Reactive metabolites of acetaminophen activate and sensitize

the capsaicin receptor TRPV1

Mirjam J Eberhardt^a, Florian Schillers^a, Esther M Eberhardt^b, Linus Risser^a, Jeanne de la

Roche^c, Christine Herzog^a, Frank Echtermeyer^a, Andreas Leffler^a*.

Supplementary Information

Supplemental Figure 1. Application of NAPQI leads to altered sodium permeability in hTRPV1. A NAPQI 10 μ M (3min) was applied following a capsaicin 0.1 μ M stimulus using patch clamp solutions containing sodium as the sole cation (internal: NaCl 140mM, EGTA 5mM, HEPES 5mM; external: NaCl 140mM, glucose 10mM, HEPES 10mM; pH was adjusted to 7.4 with NaOH). Ramp currents in the presence of a second capsaicin 0.1 μ M stimulus showed a leftward shift, as did the reversal potential (**B**) indicating a change in sodium permeability (p = 0.02, n = 7; Wilcoxon matched pairs test).

Supplemental Figure 2. A. 3 μ M pBQ evokes robust inward currents in hTRPV1-expressing cells held at -60 mV, which can only transiently be blocked by BCTC. B inward currents evoked by repeated capsaicin stimuli (0.1 μ M, 20 s) in hTRPV1expressing cells show strong desensitization.

Supplemental Figure 3. pBQ shifts temperature threshold of heat evoked currents in hTRPV1 to lower temperatures. Overlay of all heat-induced currents of one representative recording in an hTRPV1 expressing cell. Note that with duration of pBQ (1 μ M) (A) and NAPQI (10 μ M) (B) application, temperature thresholds to evoke an inward current is continuously shifted to lower temperatures.

Supplemental Figure 4. pBQ and NAPQI are ineffective in small capsaicin-negative DRG neurons. TRPV1 mediates low threshold (~ 45°C) heat-induced currents in small DRG neurons (Caterina et al., 2000). pBQ (10 μ M) effectively sensitized heat-induced inward currents within 30s of application (Fig 2 H) in all capsaicin-positive neurons measured. (A) When pBQ was applied to small capsaicin-negative DRG neurons which were challenged by heat ramps (up to 45 °C), no currents were evoked even if pBQ was applied for two minutes (n = 2). Similarly, in contrast to experiments performed in capsaicin-positive neurons (Fig. 2J), NAPQI (10 μ M) had no effect in capsaicin-negative DRG neurons (**B** shows one of three measured neurons). TRPA1 was blocked in these experiments by the channel blocker HC030031.

Supplemental Figure 5. Inside-out macro patches: pBQ (3 μ M, A) and NAPQI (10 μ M, B) evoked robust currents in inside out membrane patches of hTRPV1-expressing HEK 293 cells. Neither pBQ 3 μ M, nor capsaicin 1 μ M evokes any currents in inside-out macro patches of untransfected HEK 293 cells (C).

Supplemental Figure 6. A-D. Co-application of dithiothreitol (DTT, 5 mM, at least 4min) prevents sensitization of ramp currents in hTRPV1 by pBQ (**A**) and NAPQI (**C**), while a second application of these reactive acetaminophen metabolites alone for 1.5 - 3minutes again sensitizes hTRPV1. If it is applied once the ramp currents have been sensitized, DTT (5mM, \geq 4 min) does not reverse the effects of pBQ (1µM, 3min **B**) or NAPQI (10µM, 3min **D**). E. β -mercaptoethanol (1 mM, 5min) is also not able to reverse sensitization of TRPV1 once pBQ-induced increase of voltage ramp-induced currents has been fully established. F. pBQ (1µM, 1.5 min) still sensitizes currents on an rTRPV1 mutant lacking the cysteine C621G.

Supplemental Figure 7. Dithiothreitol 5 mM (DTT, **A**) and N-acetylcysteine (NAC, **B**) do not sensitize voltage ramp-induced currents in hTRPV1, even if applied for several minutes.

Supplemental Figure 8. A. Mutation of internal cysteines in hTRPV1 reduces sensitization of voltage ramp-induced current by pBQ (C158S/C387S/C767S-hTRPV1). B. However, higher concentrations of NAPQI (10 μ M) sensitize C158S/C391S/C767S-hTRPV1 (pBQ and both concentrations of NAPQI were applied for five minutes). These cysteines are also involved in sensitization of capsaicin- and proton-induced inward currents by reactive acetaminophen metabolites.

Supplemental Figure 9. pBQ induces rise in intracellular calcium in DRG neuron of TRPV1/TRPA1 double knockout mice. A. pBQ 1 μ M induces calcium influx in DRG neurons of C57BL/6 mice given as mean of all measured cells (bold red trace, n = 39) and representative measurements (thin traces) due to activation of TRPA1.⁵ B. These responses are absent in DRG neurons from TRPA1-knockout mice (n = 78). C. However, 10 μ M pBQ also induce increases in intracellular calcium in 28 % of neurons of TRPA1/TRPV1 double-knockout mice. Traces show pBQ-responsive (blue) and neurons not responding to pBQ (gray), a small increase in the signal is observed in all cells during exposure to 10 μ M pBQ (n = 303, mean bold trace, thin traces representative measurements).

Supplemental Figure 10. Expression of TRPV1 has been shown by mRNA and western blot in HEPG2, HUH7 and primary mouse hepatocytes (PMH).²¹ In accordance to these findings, we observed expression of TRPV1 by rtPCR (\mathbf{A}) and western blot (\mathbf{B}) in cultured primary mouse hepatocytes.

Supplemental Figure 11. Besides pain intracutaneous injection of NAPQI induces mild itching sensations. A. Magnitude and time course of NAPQI (10 mM)-evoked itch in human volunteers (n = 7) after intracutaneous injection to the volar forearm (lower panel). Itch was rated on a numerical rating scale (NRS) from 0 to 10 (a sensation of NRS 3 implies the beginning urge to scratch, mean \pm SEM). B. Magnitude and time course of NAPQI-induced pain are given for comparison (see also figure 9A).

Supplemental Figure 12. NAPQI-induced axon reflex erythema. Complete series of laser Doppler scans taken before and every 2 minutes after double-blind intracutaneous injection of NAPQI or NAPQI co-injected with NAC to the volar forearm of one human volunteer. While there is a strong axon reflex erythema induced by neuropeptide release following antidromic activation of wide branching C-fibers after NAPQI injection, this response is reduced by co-application of NAC.