOD score of 5.5 (16 individuals are included; see Figure S2 for details).
(C) Genomic context and structural presentation of PTAL2, including the two variants.

(D and E) The PAT1 domain contains the residues (Arg301, Leu302, Arg368, Ala327, Arg402, and Arg403) corresponding to the PATL1
residues involved in RNA binding (shown in dark blue). (D) Based on the structure of the corresponding region of PATL1 (PDB: 2XEQ;
34% sequence identity), the secondary-structure representation of the homology model of the C-terminal domain of PATL2 (residues
299-540) is shown. Gly370 is shown as orange spheres. (E) Magnified view of the outlined region in (D). In addition to Gly370 (orange),
the putative p.Gly370Arg rotamer side chain (gray) with the least possible clashes (red discs) is shown, illustrating that p.Gly370Arg com-

promises the folding and function of PATL2.

(Figure S1D). She was noted to have a failure of resump-
tion of meiotic arrest. Her sister, 26 years old, has a
3-year history of primary infertility but has not yet
had any IVF cycles. Both sisters had regular menstrual
cycles, and their workups ruled out polycystic ovary dis-
order. Similar to the parents in family 1, the sisters’ par-
ents are not consanguineous but have the same tribal
origin.

Given the extreme rarity of their phenotype, we hypothe-
sized that both families are affected by a similar underlying
molecular defect. Although neither family is apparently
consanguineous, the shared tribal origin of the parents
(endogamy) makes it still possible that the phenotype
is caused by autozygosity for ancestral recessive muta-
tions, which can be traced by positional mapping. Examina-

tion of the ROHs revealed only one overlapping autozy-
gous region of 3.4 Mb (chrl5: 42,254,070-45,702,800)
(Figure 2A). Linkage analysis confirmed that both families
map to this candidate locus (Figure 2B). However, the haplo-
type of the affected members was clearly different between
the two families, which suggests that each family has a
different mutation in the candidate gene, consistent with
the difference in their tribal affiliation (Figure 2A and Table
S1). Exome sequencingrevealed 63,890 variants in the index
individual of family 1 and 72,370 variants in the index indi-
vidual of family 2. However, only one rare homozygous
variant was identified within the candidate locus in each
family, and both variants involved PATL2: c.478C>T
(p-Arg160*) (GenBank: NM_001145112.1) in family 1 and
c.1108G>A (p.Gly370Arg) (GenBank: NM_001145112.1)
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in family 2 (Table S2). No other candidate homozygous var-
iants outside the linkage interval or compound-heterozy-
gous variants were identified. Segregation analysis using
Sanger sequencing confirmed that the variant is homozy-
gous in the affected members of each respective family
(Figure S2). Interestingly, homozygosity for c.478C>T
(p-Argl60*) was compatible with fertility in males, as
demonstrated by the father and two brothers in family 1
(Figure S2A). Both variants were completely absent in
2,379 Saudi exomes and very rare or absent in the EXAC
Browser (MAF = 0.00003362 and O for p.Argl60* and
p-Gly370Arg, respectively).

PATL2 encodes an RNA-binding protein that acts as a
translational repressor. PAT proteins contain a conserved
N-terminal sequence, a proline-rich region, a Mid do-
main, and a C-terminal domain. Prediction of secondary
structure and disorder indicated that the N-terminal 290
residues of the 541-residue protein PATL2 are highly mo-
bile and unstructured. The PATL2 residues 299-540 are
predicted to adopt a stable three-dimensional (3D) fold.
A 3D structure of this C-terminal domain can be modeled
with good confidence on the basis of the 34% identical
C-terminal domain of PAT1 (PDB: 2XES and 2XEQ;
modeling QMEAN score of —2.79). Gly370 localizes in
helix 3 of the C-terminal domain. It is oriented toward
the hydrophobic core of the superhelical fold of this
domain (Figure 2D). An arginine in this position would
result in severe steric clashes (Figure 2E) and lead to the
unfavorable introduction of a charge within the hydro-
phobic core. The p.Gly370Arg variant is therefore ex-
pected to strongly destabilize this protein region (Poly-
Phen-2: 0.915; SIFT: 0.03; and CADD: 33). In PAT1, this
region is involved in RNA binding.'® This region is high-
ly conserved, and stereochemical features are preserved
in PATL2 (Figures 2D and 2E). It is therefore expected
that p.Gly370Arg will lead to loss of RNA and protein li-
gands that are central to the function of PAT proteins.
The glycine residue at the 370™ position is highly
conserved from humans to yeast (Figure S3). The prema-
ture stop codon at position 160, on the other hand, leads
to complete loss of the RNA-binding domain, so this
truncation is expected to result in severe loss of function
of PATL2 (we found no evidence of nonsense-mediated
decay).

In humans, oogenesis commences in utero and stalls in
meiosis I until ovulation (when meiosis I is completed),
whereas meiosis II is completed only after fertilization.
During this process, the chromatin condensation does
not permit active transcription; as a result, intracellular
signaling is primarily controlled at the translational level.
A pivotal factor in this process is a large mRNP complex
that sequesters RNA in the oocyte.'? This complex is func-
tionally very similar to the P bodies in the somatic
cells.?*?! Completion of meiosis is marked by GV break-
down (GVBD), a critical event that is triggered by a marked
decline in CPEB and consequent translational activation of
MOS (MIM: 190060) and CCNB1 (MIM: 123836). **2*

Interestingly, Mos deficiency has been shown to result in
meiosis arrest in mice.”’

PATL2 and PATL1 are vertebrate paralogs of Patlp in
yeast, PATR-1 in roundworm, and HPat in fruit fly.”® The
ancestral ortholog served a dual function (RNA decapping
and translational repression), and its deficiency has been
shown to result in translational repression with deleterious
consequences.”’ PATL2 was first identified in 1992 as a
Xenopus oocyte-specific protein that binds single-stranded
DNA, and it was labeled P100.%® It was later found that
PATL2 is a component of a complex involving the cyto-
plasmic polyadenylation element and its binding factor
CPEB, and this complex is a critical temporal regulator of
translation during oocyte maturation.”>”’ PATL2 is highly
abundant in early stages of meiosis but declines precipi-
tously, similarly to CPEB (with which it physically inter-
acts), with the onset of GVBD. Indeed, it has been shown
that this decline in the amount of PATL2 is necessary for
GVBD and that ectopic expression completely blocks
meiosis I progression.”>*" Importantly, PATL1 does not
compensate for the role of PATL2 in meiosis given that it
is only detectable in later stages. PATL2 has been shown
to harbor RNA binding activity and resulting translational
repression, but decapping activity has not been shown.?®
On PATL1, the region necessary for RNA binding has
been shown to involve a basic patch on the C-terminal
domain (residues Arg519, Arg520, Arg591, Arg59s,
Lys625, and Lys626, corresponding to Arg301, Leu302,
Arg368, Ala327, Arg402, and Arg403, respectively, in
PATL2);'® this patch is completely lost as a result of the
truncating variant in family 1 and is expected to be
severely impaired by the missense variant in family 2.

The function of PATL2 in humans is unknown. Despite
the inbred nature of the local population, the complete
lack of homozygous deleterious variants in our local
exome database suggests that it is highly constrained in
the recessive sense. Indeed, the data we present in this
study suggest a role in human oogenesis that is only lost
in the setting of biallelic mutations. Although data from
Xenopus indicate that the decline in the amount of
PATL2 ortholog coincides with and probably triggers
GVBD, we show that its deficiency in humans results in a
highly similar meiosis I arrest. This suggests a strict require-
ment for temporal control of the PATL2 expression level
for normal oocyte maturation. Interestingly, we show
that the effect of PATL2 is limited to females, given that
at least three males who are homozygous for a severe trun-
cating variant are fertile.

In conclusion, we suggest that PATLI mutations arrest
meiosis I and thus lead to female-limited infertility in
humans. This rare etiology of infertility expands our
knowledge of factors required for normal human oogen-
esis and suggests a highly conserved network that con-
trols this process across species. We hope that this and
future discoveries of the molecular underpinning of hu-
man infertility will inform and advance new therapeutic
strategies.
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Supplemental Data

Supplemental Data include a Supplemental Note, three figures,
two tables, and two movies and can be found with this article on-
line at http://dx.doi.org/10.1016/j.ajhg.2017.08.009.
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Supplemental Note
Case #1 (Family 1_IV:19):

23 years old lady with primary infertility for 7 years. Married to a 29 years old
gentleman.

Gynecological history:

Normal menarche, regular cycles, no hirsutism, no acne or galactorrhea no
dysmenorrhea, no history of PID, endometriosis, or pelvic surgeries. Not on any
hormonal treatment or contraception.

Family history:
She gave history of similar infertility concerns in one of her younger sisters (see
Case #2 below).

Previous fertility assessment diagnosis & treatment:
e Hormonal profile: hyperprolactinemia on bromocriptine 1.25mg PO OD, last
prolactin level 49. FSH =5.3. LH =12.4. TSH 5.99
e Underwent 6 ovulation induction cycles via clomiphene citrate. Then 5
ovulation inductions by gonadotropins with timed intercourse.

Partner history:

29 years old gentleman who is medically & surgically free. Not using any
medication. Doesn’t have any allergies. Non-smoker.

Semen analysis: 6.3 ml, 25 mil/ml, 38% motile, 96% abnormal forms, TMC =
58.950000, acrosome deficiencies 59%

Workup:
e Weight = 44 Kg, Height = 146 cm, BMI = 20.6
e Blood group A+
e Hb=116¢g/L
e FSH=6.61U/L
e LH=5.5IU/L
e Estradiol level = 150 pmol/L
e TSH=2.8
e Prolactin level = 14.5



e Rubella Immune
e AFC10+6
e HSG films reviewed: Right tubal block with normal left tube & cavity

Infertility diagnosis: Unexplained Infertility

Infertility treatment offered & outcome:

A. Super ovulation: had 2 cycle of super ovulation 1UIl as follows:

Cycle #1: - Super ovulation — IUl HMG 150 IU for 6 days then increased to
187.5 IU for 5 days + 200mcg Buserlin. Had 2 follicles recruited 1 was 18 mm &
the other was 15 mm. Endometrium started 2 mm became 12 mm at trigger
day. Triggered oocyte maturation by 10,000 IU HCG. IUl was performed
smoothly with no complications or difficulties. For luteal phase support
progesterone pessary prescribed 200 mg vaginally BID for 14 days. Pregnancy
test negative.

Cycle #2: - Super ovulation — IUI HMG 187.5 IU for 11 days + 200mcg
Buserlin. Had 2 follicles recruited 1 was 18 mm & the other was 16 mm.
endometrium started 2 mm became 13 mm at trigger day. Triggered oocyte
maturation by 10,000 IU HCG. IUl was performed smoothly with no
complications or difficulties. For luteal phase support progesterone pessary
prescribed 200 mg vaginally BID for 14 days. Pregnancy test negative.

B. IVF Treatment: had total of 7 cycles as follows:
Summary of cycles:

Cycle #1: > Long protocol with leuprolide 3.75 IM once at follicular phase at
cycle day = HMG Menogon 225 IU for 13 days then 75 IU for 1 days =
triggered 10,000 IU HCG (Endometrial thickness 16mm) = 11 oocytes
collected - all were GV

Cycle #2: - Short protocol - started at cycled day 4 > HMG Menogon 150 IU
for 9 days then 225 IU for 5 days + Buserlin 400 mcg SC daily - triggered
10,000 IU HCG (Endometrial thickness 13mm) - 4 oocytes collected (only right
ovary, left ovary not aspirated due to bladder accessibility) = all were GV




Cycle #3: > Long protocol (we wanted to try GnRH flexible Antagonist
protocol but we didn’t have antagonist in the hospital & patient couldn’t
afford it from outside) had leuprolide 3.75 IM once at follicular phase at cycle
day > HMG Menogon 225 IU for 9 days then 300 IU for 5 days - triggered
10,000 IU HCG (Endometrial thickness 16mm) = 21 oocytes collected - all
were GV

Cycle #4: > Short protocol - started at cycled day 4 > HMG Menogon 300 IU
for 12 days - after 10 days of stimulation a leading follicle reached 15m, (LH
measured on same day 5.9 iu/L, next day 3.3 iu/L the day after 3 iu/L) >
triggered Buserelin 500 mcg SC (Endometrial thickness 14mm) = 5 oocytes
collected - all were GV

Cycle #5: > Short protocol - started at cycled day 3 > HMG Menogon 300 IU
for 6 days then 375 IU for 4 days then increased to 450 IU 2 days + Buserlin
400 mcg SC daily = triggered 10,000 IU HCG (Endometrial thickness 14mm) =>
2 oocytes collected - all were GV

Cycle #6: - Flexible antagonist protocol - started at cycled day 4 = FSH
Gonal-F 300 IU for 9 days then antagonist started 0.5 Orgalotran both
continued 3 days (developed 2 right hemorrhagic cyst at CD 10 ) - triggered
by Superfact 0.4 ml SC (Endometrial thickness 18mm) = 13 oocytes collected
- all were GV

Cycle #7: > Flexible antagonist protocol = started at cycled day 3 - FSH
Gonal-F 300 IU for 10 days then antagonist started 0.5 Orgalotran both
continued 3 days-> triggered by Superfact 0.4 ml SC & HCG 10,000 IU SC
(Endometrial thickness 18mm) = had 22 follicles recruited 23 oocytes
collected - 14 eggs were GV’s & 7 eggs degenerated.




Case #2 (Family 2_1V:18):

25 years old lady with primary infertility for 6 years, married to a 31 years old
gentleman.

Gynecological history:

Menarche at age of 12, cycles range 28 — 35 days with flow 5-6 days, no acne or
galactorrhea, mild dysmenorrhea & no history of PID, endometriosis, pelvic
surgeries. Not on any hormonal treatment or contraception.

Past medical history: free
Past surgical history: free
Medications: None
Allergies: None

Partner history:
He’s known to be diabetic controlled on oral hypoglycemic agents. Surgically free.
Doesn’t have any allergies. Nonsmoker.

Workup:
e Weight =59.7 Kg, Height = 158 cm, BMI = 23.9
e Blood group A+
e Hb=123g/L
e FSH=5.61U/L
e LH=14.71U/L
e Estradiol level =189 pmol/L
e TSH=2.29
e Prolactin level =14.79
e Rubella Immune
e AFC15+20
e Semen analysis: 1 ml, 162 mil/ml, 72% motile, 1% normal forms, TMC =
116.640000, acrosome deficiencies 77%
e HSG films reviewed: normal cavity & patent tubes

Infertility diagnosis: Unexplained Infertility

Infertility treatment offered & outcome:




1. Short protocol - started at cycled day 3 > HMG Menogon 150 IU for 6 days
then 75 IU for 5 days then increased to 150 IU for 2 days + Buserlin 400 mcg SC
daily = triggered 10,000 IU HCG (Endometrial thickness 8mm) = 4 oocytes
collected - all were GV



Figure S1
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Figure S1. A-C) Images of immature oocytes from the individual IV:18 in family 1
with maturation arrest phenotype from family 1. Red circles indicate germinal vesicles.
D) Images of immature oocytes from individual II:4 in family 2 showing a similar

defect despite the much lower quality of the image.



Figure S2
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Figure S2. Pedigrees of familyl (A) and family 2 (B) showing the PATL2 mutation
status. Red box indicates index for whom whole exome sequence (WES) was
performed. Segregation was performed for the available family members. -/- denotes
homozygous status; +/- denotes carrier status; +/+ denotes wild type; * marks
individuals included in the linkage analysis. C) Chromatogram for the mutation
c.478C>T:p.(Argl 60*) in family 1. D) Chromatogram for the mutation

c.1108G>A:p.(Gly370Arg) in family 2.
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Figure S3. The glycine 370 residue of PATL?2 is highly conserved from human to yeast. Protein
sequences were obtained publically available genomic databases: human (NM_001145112.1),
chimpanzee (XM 001146504.2), dog (XM_003640026.1), cattle (XM _002691093.2), mouse
(NM_026251.2), Xenopus (NP_001135679.1), zebrafish (XP_683261.4), Drosophila

(NP _001287369.1), C.elegans (NP_496514.1) and yeast (NP_010002.3). PATL?2 protein

sequences were aligned by using ClustalW.



Table S1: list of haplotypes from two families with in the shared ROH (chr15:42,254,070-45,702,800).

SNP Mb distance Family 1 1V:19 Family 11V:18 Family 2 1I:4 Family 2 1I:5
RS2925339 42091212 ab ab BB BB
RS1618332 42184794 ab ab BB BB
RS1048166 42192040 ab ab AA AA
RS8041458 42196846 ab ab BB BB
RS17686769 42205483 ab ab BB BB
RS4923919 42208041 ab ab AA AA
RS2899033 42212047 BB BB BB BB
RS10518742 42220257 BB BB BB BB
RS1648856 42233912 AA AA BB BB
RS1648855 42237403 AA AA BB BB
RS34899815 42254068 BB BB AA AA
RS1868831 42257929 AA AA AA AA
RS1704345 42270697 ab ab AA AA
RS4924593 42273259 ab ab AA AA
RS1668572 42273526 ab ab BB BB
RS1704352 42281805 BB BB BB BB
RS7175837 42300303 ab ab BB BB
RS1704367 42300475 BB BB BB BB
RS12438854 42300886 ab ab AA AA
RS9919954 42302520 ab ab AA AA
RS7182446 42302751 BB BB BB BB
RS12439430 42305042 ab ab BB BB
RS12909362 42315401 AA AA BB BB
RS2665203 42316527 BB BB BB BB
RS2724943 42319233 ab ab AA AA
RS4924608 42332784 ab ab AA AA
RS1668596 42336250 BB BB AA AA
RS7175879 42336450 BB BB BB BB
RS1712436 42338079 BB BB BB BB
RS1993069 42339158 ab ab BB BB
RS12902878 42343794 ab ab BB BB
RS776688 42345046 ab ab AA AA
RS16972565 42350013 BB BB BB BB
RS776699 42350037 BB BB BB BB
RS1668588 42364362 BB BB BB BB
RS59107494 42366224 AA AA BB BB
RS7166111 42368506 ab ab BB BB
RS2412657 42387203 BB BB AA AA
RS8028204 42392164 AA AA BB BB
RS17748385 42395956 AA AA AA AA
RS12050606 42396187 ab ab BB BB
RS1008979 42399642 AA AA BB BB
RS2122677 42400066 AA AA AA AA
RS675996 42400764 ab ab AA AA
RS28665345 42405470 BB BB BB BB

RS11852412 42409999 ab ab BB BB
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RS12906333

43487810
43494017
43527819
43533193
43538511
43541139
43553982
43558574
43614724
43620073
43658935
43660982
43667900
43688916
43695716
43697459
43699889
43700930
43702948
43713634
43724532
43724646
43730486
43733730
43733766
43762196
43768642
43782785
43798039
43817225
43818926
43929764
43931682
43939642
43995380
44024490
44036858
44063859
44067985
44068160
44093927
44120340
44120559
44123073
44148142
44163528
44168470
44170045

BB
BB
AA
BB
BB
AA
BB
AA
AA
AA
BB
AA
AA
AA
BB
BB
AA
BB
AA
AA
AA
AA
AA
AA
AA
BB
AA
AA
AA
BB
BB
BB
BB
BB
AA
BB
BB
AA
AA
BB
AA
BB
BB
BB
BB
AA
BB
AA

BB
BB
AA
BB
BB
AA
BB
AA
AA
AA
BB
AA
AA
AA
BB
BB
AA
BB
AA
AA
AA
AA
AA
AA
AA
BB
AA
AA
AA
BB
BB
BB
BB
BB
AA
BB
BB
AA
AA
BB
AA
BB
BB
BB
BB
AA
BB
AA

BB
BB
AA
BB
BB
BB
AA
BB
BB
AA
BB
BB
BB
BB
BB
BB
AA
AA
AA
BB
AA
BB
AA
AA
AA
AA
BB
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB
AA
AA
BB
AA
BB
BB
BB
BB
AA
BB
AA

BB
BB
AA
BB
BB
BB
AA
BB
BB
AA
BB
BB
BB
BB
BB
BB
AA
AA
AA
BB
AA
BB
AA
AA
AA
AA
BB
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB
AA
AA
BB
AA
BB
BB
BB
BB
AA
BB
AA



RS524908
RS1439116
RS1545182
RS7178452
RS28431326
RS17582478
RS7168522
RS17504748
RS4923971
RS12907002
RS958485
RS10459588
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R$16959468
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RS28421746
RS2706464
RS7178082
RS2615260
RS10400813
RS8024461
RS2412864
RS$12595484
RS1021800
RS7164866
RS2055061
RS10518985
RS17586255
RS34732486
RS2453274
RS34327950
RS883943
RS4611428
RS$2556560
RS10518980
RS28409610
RS17586936
RS2303578
RS17586985
RS$12594905
RS17515394
RS36014111
RS12594578
RS3759871
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44216110
44242039
44259856
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44328112
44347500
44350065
44365946
44373887
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44481107
44486511
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RS3759875
RS7165146
RS12594463
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RS1901530
RS11553037
RS2290330
RS17588305
RS3759878
RS2444004
RS2444006
RS7182597
RS2470911
RS17588988
RS3759883
RS7182022
RS8023560
RS2462043
RS1720726
RS35922426
RS2049333
RS1295359
RS1288092
RS11856785
RS2443978
RS7172822
RS10152725
RS17518970
RS2924123
R$16974812
RS16952664
RS16952671
RS17592201
RS956093
RS13379531
RS$12902975
RS11635836
RS199335
RS7183046
RS10851420
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44951174
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45007770
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45047134
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45069742
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Table S1: list of haplotypes from two families with in the shared ROH
(chr15:42,254,070-45,702,800).



Table S2

Family

Affected
(n)

Mutation

ExAC
Frequency

In silico analysis of
pathogenicity

2

PATL2 NM_001145112.1:c.478C>T:p.(Argl 60%)

0.00003362

Truncation of 383
amino acids

PATL2 NM _001145112.1:c.1108G>A:p.(Gly370Arg)

PolyPhen:
possibly damaging
(0.915)

SIFT:
deleterious (0.03)
CADD: 33




Table S2: Variants identified in PATL?2 in two families.
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