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Prospects of Fine-Mapping Trait-Associated
Genomic Regions by Using Summary Statistics
from Genome-wide Association Studies

Christian Benner,1,2,* Aki S. Havulinna,1,3 Marjo-Riitta Järvelin,4,5,6,7 Veikko Salomaa,3

Samuli Ripatti,1,2,8 and Matti Pirinen1,2,9,*

During the past few years, various novel statistical methods have been developed for fine-mapping with the use of summary statistics

from genome-wide association studies (GWASs). Although these approaches require information about the linkage disequilibrium (LD)

between variants, there has not been a comprehensive evaluation of how estimation of the LD structure from reference genotype panels

performs in comparison with that from the original individual-level GWAS data. Using population genotype data from Finland and the

UK Biobank, we show here that a reference panel of 1,000 individuals from the target population is adequate for a GWAS cohort of up to

10,000 individuals, whereas smaller panels, such as those from the 1000 Genomes Project, should be avoided. We also show, both theo-

retically and empirically, that the size of the reference panel needs to scale with the GWAS sample size; this has important consequences

for the application of these methods in ongoing GWAS meta-analyses and large biobank studies. We conclude by providing software

tools and by recommending practices for sharing LD information to more efficiently exploit summary statistics in genetics research.
Introduction

Public availability of summary statistics from genome-

wide association study (GWAS) meta-analyses has recently

generated exciting new opportunities to carry out various

downstream analyses without access to the original geno-

type-phenotype data. This is a promising approach to uti-

lizing the increasing GWAS sample sizes while avoiding

privacy concerns and logistics of sharing individual-level

genotype data. Typically, publicly available GWAS sum-

mary statistics originate from the standard additive model.

Although this limits their use for modeling dominant,

recessive, and interaction effects, they still provide a basis

for a wide variety of important analyses. Examples include

estimation of heritability1,2 and genetic correlations,3,4

gene-level tests,5,6 risk prediction,7 Z score imputa-

tion,8–10 and fine-mapping11–20 of causal variants. Com-

mon to all of these summary-statistical methods is that

they require information about the linkage disequilibrium

(LD) between the variants, and the hope has been that LD

information from publicly available reference genotype

panels could replace the original genotype data in these

analyses.21 However, a thorough assessment of this topic

is lacking in many application areas. In this work, we

consider a central post-GWAS problem of fine-mapping

causal variants by using summary statistics from GWASs

and LD information from reference panels (Figure 1).

Fine-mapping aims to narrow the large set of variants

associated with the trait down to a much smaller set of var-

iants with a direct effect on the trait.22 This is a next step
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on the path from GWAS results to the molecular biology

of complex traits and diseases and, eventually, to targets

for therapeutic interventions. Even though establishing

the biological mechanisms of the variants will require

extensive experimental work,23 initial fine-mapping can

be done computationally through accounting for the com-

plex correlation structure of the putative causal variants.24

Recently, several software packages have been intro-

duced for fine-mapping genomic regions by using GWAS

summary statistics: Genome-wide Complex Trait Analysis

(GCTA)’s conditional analysis,11 CAVIAR,12 PAINTOR,13,14

CAVIARBF,15,20 FINEMAP,16 JAM,17 RIVIERA,18 and RSS.19

All of these methods are able to run with LD information

estimated from reference data, and an important question

is how well this strategy performs in comparison with us-

ing the LD information from the original genotype data.

To our knowledge, the most detailed analysis so far has

been given by Yang et al.,25 who used a reference panel of

6,654 individuals to carry out conditional analyses of

height and body mass index (BMI) GWASs by using a step-

wise regression method implemented in GCTA. On the ba-

sis of a simulation study, they concluded that a reference

panel of at least 2,000 individuals is required and that little

additional accuracy is gained beyond a size of 5,000. This

advice has been followed by some other studies.17 How-

ever, a stepwise conditioning approach considers jointly

only a handful of possible combinations of the variants,

and therefore it is unclear how Yang et al.’s simulation

study,25 which used only two variants, represents the

more general fine-mapping scenario where many more
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Figure 1. Schematic of Fine-Mapping
Causal Variants in Trait-Associated
Genomic Regions by Using GWAS Sum-
mary Statistics and LD Information
Ideally, LD information is computed from
the original GWAS data. LD information
can, however, be obtained from a reference
genotype panel when the original GWAS
data are not available. An important
open question is how large a reference ge-
notype panel should be to nearly achieve
the optimal fine-mapping performance
given by the original GWAS data.
combinations of variants are evaluated. This question has

not been carefully studied in conjunction with subsequent

fine-mapping methods. Instead, typically public reference

panels, such as the 1000 Genomes Project (1000GP),26

have been suggested as the source of the LD informa-

tion.12,13,15 However, given that alarming problems have

already arisen from incompatibility between GWAS sum-

mary data and reference LD information,20 it is important

to make a comprehensive evaluation of the prospects of

fine-mapping by using summary data and reference geno-

type panels, as well as create practical ways forward for

the scientific community.

In this work, we evaluate how the size of the reference

panel and the size of the GWAS affect the fine-mapping

performance with and without the use of shrinkage

methods19,27 in LD estimation. As a motivation, we show

how a proper fine-mapping analysis can refine the well-

known association between the APOE (MIM: 107741) re-

gion and levels of low-density lipoprotein cholesterol

(LDL-C), whereas estimation of LD from the 1000GP refer-

ence panel causes problems in the same context. Next, we

carry out a comprehensive set of simulations on 100 GWAS

regions by using Finnish genotype data and scale the re-

sults to biobank datasets by using UK Biobank data. We

validate the earlier suggestion by Yang et al.25 that a refer-

ence panel of a few thousand individuals from the target

population is adequate also for fine-mapping as long as

the GWAS sample size remains around 10,000. Impor-

tantly, we show that for fine-mapping, the size of the refer-

ence panel needs to scale with that of the GWAS sample.

We conclude by providing the software tool LDstore to

enable efficient sharing of LD information needed for ac-

curate fine-mapping in the era of biobank-scale datasets.
Material and Methods

Cohorts
We used data from the FINRISK study,28 the 1966 Northern

Finland Birth Cohort (NFBC1966),29 and the UK Biobank

(UKBB).30 FINRISK is a representative, cross-sectional survey of

the Finnishworking-age population. Since 1972, a random sample

of 6,000–8,000 individuals has been collected every 5 years for the
540 The American Journal of Human Genetics 101, 539–551, Octobe
study of risk factors of chronic diseases. The study protocols of the

FINRISK surveys used in this work (1992, 1997, 2002, and 2007)

were approved by the ethics committee of the National Public

Health Institute until 1997 and by the ethics committee of Hel-

sinki and Uusimaa Hospital District after that. NFBC1966 is a

longitudinal study of individuals from the provinces of Oulu

and Lapland in northern Finland and was approved by the ethics

committee of the Northern Ostrobothnia Hospital District Federa-

tion of Municipalities. The cohort was originally collected for the

study of risk factors of birth-related complications and includes

12,068 mothers and 12,231 children. Genetically, NFBC1966 is

not a perfect match to FINRISK, although both cohorts are

collected within Finland (Figure S1). UKBB is a longitudinal study

of individuals from 40 to 69 years of age in the United Kingdom

and was approved by the NorthWest Multi-center Research Ethics

Committee. From 2006 to 2010, a sample of 500,000 individuals

was collected for the investigation of genetic and environmental

factors involved in disease development. All participants of

FINRISK, NFBC1966, and UKBB have provided informed consent.
Genotype Data
In our analyses, we used genotype data on (1) 20,626 individuals

included in the FINRISK surveys from 1992 to 2007, (2) 5,363 in-

dividuals from NFBC1966, and (3) 112,199 ‘‘white British’’ indi-

viduals from UKBB. For FINRISK and NFBC1966, we imputed

41 million variants separately with IMPUTE2 (see Web Resources)

by using a combined 1000GP reference panel and low-pass

Finnish whole-genome sequence data. For documentation about

imputation of the UKBB genotype data, see the Web Resources.

In each dataset, we removed variants with aminor allele frequency

(MAF) below 1% and an imputation quality score below 0.5.
Fine-Mapping
Stepwise conditional analysis is a standard approach to fine-map-

ping a trait-associated genomic region. We performed stepwise

conditioning implemented in SNPTEST2 (see Web Resources) by

first conditioning on the variant with the lowest p value and

then iteratively adding to the model the variant with the lowest

conditional p value until no further variant reached the

genome-wide significance threshold of 5 3 10�8. By jointly

modeling the whole genomic regions, FINEMAP (see Web Re-

sources) can potentially identify sets of variants with more

evidence of being causal than those highlighted by a stepwise

conditional analysis.16 The output from FINEMAP is (1) a list of

potential causal configurations together with their posterior
r 5, 2017



probabilities and Bayes factors and, (2) for each variant, the poste-

rior probability and Bayes factor of being causal. We applied

FINEMAP with its default settings while allowing for a maximum

of ten causal variants.

In simulated datasets, where the causal status of each SNP was

known, we computed the true-positive rate (TPR) and false-posi-

tive rate (FPR) by using the list of SNPs ranked by their posterior

probability of being causal. Using the ROCR31 package in R, we

compared the results obtained with different LD information ac-

cording to their achieved TPR versus FPR through the partial

area under the curve (pAUC).32 AUC is defined as the area under

the TPR-versus-FPR curve and can be interpreted as the probability

that a randomly chosen causal variant is assigned a higher

posterior probability of being causal than a randomly chosen

non-causal variant.33 pAUC is defined as the area under the TPR-

versus-FPR curve with a fixed FPR range. In our comparisons,

we summarize the simulations by reporting the average pAUCs

and vertically averaged TPR-versus-FPR curves over the set of

replications.

We generated credible sets of causal variants34 as the union of

the variants included in the smallest set of causal configurations

that already covered 90%, 95%, or 99% of the total posterior prob-

ability. For the credible sets, we calculated their size and coverage,

defined as the proportion of causal variants that were included in

the credible set.
Shrinkage Estimation of LD Information
We investigated shrinkage estimation35 of Pearson correlations

between pairs of variants from a reference panel; that is, we used

a positive multiplicative factor < 1 to bring the correlation

estimate toward 0. The simplest approach is to use the same con-

stant shrinkage factor for all correlation estimates (‘‘constant

shrinkage’’). A more advanced approach is to define the shrinkage

factor for each pair of variants depending on their estimated

recombination distance19,27 (‘‘recombination shrinkage’’). For

the recombination shrinkage, we used the recombination map

from HapMap phase 2.36
Association between LDL-C and APOE in Finnish Data
As a motivating example, we consider the association between

LDL-C and the APOE region on chromosome 19. We used

15,626 individuals from FINRISK28 and an additive linear model

implemented in SNPTEST2 to test for associations with LDL-C

(see Surakka et al.37 for details about LDL-Cmeasurements and co-

variate adjustment). The summary statistics from LDL-C GWASs

were analyzed with FINEMAP and the LD information from the

original genotype data on 3,078 variants with a MAF above 1%

and covering 1 Mb around APOE. We also did two additional

FINEMAP analyses with the 1000GP data to obtain LD informa-

tion: first, we considered the Finnish reference panel with 99 indi-

viduals, and second, we extended the Finnish panel to the

combined European panel with 503 individuals.
100 GWAS Regions in Finnish Data
To assess the effect of reference panels in a general fine-mapping

setting by using a GWAS of about 5,000 individuals to represent

a typical cohort that could be included in ongoingGWASmeta-an-

alyses, we performed comprehensive simulations over 100 GWAS

regions chosen from GWAS meta-analyses for coronary artery dis-

ease (CAD),38 Crohn disease (CD),39 lipid traits (LIPs),40 schizo-

phrenia (SCZ),41 and type 2 diabetes (T2D).42 For each study, we
The America
retained the lead SNPs outside the human leukocyte antigen

(HLA) region with a marginal p value below 53 10�8 and selected

100 lead SNPs (18 from CAD, 20 from CD, 21 from LIPs, 21 from

SCZ, and 20 from T2D) for further analyses. For each lead SNP, we

defined genomic regions with 1,001 SNPs comprising 500 SNPs

downstream and upstream of the lead SNP. Using genotype data

on 5,363 individuals from NFBC1966, we generated 500 datasets

(five replications per each region) according to the following linear

model:

y ¼
X
c˛C

bcg c þ e;

where C is the set of causal SNPs, gc is the vector of genotypes at

the cth causal SNP, bc and fc are the effect size and MAF, respec-

tively, of the cth SNP, and e is Gaussian noise with mean 0 and

variance

s2 ¼ 1�
X
c˛C

2fc
�
1� fc

�
b2
c :

In each dataset, the lead SNP and four randomly chosen other

SNPs were causal. The effect sizes of the causal SNPs were specified

so that the statistical power with 5,363 individuals was approxi-

mately 0.5 at a significance level of 5 3 10�8. We applied a linear

model implemented in the lm() function in R (see Web Resources)

to compute summary statistics (estimates of b and their standard

errors). We then analyzed each set of summary statistics

with FINEMAP and LD information either from the original

NFBC1966 genotype data or from a subset of the reference geno-

type data on the FINRISK individuals to generate realistic reference

panels that were not a perfect match to the target cohort but still

originated from the same population (Figure S1).
ABO Region on Chromosome 9 in UKBB Data
The UKBB genotype data were split into two sets: 82,199 and

30,000 individuals. We extracted, from both datasets, 762 SNPs

covering 100 kb around ABO (MIM: 110300). Using the genotype

data on 82,199 individuals, we generated 100 datasets by applying

the same additive linear model as we did for the simulations over

100 GWAS regions. To maintain comparability with our earlier

simulations, we made sure that each dataset had five causal SNPs

with effect sizes specified so that the statistical power with 5,363

individuals was approximately 0.5 at a significance level of

5 3 10�8. To systematically study the effect of the GWAS sample

size, we computed summary statistics by using 5,363, 10,000,

and 50,000 individuals from the set of 82,199 individuals. Each

set of summary statistics was then analyzed with FINEMAP and

LD information either from the original genotype data or from a

subset of the reference genotypes of the 30,000 individuals.
Posterior Probability of a Pair of Variants
To illustrate the behavior of the posterior probability of the true

causal configuration as a function of accuracy of LD information,

we considered a simple setting of one causal (C) and one non-

causal (N) SNP. In Appendix A, we give an explicit formula for

the posterior odds between two configurations that we used to

evaluate the posterior probability of the true causal configuration

as a function of a correlation estimate from an external reference

panel. We used simulations to define the sampling distribution

of the pairwise correlation between variants given the sample

size, true correlation between the SNPs (r ¼ 0.37), and MAFs

(0.02). The MAFs and the correlation were motivated by SNPs
n Journal of Human Genetics 101, 539–551, October 5, 2017 541
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Figure 2. Fine-Mapping the APOE Region Associated with LDL-C
Results are shown for 3,078 variants with a MAF above 1% and
covering 1 Mb of the genome. Variants identified by a standard
conditional analysis are highlighted in yellow. All other variants
are colored with respect to their LD (absolute value of Pearson cor-
relation) with the lead variant rs7412.
(A) Negative log10 p values for each variant from a LDL-C GWAS
on 15,626 individuals from the FINRISK study.
(B) Bayes factor (log10) for assessing the causality of each variant by
a FINEMAP analysis using the summary statistics from the LDL-C
GWAS and the LD information from the original genotype data.
(C) Bayes factor (log10) for assessing the causality of each variant
by a FINEMAP analysis using the summary statistics from the
LDL-C GWAS and the LD information from the reference geno-
types of 99 Finns in the 1000GP.
rs10418198 and rs61679753 in our APOE GWAS data. This pair

was much more highly correlated in the Finnish panel of

1000GP (r ¼ 0.86) and consequently created a false-positive causal

configuration in our APOE analysis that used 1000GP. Therefore,

we examined in more detail how different reference-panel sizes

and different GWAS sizes affected the fine-mapping in this setting.

LDstore for Efficient Estimation and Storage of LD

Information
A naive approach to estimating Pearson correlations between all

imputed and genotyped variants on a chromosome incurs a cubic

time complexity and quadratic space complexity in the number of

variants. Run time can be reduced by (1) parallel processing and

(2) a sliding-window approach that takes into account that the
542 The American Journal of Human Genetics 101, 539–551, Octobe
magnitude of LD between two variants decreases with their

physical distance.26 Space complexity can be reduced (1) by the

symmetry property of Pearson correlation, (2) by the storage of

correlations in an integer representation, and (3) by the storage

of only values above a user-specified threshold.

Estimating correlations by using a sliding window has

been implemented in the software packages PLINK43,44 and

RAREMETALWORKER (RMW).45 RMW is a command-line tool

for rare-variant association testing and is currently used for

sharing whole-chromosome LD information via text files. PLINK

differs from RMW by allowing LD information to be written in

text or binary format. Although RMW and PLINK are very useful

tools, we think that storing information (1) in text files (RMW),

(2) on almost uncorrelated variants (PLINK and RMW), and (3)

without variant information included in the same file (PLINK) is

not the most practical way to share LD information files for the

trait-associated genomic regions across cohorts of a GWAS con-

sortium or to store whole-chromosome LD information.

We introduce LDstore, a software package for efficient estima-

tion, storage, and seamless sharing of LD information. The sliding

window of LDstore is similar to that of PLINK and RMW, whereas

the important difference is (1) massively parallel processing using

OPENMP or MPI (see Web Resources), (2) sparse estimation for

achieving smaller file sizes, and (3) storage of the LD information

with additional variant information in the same file. LDstore out-

puts LD information in an indexed binary file by using com-

pressed row storage and hash tables to achieve fast lookups of

LD information irrespectively of file size.
Results

Association between APOE and LDL-C in Finnish Data

Recent fine-mapping efforts in Sardinians (n ¼ 5,524)46

and Finns (n ¼ 12,834)37 have concluded that the associa-

tion is explained by the two well-known missense variants

rs7412 and rs429358, which together define APOE

ε-alleles. Our results (Figure 2A) suggest that in addition

to the two known missense variants, a third SNP,

rs35136575, is needed to explain the association (Figure 2B

and Table 1), which agrees with an earlier study targeting

the APOE locus.47 The association pattern with three vari-

ants (rs7412, rs429358, and rs35136575) has the highest

posterior probability (0.342) and is almost seven times

larger than the second-most-probable (0.051) configura-

tion, which included a fourth SNP (rs2722693). rs7412,

rs429358, and rs35136575 have by far the most evidence

of being causal (Figure 2B and Table 1). A standard condi-

tional analysis identified the same association pattern

with three variants, giving a conditional p value of 5.8 3

10�13 for rs35136575 when the two missense variants

(rs7412 and rs429358) were included in the model and

thus verifying the results of FINEMAP (the marginal

p value of rs35136575 was 7.1 3 10�8; Table 2).

Next, we assumed that we did not have access to the orig-

inal genotype data, and we used the reference genotypes

from the Finnish 1000GP panel with 99 individuals to

obtain LD information. The Finnish 1000GP panel showed

that the two most probable configurations included ten
r 5, 2017



Table 1. Top Ten Variants from FINEMAP Analysis of the APOE
Region with Summary Statistics from the LDL-C GWAS on 15,626
Individuals and Two Sources of LD Information

LD Information from Original
Genotype Data

LD Information from the
Finnish 1000GP Panel of
99 Individualsa

Variant

Posterior
Probability of
Being Causal Variant

Posterior
Probability of
Being Causal

rs7412b 1.0000 rs7412b 1.0000

rs35136575b 1.0000 rs35136575b 1.0000

rs429358b 0.8255 rs117789739 1.0000

rs483082 0.0878 rs10418198 1.0000

rs438811 0.0853 rs75627662 1.0000

rs2722693 0.0833 rs11665929 1.0000

rs2571177 0.0740 rs141622900 1.0000

rs2734453 0.0690 rs111294029 1.0000

rs2734457 0.0663 rs61679753 0.9996

rs12984506 0.0342 rs8108277 0.6581

aThe posterior probability that rs429358 is causal is smaller than 0.0004.
bVariants identified by a standard conditional analysis.

Table 2. Marginal and Conditional p Values from the LDL-C GWAS
of the APOE Region with 15,626 Individuals from the FINRISK Study

Variant
Marginal
p Value

p Value after
Conditioning
on rs7412

p Value after
Conditioning
on rs7412
and rs429358

rs7412 2.4 3 10�137 – –

rs429358 1.9 3 10�51 8.2 3 10�36 –

rs35136575 7.1 3 10�8 1.4 3 10�17 5.8 3 10�13
variants and already covered 99% of the total posterior

probability (Figure 2C and Table 1). The posterior probabil-

ity that rs7412 and rs35136575 were causal was still among

the largest of all variants, but that of rs429358 was very

small, and some low-frequency variants that showed little

evidence from the original genotype data now showeddeci-

sive evidence (Figure 2C). Clearly, the Finnish 1000GP

panel does not accurately approximate the LD information

of the original genotype data, in that it causes several false-

positive and one false-negative result in comparison with

the original data. Similar problems remained when we

extended the reference panel to contain all 503 European

individuals of the 1000GP (Figure S2).

We also investigated shrinkage estimation of correla-

tions from the Finnish 1000GP panel. Even though the

constant shrinkage clearly increased detection of causal

variants, it still led to an inflated FPR and therefore could

not solve the problem of small panel size (Figures 3A and

3B). The recombination shrinkage had little effect on the

correlation estimates of variants very close to each other

and therefore did not improve the results in our fine-map-

ping application (Figure 3C). For example, with recombi-

nation shrinkage, we observed that the top configuration

already covered 98% of the total posterior probability,

and it included two SNPs (rs143695016 and rs2967668)

that are very close to each other (111 bp). These two

SNPs are muchmore highly correlated in the Finnish panel

of 1000GP (r ¼ 0.920) than in our GWAS data (r ¼ 0.805).

Recombination shrinkage had little effect on their correla-

tion (shrinkage r ¼ 0.919) because the SNPs are so close to

each other. This explains why the fine-mapping model

takes both SNPs as causal: it can make the observed sum-
The America
mary statistics of the SNPs (Z scores of 1.9 and 10.0) consis-

tent with the overestimated correlation from the panel

only by stipulating that both SNPs have causal effects.

100 GWAS Regions in Finnish Data

Using the datasets on the 100 GWAS regions, we evaluated

howwell the external FINRISK reference panels of different

sizes performed in comparison with the original LD infor-

mation from NFBC1966. Reference panels of 100 individ-

uals achieved only 58% of the performance of the original

genotype data, as measured by the relative pAUCmeasure,

whereas panels of 1,000 individuals achieved very good

performance (95% relative pAUC; Figure 4A). No consider-

able improvement was obtained with larger reference

panels. These results suggest that a reference panel of

1,000 individuals is sufficient when summary statistics

originate from a GWAS with a few thousand individuals,

which is a typical sample size of an individual cohort in

many current GWAS meta-analyses.48,49

Although applying a constant shrinkage factor to corre-

lation estimates from the reference panels with 100 indi-

viduals clearly increased detection of causal SNPs (from

58% up to 80% relative pAUC), it also led to an inflated

FPR and therefore could not solve the problem of small

panel size (Figure S3). For larger panels, the constant

shrinkage factor did not improve performance and with

large shrinkage factors even reduced it (from 95% to 85%

relative pAUC; Figure S3). The shrinkage factors deter-

mined by the recombination map had little effect on the

correlation estimates of SNPs very close to each other

(see APOE results for an example) and therefore did not

improve the results in our fine-mapping application in

the way that has been reported among a sparser set of

variants.19

UKBB Data

Our further investigations on large-scale biobank data re-

vealed that the performance of fine-mapping does not

only depend on the reference-panel size but also on the

GWAS sample size, which to our knowledge is a new result.

We used genotype data on up to 50,000 UKBB individuals

to simulate phenotype data, and we used UKBB genotype

data not included in the phenotype simulation as external

reference panels of different sizes. Our results confirmed

that reference panels of 1,000 individuals are large enough

for a GWAS of about 5,000 individuals (Figure 4B) up to
n Journal of Human Genetics 101, 539–551, October 5, 2017 543
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Figure 4. Fine-Mapping Accuracy on Simulated Data
In simulations with Finnish data, genotype data over 100 GWAS
regions on 5,363 individuals from NFBC1966 were used for
phenotype generation. In UKBB simulations, genotype data on
82,199 individuals covering the ABO region were used for pheno-
type generation. Each dataset included five causal SNPs with effect
sizes that resulted in statistical power of 0.5 with 5,363 individuals
at a significance level of 5 3 10�8. Results with different LD infor-
mation are shown in plots of the number of selected causal SNPs
(true positives) against the number of selected non-causal SNPs
(false positives); the list of SNPs was ranked by their posterior prob-
ability of being causal. Reference genotype panels (solid line) are
compared with the original genotype data (dashed line) with
respect to the achieved partial area under the curve (pAUC).
pAUCs and curves are averaged over the simulated datasets.
(A) Accuracy with NFBC1966 summary statistics from a GWAS on
5,363 individuals and LD information either from the original ge-
notype data or from a subset of the reference genotype data on
FINRISK individuals.
(B) Accuracy with UKBB summary statistics from a GWAS on 5,363
individuals and LD information either from the original GWAS
data or from a subset of UKBB individuals not included in the
GWAS.
(C) Accuracy with UKBB summary statistics from a GWAS on
50,000 individuals and LD information either from the original
GWAS data or from a subset of UKBB individuals not included in
the GWAS.
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Figure 3. Fine-Mapping the APOE Region Associated with LDL-C
by Using Shrinkage Estimation of Correlations from the Finnish
1000GP Panel with 99 Individuals
Bayes factors (log10) are shown from a FINEMAP analysis of 3,078
variants with a MAF above 1% and covering 1 Mb of the genome.
GWAS summary statistics were computed with 15,626 individuals
from the FINRISK study. Variants identified by a standard condi-
tional analysis are highlighted in yellow. All other variants are
colored with respect to their LD (absolute value of Pearson correla-
tion) with the lead variant rs7412.
(A) The same constant shrinkage factor of 0.80 was used for all
correlations.
(B) The same constant shrinkage factor of 0.25 was used for all
correlations.
(C) Recombination distance was used to define the shrinkage fac-
tor for each pair of variants.
10,000 individuals (Figure S4). For a GWAS of 50,000 indi-

viduals, reference panels of 1,000 and 5,000 individuals

achieved, respectively, 65% and 91% relative pAUC (Fig-

ure 4C), whereas very good performance (97% relative

pAUC) required reference panels of at least 10,000 individ-

uals (Figure 4C). In particular, a reference panel of 1,000

individuals is not large enough for a GWAS of 50,000 indi-

viduals anymore, and this issue cannot be solved by

shrinkage methods (Figure S5). Therefore, an important

message for future fine-mapping efforts on large GWAS

meta-analyses and biobank collections is that the size of

the reference panel must scale with the GWAS sample
544 The American Journal of Human Genetics 101, 539–551, October 5, 2017



A

B

Figure 5. Effect of Reference-Panel Size and GWAS Sample Size
on Fine-Mapping Performance
Results are shown for a pair of variants (MAF of 2%) of which one
is causal and the other is non-causal and whose correlation is 0.37.
The effect size of the causal variant is such that the statistical
power with 15,626 individuals is approximately 0.5 at a signifi-
cance level of 5 3 10�8. The probability of the true causal config-
uration is plotted on the y axis. The x axis shows the estimated
correlation of the variants from a reference genotype panel. The
central 95% probability interval (dashed line) of the sampling dis-
tribution is shown for different reference genotype panels.
(A) GWAS summary statistics were computed with 15,626
individuals.
(B) GWAS summary statistics were computed with 50,000
individuals.
size. Given that for identical GWAS sample sizes we

achieved very similar fine-mapping performance with the

UKBB data (Figure 4B), as with our earlier comprehensive

simulation over 100 GWAS regions in the Finnish data

(Figure 4A), we expect that our UKBB results represent

well the average performance over the genome also for

the larger sample sizes.

We also evaluated how the LD information affects the

size and coverage of credible sets of causal variants. Table

S1 shows that the small reference panels (d ¼ 100 individ-

uals) provide smaller credible sets than the larger reference

panels or the original genotype data, and this phenome-

non is amplified with increasing GWAS sample size. Impor-

tantly, the coverage of the credible sets from the small

reference panels is much lower than the nominal coverage

(Table S2). For example, with a GWAS sample size of

n ¼ 50,000 and reference-panel size of d ¼ 100, the 99%

credible sets cover on average only about 17% of the causal

SNPs, which gives a misleading picture of fine-mapping ac-

curacy. For larger reference panels (d ¼ 5,000 individuals)

and original genotype data, the coverage of credible sets
The America
is close to the nominal probability of the credible sets, indi-

cating a good probabilistic calibration (all 90% credible sets

have at least 90% coverage).

Consequences of Inaccurate LD Information

Thus far, we have empirically shown that inaccurate LD

information can result in misleading inferences. In

Appendix A, we also show theoretically why, for a fixed

reference panel, this phenomenon gets more pronounced

as the GWAS sample size grows and why the detrimental

effect of growing GWAS sample size on fine-mapping

could be compensated, at least asymptotically, if the

size of the reference panel grew proportionally to the

GWAS sample size. This theoretical result is empirically

supported by the behavior of posterior probabilities for

a pair of variants of which one is causal (C) and the other

is non-causal (N). Figure 5 shows that for a reference

panel of 1,000, with 95% probability, the posterior of

the true causal configuration is above 0.7 for a GWAS

size of 15,626 individuals (corresponding to our APOE da-

taset). Conversely, for a larger GWAS of 50,000 individ-

uals, the corresponding lower bound for the probability

of the true causal configuration has already dropped

down to 0.3, leading to a wrong conclusion about the

top causal configuration.

To explain the results of inaccurate LD information,

consider first the case where the two variants are highly

correlated in the GWAS data but the reference panel

considerably underestimates their correlation. Then, the

fine-mapping model takes the variants as almost indepen-

dent and wrongly labels N causal as well. If their correla-

tion is, however, accurately estimated by the reference

panel, then by applying a large constant shrinkage factor,

we will considerably underestimate the correlation and

again cause a false positive. Second, if the two variants

are only moderately correlated in the GWAS data

but the reference panel considerably overestimates the

magnitude of the correlation, then we can make the

observed summary statistics of the variants consistent

with their reference-panel correlation only by stipulating

that both variants have causal effects, which again

wrongly labels N as causal. In this case, if the two variants

are very close to each other, then the shrinkage deter-

mined by a recombination map has little effect on the

correlation estimate and does not remove the false

positive.

LDstore

On the basis of our results, we expect that the biomedical

research community needs to start sharing LD information

in conjunction with GWAS summary statistics21 to fully

exploit the rapidly growing GWAS sample sizes. To enable

this, we introduce LDstore, a software tool for efficient esti-

mation, storage, and sharing of LD information. LDstore

uses parallel computing and sparse storage of LD informa-

tion to achieve small file sizes. For example, processing a

genomic region with 5,000 variants completed in less
n Journal of Human Genetics 101, 539–551, October 5, 2017 545



than 30 s on an off-the-shelf desktop computer and

required less than 100 MB of disk space. Processing

500,000 variants completed in less than 10 min with 576

parallel processes and required 150 GB of disk space,

whereas the naive approach required 1,000 GB. Impor-

tantly, LDstore outputs indexed binary files and uses

hash tables to achieve fast lookups of LD information irre-

spectively of file size (it takes 1 min to lookup 5,000 vari-

ants from binary files that contain either 50,000 or

500,000 variants).
Discussion

A utilization of summary statistics from large international

meta-analyses and biobanks has rapidly become an active

research area in genetics.21 A good example is statistical

fine-mapping, a central step for transforming GWAS results

into molecular mechanisms behind the associations.

Recently, several fine-mapping methods that can work

on summary statistics have been proposed,11–20 but their

practical performance has not been thoroughly evaluated.

In this work, we assessed the limits of reliable fine-map-

ping of causal variants from summary statistics by using

an external reference panel as a source of LD information.

We established that for a typical GWAS cohort contain-

ing up to 10,000 individuals, a reference panel of 1,000 in-

dividuals from the study population (Finland or the UK in

our examples) is adequate, whereas a reference panel of

about 100 individuals from the study population (e.g.,

1000GP data) is too small and should not be used. We

demonstrated this by a comprehensive assessment of

over 100 GWAS regions and by detailed fine-mapping of

the association between the APOE locus and LDL-C, from

which we identified an additional variant on top of the

two well-known missense variants.

We also showed that the size of the reference panel must

scale with the GWAS sample size. Although a panel of

1,000 samples is adequate for a GWAS sample size of

10,000, a panel of 10,000 samples is needed for a GWAS

sample size of 50,000. This result has important conse-

quences for ongoing large meta-analysis efforts and bio-

bank studies. We confirmed the result in three ways:

empirically through simulations, analytically through like-

lihood evaluations, and theoretically through mathemat-

ical derivation.

In our analyses, we used FINEMAP software,16 which is

based on a stochastic search algorithm. We verified that

the results of FINEMAP were consistent across separate

runs when the LD information provided a good approxi-

mation of the LD information from the original genotype

data. We also observed that inaccurate LD information or

mismatches in the allele coding between the reference

panel and GWAS data could lead to an inflation of false

positives and also to an inconsistency between the

FINEMAP results across separate runs. Such problems typi-

cally manifest when the posterior probability of the num-
546 The American Journal of Human Genetics 101, 539–551, Octobe
ber of causal variants concentrates on the maximum value

possible and can therefore be detected by comparison of

several FINEMAP runs that allow for increasing numbers

of causal variants.

All existing fine-mapping methods that use summary

statistics,12–20 including GCTA’s conditional analysis,11

share the challenges arising from inaccurate LD informa-

tion. In several other contexts, shrinkage methods have

proven useful for LD estimation.9,19,27 We evaluated both

the constant shrinkage method and a recombination

shrinkage method19,27 that takes into account varying

levels of LD between pairs of variants. Although the

shrinkage methods did improve the performance of fine-

mapping for small reference panels, a large number of false

positives still remained, and we conclude that the current

shrinkage methods do not solve the LD-estimation prob-

lem. Therefore, it is crucial that the biomedical research

community start sharing LD information with GWAS sum-

mary statistics.21 We have introduced LDstore, a software

tool for efficient estimation, storage, and sharing of LD in-

formation. Next, we briefly outline how sharing LD infor-

mation could be implemented within a GWAS consortium

and,more generally, publicly through existing web portals.

Consider first a GWAS meta-analysis. Until now, fine-

mapping has been carried out (1) by meta-analysis of step-

wise conditioning results from participating cohorts,

which requires multiple rounds of time-consuming coordi-

nation between the cohorts;50 (2) with the use of meta-

analyzed summary statistics under the simplified assump-

tion of a single causal variant in the genomic region;48,49

or (3) with the use of an external reference panel for ob-

taining LD information,51 which, according to our results,

might be inaccurate. Using LDstore to collect LD informa-

tion for the trait-associated genomic regions across the co-

horts only once could enable accurate fine-mapping from

summary statistics and thus allow multiple causal variants

without time-consuming communication and repeated

analysis efforts across the participating cohorts.

Some consortia have already built web portals (e.g.,

Type 2 Diabetes Knowledge Portal or IBD Exomes Browser;

see Web Resources) that allow an external researcher to

browse and download the summary statistics. With

LDstore, such web portals could further enable the

researcher to download LD information for genomic

regions by using either pre-computed or on-the-fly

computed files. Similarly, with LDstore, large-scale multi-

population reference collections of sequencing data (e.g.,

Haplotype Reference Consortium52 or Genome Aggrega-

tion Database53) could extend their web services to provide

LD information for researchers working with summary sta-

tistics without a possibility of accessing the original geno-

type data. Our results show that even though a reference

panel will never achieve the optimal fine-mapping perfor-

mance given by the original individual-level GWAS data, a

reference panel can still perform well under the assump-

tion that it originates from the relevant population and

has a size comparable to the GWAS sample size.
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On the basis of our results, we anticipate that widespread

sharing of LD information will become crucial for the suc-

cessful exploitation of rapidly accumulating GWAS sum-

mary statistics. With this in mind, we introduce LDstore

and encourage additional concrete steps tomake the sharing

of LD information commonplace in genetics research.
Appendix A

Here, we will show that the performance of fine-mapping

depends not only on the reference-panel size d but also

on the GWAS sample size n. Consider a pair of variants

of which one is causal (C) and the other is non-causal

(N). Following our earlier work,16 for a large GWAS sam-

ple size n, standardized genotypes, and small causal ef-

fects typical in GWASs, the maximum-likelihood esti-

mator of the causal effects l is bl ¼ lþ εl=
ffiffiffi
n

p
, where

pðεlÞ ¼ Nðεl
�� 0; bR�1Þ and bR is the empirical Pearson cor-

relation matrix between the two variants estimated in the

GWAS data. The Z scores of the two variants are

computed as

bz ¼
� bzCbzN

�
¼ ffiffiffi

n
p bRbl ¼ ffiffiffi

n
p �

1 brbr 1

� � blCblN
�
:

We use a binary indicator vector g to indicate whether a

variant is causal ðg ¼ 1Þ and to define three causal

configurations:

g10 ¼ ðgC ¼ 1;gN ¼ 0Þ; g01 ¼ ðgC ¼ 0;gN ¼ 1Þ; and
g11 ¼ ðgC ¼ 1;gN ¼ 1Þ:

As in our earlier work,16 assume that, a priori,

Pr ðno: of causal variants is 1Þ ¼ 2=3

and
Prðno: of causal variants is 2Þ ¼ 1=3

and that the prior is divided equally among the configura-

tion with the same number of causal variants k ¼ gC þ gN .

That is, Prðg10Þ ¼ 1=3, Prðg01Þ ¼ 1=3, and Prðg11Þ ¼ 1=3.

We now derive an expression for the posterior odds,

Prðg10jDÞ=Prðg11jDÞ, of the true causal configuration in

relation to the configuration where both variants are

causal when the correlation matrix ~R between the two var-

iants is estimated from a reference panel. The posterior

odds are

Prðg10 j DÞ
Prðg11 j DÞ ¼

PrðD j g10Þ
PrðD j g11Þ

Prðg10Þ
Prðg11Þ

¼ PrðD j g10Þ
PrðD j g11Þ

¼ BFðg10 : g00Þ
BFðg11 : g00Þ

¼ N �bzC j0; 1þ ns2l
�

NðbzC j0;1Þ N �bz j0; ~R�
N �bz j0; ~Rþ ns2l

~R~R
�;

where s2l is the prior variance for the causal effects; a deri-

vation of the Bayes factor BFðg : g00Þ as a ratio of marginal
The America
likelihoods can be found in our earlier work.16 After both

ratios are simplified, the logarithm of the posterior odds is

log

�
Prðg10 j DÞ
Prðg11 j DÞ

	
¼� 0:5 log



1þ ns2l

�þ 0:5
bz2C

1þ 1=ðns2l Þ
þ 0:5 log det

�
I2 þ ns2l

~R
�

� 0:5bzT�
I2
��

ns2l
�þ ~R

��1bz:
(Equation A1)

We rewrite the third term by computing the determinant

as follows:

logdet
�
I2 þ ns2l

~R
� ¼ logdet

�
1þ ns2l ns2l~r
ns2l~r 1þ ns2l

��
¼ log

n�
1þ ns2l

�2 � �ns2l~r�2o:
We also combine it with the first term:

�log


1þ ns2l

�þ logdet
�
I2 þ ns2l

~R
�

¼ log

(�
1þ ns2l

�2 � �ns2l~r�2
1þ ns2l

)

¼ log

�
1þ ns2l

�
1� ~r2

1þ 1=ðns2l Þ

�	

¼ lognþ log

�
1

n
þ s2l

�
1� ~r2

1þ 1=ðns2l Þ

�	
:

Next, we simplify the quadratic form:

bzT�
I2
��

ns2l
�þ ~R

��1bz ¼ ½ bzC bzN �

266664
1þ 1

ns2l
~r

~r 1þ 1

ns2l

377775
�1

3

" bzCbzN
#

¼ ½ bzC bzN �

266664
1þ 1

ns2l
�~r

�~r 1þ 1

ns2l

377775
" bzCbzN

#,�
1þ 1

ns2l

�2
� ~r2

�

¼
 bz2C þ bz2C

ns2l
� 2bzCbzN~rþ bz2N þ bz2N

ns2l

!,�
1þ 1

ns2l

�2
� ~r2

�
:

Substituting all simplifications in Equation A1 results in

the following expression:

2log

�
Prðg10 j DÞ
Prðg11 j DÞ

	
¼ lognþ log

�
1

n
þ s2l

�
1� ~r2

1þ 1=ðns2l Þ
�	

þ bz2C
1þ 1=ðns2l Þ

�
 bz2C þ bz2C

ns2l
� 2bzCbzN~r

þ bz2N þ bz2N
ns2l

!,�
1þ 1

ns2l

�2
� ~r2

�
:

(Equation A2)
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For a large GWAS sample size n, br ¼ rþ εbr= ffiffiffi
n

p
, where r

denotes the value of the correlation in the underlying pop-

ulation and pðεbrÞ ¼ Nðεbr j0;1� r2Þ with εbr= ffiffiffi
n

p
/0, and

we can approximate bzz ffiffiffi
n

p
Rl. For a large reference panel

with size d, ~r ¼ rþ ε
~r
=
ffiffiffi
d

p
, where pðε

~r
Þ ¼ N ðε

~r
j0; 1� r2Þ

with ε
~r
=
ffiffiffi
d

p
/0. We can therefore simplify the numerator

in the last term in Equation A2 further:

bz2C þ bz2C
ns2l

� 2bzCbzN~rþ bz2N þ bz2N
ns2l

¼ nl2C þ l2C

s2l
� 2nl2Cr

�
r

þε
~r

. ffiffiffi
d

p �
þ nl2Cr

2 þ l2Cr
2

s2l

¼ nl2C

�
1�

h
r2 þ 2rε

~r

. ffiffiffi
d

p
þ ε

2

~r

.
d � ε

2

~r

.
d
i�

þ l2C

s2l

�
1þ r2

�
¼ nl2C

�
1�

h
rþ ε

~r

. ffiffiffi
d

p i2�
þ nl2Cε

2

~r

�
d þ l2C

s2l

�
1þ r2

�
:

Substituting this result into Equation A2 yields:

2log

�
Prðg10 j DÞ
Prðg11 j DÞ

	
¼ logn

þ log

8><>:1

n
þ s2l

2641�
�
rþ ε

~r

. ffiffiffi
d

p �2
1þ 1=ðns2lÞ

375
9>=>;

þ nl2C
1þ 1=ðns2l Þ

�
nl2C

�
1�

h
rþ ε

~r

. ffiffiffi
d

p i2�

1þ 1

ns2l

�2

�
�
rþ ε

~r

. ffiffiffi
d

p �2
� n

d

l2Cε
2

~r
1þ 1

ns2l

�2

�
�
rþ ε

~r

. ffiffiffi
d

p �2
� l2Cð1þ r2Þ�s2l

1þ 1

ns2l

�2

�
�
rþ ε

~r

. ffiffiffi
d

p �2:
(Equation A3)

For a large GWAS sample size n and reference-panel size d,

we drop those terms in Equation A3 that remain bounded

by a constant independent of n and d as n and d grow:

log

�
Prðg10 j DÞ
Prðg11 j DÞ

	
zlogn�

nl2Cε
2

~r

dð1� r2Þ: (Equation A4)

When the error ε
~r
z0, the evidence in favor of the true

causal configuration grows as logn. However, given the dis-

tribution of ε
~r
, the expectation of ε

2
~r

is E½ε2
~r
� ¼ V½ε

~r
�þ

E½ε
~r
�2 ¼ 1� r2, giving the expectation for the log posterior

odds:

E

�
log

�
Prðg10 j DÞ
Prðg11 j DÞ

	�
zlogn� n

d
3 l2C: (Equation A5)

We see that, asymptotically, the posterior probability

Prðg10jDÞ of the true causal configuration is, on average,
548 The American Journal of Human Genetics 101, 539–551, Octobe
smaller than the probability Prðg11jDÞ that both variants

are causal when the GWAS sample size n is much larger

than the reference-panel size d. This indicates that false

positives occur in this setting. On the other hand, if the

reference-panel size is proportional to the GWAS sample

size, then n/d is constant, and the probability of the true

causal configuration becomes larger than that of the

configuration with two causal variants as n grows. These

properties of Equation A5 are in line with our results where

the performance of correlation estimates from reference

panels of 1,000 individuals is muchworse for summary sta-

tistics from a GWAS on 50,000 individuals than for those

from a GWAS on 5,363 individuals.
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Figure S1 | Genetic structure of individuals in two Finnish cohorts. (A) The FINRISK study is a cross-sectional survey of the Finnish working age 

population collected at five centers ( ). The Northern Finland Birth Cohort 1966 (NFBC1966) is a longitudinal study of individuals from the provinces of 

Oulu and Lapland in the north of Finland ( ). Genetically, NFBC1966 is not a perfect match to FINRISK although individuals in both studies are collected 

within Finland. (B-D) First two principal components from an analysis of genotype data on 20,626 individuals included in the FINRISK surveys from 1992 to 

2007 and 5,363 individuals from NFBC1966.
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Figure S2 | Fine-mapping 19q13/APOE region associated with LDL-C. Bayes factors (log10) are shown from a FINE-
MAP analysis of 3,078 variants with minor allele frequency above 1% covering 1 Mb of the genome. GWAS summary sta-
tistics were computed using 15,626 individuals from the FINRISK study. LD information was obtained from the reference 
genotypes of 503 European individuals in the 1000 Genomes Project. Variants identified by a standard conditional analysis 
are highlighted in yellow. All other variants are colored with respect to their LD (absolute value of Pearson correlation) with 
the lead variant rs7412.
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Figure S3 | Shrinkage estimation of reference panel correlations in simulations with Finnish data. Genotype data on 5,363 individuals from NFBC1966 were used to 
generate phenotype data affected by five causal SNPs. Results with different LD information are shown by plotting the number of selected causal SNPs (true positives) against 
the number of selected non-causal SNPs (false positives) using the list of SNPs ranked by their posterior probability of being causal (left panels) and by highlighting the number 
of false positives (non-causal SNPs with posterior probability of being causal larger than 0.5) over the simulated data sets (right panels). Correlation estimates from reference 
panels (   ) using constant shrinkage factors of 1.00 ( ), 0.80 ( ) or 0.25 ( ) are compared to the original genotype data (  ) with respect to the achieved partial Area 
Under the Curve (pAUC) measure. Partial AUCs and curves are averaged over the simulated data sets. (A-B) Accuracy with NFBC1966 summary statistics and LD information 
either from the original genotype data or from a subset of FINRISK reference genotype data comprising 100 individuals. (C-D) Accuracy with NFBC1966 summary statistics 
and LD information either from the original genotype data or from a subset of FINRISK reference genotype data comprising 1,000 individuals.   
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Figure S4 | Fine-mapping accuracy in UK Biobank simulations. Genotype data on 82,199 individuals covering 
9q34/ABO region were used to generate phenotype data affected by five causal SNPs. Results with different LD information 
are shown by plotting the number of selected causal SNPs (true positives) against the number of selected non-causal SNPs 
(false positives) using the list of SNPs ranked by their posterior probability of being causal. Reference genotype panels 
( ) are compared to the original genotype data ( ) with respect to the achieved partial Area Under the Curve (pAUC) 
measure. Results are shown for summary statistics from GWAS on 10,000 individuals with LD information either from the 
original genotype data or from a subset of UK Biobank individuals not included in the GWAS. Partial AUCs and curves are
averaged over the simulated data sets.
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Figure S5 | Shrinkage estimation of reference panel correlations in UK Biobank simulations. Genotype data on 82,199 
individuals covering 9q34/ABO region were used to generate phenotype data affected by five causal SNPs. GWAS 
summary statistics were computed using 50,000 individuals. Results with different LD information are shown by plotting 
the number of selected causal SNPs (true positives) against the number of selected non-causal SNPs (false positives) using 
the list of SNPs ranked by their posterior probability of being causal. Correlation estimates from reference genotype panels 
( ) using constant shrinkage factors of 1.00 ( ), 0.80 ( ) or 0.25 ( ) are compared to the original genotype data 
( ) with respect to the achieved partial Area Under the Curve (pAUC) measure. Partial AUCs and curves are averaged 
over the simulated data sets. (A) Accuracy with LD information either from the original GWAS data or from a subset of UK 
Biobank genotype data not included in the GWAS comprising 1,000 individuals. (B) Accuracy with LD information either 
from the original GWAS data or from a subset of UK Biobank genotype data not included in the GWAS comprising 5,000 
individuals.
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Table&S1.&Average&size&of&credible&sets&from&FINEMAP&analysis&of&9q34/ABO&region&
with&5&causal&SNPs&among&1,000&variants&using&two&sources&for&LD&information&

GWAS%
sample%size%

Credible%
set% % LD%information%from%reference%

panels%with%size%d% %
LD% information%
from% the% original%
GWAS%data%

% % " d%=%100% d%=%1000% d%=%5000%% %

n%=%5363%

90%% % 324% 430% 422% % 416%

95%% % 383% 498% 489% % 481%

99%% % 456% 559% 553% % 546%
% % % % % % % %

n%=%50000%

90%% % 14% 174% 273% % 237%

95%% % 14% 248% 465% % 467%

99%% % 16% 340% 605% % 628%

 



 
 
 
 
 
 
 
 
 
 
 
 
 

Table&S2.&Average&causal&SNP&coverage&of&credible&sets&from&FINEMAP&analysis&of&

9q34/ABO&region&with&5&causal&SNPs&among&1,000&variants&using&two&sources&for&LD&
information&

GWAS%
sample%size%

Credible%
set% % LD%information%from%reference%

panels%with%size%d% %
LD% information%
from% the% original%
GWAS%data%

% % " d%=%100% d%=%1000% d%=%5000%% %

n%=%5363%

90%% % 68%% 93%% 93%% % 93%%

95%% % 73%% 95%% 95%% % 95%%

99%% % 79%% 97%% 97%% % 97%%
% % % % % % % %

n%=%50000%

90%% % 15%% 70%% 94%% % 96%%

95%% % 16%% 74%% 96%% % 98%%

99%% % 17%% 80%% 98%% % 99%%
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