
Reviewers' comments: 

Reviewer #2 (Remarks to the Author): 

In this manuscript the authors test a number of different statistical models for the outcome of 

Habitat modification. The main methodological innovation is to use models that separate species 

abundances from interaction preferences. Perhaps the most exiting result of this exercise is that 

detailed observation of certain pairs of species can be informative for the wider system.  

The methodology of the paper is very simple and and the methodological advance is incremental. 

The authors use very basic mathematics and the separation of abundance and interaction 

preference follows basic modelling intuition. While this might be new in the context of statistical 

models of habitat modification this separation exists in every (!) population dynamical model. The 

authors obtain some nice topical results, but these are not of the broad importance that I would 

expect in a Nature Comms paper.  

The authors use existing data sets that are then evaluated using the different, but very basic, 

models under consideration. In terms of substance this appears to be very much on the lighter 

side. In particular I find it worrying that conclusions are drawn from a small set of numbers 

without any challenging test or statistical serious statistical testing. I realize that may be partly 

due to the nature of the question, on which data is very limited, but still the wider readership of 

nature Comms would find this one hard to swallow.  

In summary, this is good work, but it presents an incremental methodical advance and does not 

present topical results that are of sufficient substance or importance to merit publication in Nature 

Communications.  

Reviewer #3 (Remarks to the Author): 

This paper is a very smart approach to further developments in ecological network analysis, 

especially about its predictability.  

Separating abundance effects and interaction preferences, and considering prey switching are 

interesting and great developments. Methodology is clearly presented and not over -complicated. 

The paper is clear and well-written.  

One issue is the taxonomic (not temporal) aggregation of networks. Several ecological processes 

are probably best characterizable at the level of functional groups, not species. Even if we do have 

high-resolution data, these may not be the best (most relevant). A brief discussion on whether and 

why to describe these communities at the species level would add to the paper. Clearly, both the 

questions and the answers are different in more aggregated networks, the question is how to best 

describe the key ecological processes.  

Since we only have host-parasitoid networks (great databases), one obvious question emerges: 

what do the Authors think about the generality of the results? Would results be similar to 

pollinators? Any intuitive idea about some differences?  

One question is how much we can know about the real preferences of species, based on the raw 



measurements even in a totally undisturbed system? Would be nice to read a little bit more about 

the potential/realized niche issue here. Since probabilities are combined in the different models, it 

is crucial to have a good assessment on the basic preferences (e.g. like 3-species subsystems in 

isolation).  

 

One technical idea. Figure 4 may be slightly changed: (1) the columns are too wide, this is not 

nice and (2) the location should be given above the chart and the model name should be given 

under the chart.  

 

There is a mass of information in the supplementary material. This is all right but, at least, 2.7 

should be discussed briefly in the main text, I think. This is so crucial (the width of the sampling 

time window and temporal aggregation, see 

http://www.sciencedirect.com/science/article/pii/S030438000900323 8).  

 

A: the Authors compare different model scenarios for predicting the effects of habitat changes on 

host-parasitoid networks.  

 

B: very interesting and original approach.  

 

C: excellent database  

 

D: methodology is powerful but simple. AIC and BIC well used.  

 

E: conclusions are solid but not overselled.  

 

F: both taxonomic and temporal aggregation better discussed.  

 

G: one paper suggested to consult, otherwise all right.  

 

H: enjoyable read, easy to understand.  

 

 

 

 

 

Reviewer #4 (Remarks to the Author):  

 

Staniczenko et al. Predicting the effec tof habitat modification on networks of interacting species  

 

Submitted to Nature Communications  

 

This manuscript reports an analysis of the effect of habitat modification on pairwise species 

interactions. Results are compiled at the community level, allowing an interpetation of the effect of 

habitat modification on network structure. I previously evaluated this manuscript for another 

journal and gave a favorable review. I maintain my position, I find this study interesting, 

stimulating and innovative. It could be a relevant contribution for Nature Communica tions because 

it improves our understanding of why ecological networks vary from one place to another. 

Traditionnally, community ecology compares lists of species across sites; now we see a paradigm 

shift with he comparison of ecological networks. Such a representation of a community is much 

more inclusive because it not only represents the species that are present and changing from a 

location to another, but also the way they interact. The second contribution of this manuscript is 

technical, it brings new models to represent the interactions and the methods that are developped 

could be useful for other studies. I must admit I do similar stuff myself and I am still 

puzzled/challenged by some decisions that were taken to represent interactions in their statis tical 

model.  



That said, the presentation of the study is way too technical for a general audience journal such as 

the one of Nature Communications. The authors report the results of 'models', not the underlying 

ecology. Such a presentation would be ok if the object of the paper was to develop new methods 

and if the authors were targetting a more specialized audience, but this is not the case. The way 

the objective of the study is formulated is just one good example. At P2L46 it is said that the 

object of the study is to 'test whether we can accurately predict the effects of habitat modification 

on the structure of weighted host-parasitoid networks'. Further, a sub-objective is to evaluate the 

amount and type of data that has to be included in the models to perform appropriate predictions. 

Are more general and encompassing objective would be to partition the drivers of network 

turnover with habitat modification. Predicting networks (actually what is done is predicting 

pairwise interactions across an entire set of species) is a technical objective, understanding the 

drivers of network turnover is a more conceptual objective. The structure of the manuscript follows 

this perspective, with subtitles corresponding to each of the model. Results are reported by type  of 

model, which makes the story way too complicated. Basically, I would summarize the results in 

just a few paragraphs. A first one ranking the hypotheses (not models) for the 'between habitat 

types with similar levels of modification' and the 'between habitat types with different levels of 

modification'. What is important is the relative support for each model, not so much their 

individual performance.  

The description of the methods, both in the main text and in the specific Methods section tends to 

be confusing. It has to be edited to become more accessible for a general audience. This is second 

time I evaluate this manuscript, and I do this kind of analysis myself, and even then I had to read 

it twice to make sure I do understand. I recognize that some research is simply too complicated 

and requires efforts to understand, but it is not the kind of papers this journal is looking for.   

As an example, the terminology used to describe the hierarchical nature of the data is very dificult 

to follow and rather inconsistent. If I try to summarize, there are four datasets, corresponding to 

four studies, conducted at different regions, at different field sites, each with different habitat 

types (sometimes referred as, environment or levels of habitat modification), consumer-resource 

ratio and groups. The groups are defined as 'regional scale properties' (L72), which is in itself 

confusing because multiple regions are lumped in each group. The consumer-resource ratio is not 

defined (it is the ratio of what that is computed ?). I am not contesting the classification, but it 

looks like the terms used to refer to these different descriptors of the data are not used 

consistently. Sometimes with synonyms. For instance, P19L409 in the methods, abundances are 

compiled across a set of field sites - there is not enough information for me to understand how 

abundance was compiled. I guess this is within a group ? Within a group for datasets coming from 

a given region/study/dataset ? This is just a simple example of a problem that spans the entire 

manuscript. It makes it particularly hard to understand the model comparisons. I understand the 

nature of the data can't be simplified really, but the way results are reported could be.   

In the text and the methods, I think it would help making the story more accessible if the models 

were first described by their ecology, and then with the maths. As written right now, I have to go 

through all equations and interpret them, which was difficult with with a priori knowledge of the 

study and of similar approaches. I can't believe it would be accessible to someone interested by 

the topic but without the appropriate qualifications in modelling.  

There are still some hidden assumptions in the model formulation that are unclear to me. I do get 

why the mass action assumption is used to estimate relative abundance, but I find it bizarre that 

this assumption is also made latter in the 'random encounter model', and indirectly involved as 

well in the other models where p_ijk is computed. It "looks" problematic, but perhaps additionnal 

explanation could help solving this issue. First, it sounds like the data is used twice to compute the 

likelihood, giving a false impression of circularity. The interaction count data feeds a first model, 

used to estimate relative abundance, and then as the data in the likelihood function (which also 

includes the p_ijk, using the precently estimated abundances). The second problem, which is more 



problematic conceptually, is that the neutrality assumption is made to estimate abundance, and 

then relative abundance is used in non-neutral models (in the correlated, specified and complete 

models). Obviously, if these models are right, then the estimate of relative abundance is wrong. 

The only solution I see (there might be others) is to estimate everything in a single step, via a 

hierarchical model.  

The other technical point that is not explained enough is the conceptual justification for the 

multinomial distribution. I remember I've made this point before and I am sorry to see  no change 

in response to it. It could be a binomial, or a Poisson distribution. The multinomial implicitly 

assumes there is a fixed number of trials and that there is a tradeoff between potential hosts when 

a parasitoid is searching for them (ie a total number of trials, spread across the different species). 

A binomial model would treat all species pairs independently and provide exactly the same 

likelihood whatever is the composition of the community. In other words, the decision of taking a 

multinomial has for consequences that the number of counts between two pairs of species will 

change with the change in the composition of the community from one location to another, even if 

the two species are exactly the same absolute abundance. I am not convinced of this as a general 

fact (it might be ok though for parasitoids that do have a single interaction in their life), but I 

recognize it is an intuition and that research will have to be conducted to compare the two 

approaches. At least, the authors need to detail why this model, and anticipate the consequences 

of their decisions relative to other options. Not that I am in favour of one or another, I think 

research still has to be conducted to determine wich is the right distribution, but the justification 

has to be provided.  

Further, to me abundance has to come somewhere in the distribution used in the likelihood 

function. The number of trials for the multinomial process has to depend on the abundance of the 

two species, not the counts. My view of the problem is rather different and I would like to 

exchange with the authors about it, or at least provide better justifications for their approach. I 

rather see a hierachical model where you have the expected number of encounters:   

Nijk prop x_ik^a * x_jk^b  

With the the interaction probability:  

p_ijk = gamma_ijk / sum_ij gamma_ijk 

And the number of interactions resulting from a bionomial process P(B_ijk| p_ijk, N_ijk). The 

random encounter model would still be possible, but for the case with gamma equal across al l 

species. As a consequence, I don't see conceptually the difference between the aggregate counts 

model and the random encounter model. The bottom line of my comment at the end is that the 

model has to be grounded on the ecology, not just described passive ly as it is right now. This type 

of approach is highly innovative and therefore it needs to be better justified.  

There is one information I missed from the methods: what if a species pair in the 'test group' is 

absent from the 'calibration group' ? And the other way around ?  

I haven't understood how is gamma' is computed in the novel environment (L463) ? 

'Predictive capability'- I don't have the same interpretation. To me it is simply a different null 

model from the one used to compute explanatory power (albeit some changes in the formulation 

of the equation).  

I signed my evaluation 

Dominique Gravel 



Response to reviewer comments

This document accompanies a revised manuscript with all changes highlighted (rewritten text in
orange and added text in magenta); also included is a version without highlighting that is more
suitable for printing. Below, reviewer comments are quoted in full in typewriter font, and
each point is followed by our response. Page and line references in our responses correspond to
the revised manuscript, unless stated otherwise. Please note that there is no Reviewer 1 because
one of the original referees was unfortunately unable to deliver a report and another referee was
therefore recruited in his/her place.

Reviewer 2

In this manuscript the authors test a number of different statistical

models for the outcome of Habitat modification. The main methodological

innovation is to use models that separate species abundances from inter-

action preferences. Perhaps the most exiting result of this exercise is

that detailed observation of certain pairs of species can be informative

for the wider system.

We thank the reviewer for his/her careful reading of our manuscript.

The methodology of the paper is very simple and and the methodological

advance is incremental. The authors use very basic mathematics and

the separation of abundance and interaction preference follows basic

modelling intuition. While this might be new in the context of statis-

tical models of habitat modification this separation exists in every

(!) population dynamical model. The authors obtain some nice topical

results, but these are not of the broad importance that I would expect in

a Nature Comms paper.

Although our methodological contributions may seem simple from the perspective of popula-
tion dynamical models, we suggest that they are not just an incremental contribution but are
truly novel, as noted by the other two reviewers. Empirical studies have only begun to docu-
ment how environmental changes affect complex ecological networks over the past 10 years, so
already being able to predict these impacts is a huge advance. We expect that our approach will
be used by a broad range of ecologists and biologists, both theoreticians and empiricists, as well
as researchers working with complex networks more generally, e.g., Saavedra, Reed-Tsochas
and Uzzi (2009) A simple model of bipartite cooperation for ecological and organizational
networks, Nature 457, pp. 463–466.

It is true that almost all population dynamical models inherently separate species abundance
from interaction preferences. Surprisingly though, almost all work on ecological networks does
not make this fundamental separation when analysing network structure, particularly when
considering the effects of environmental change, e.g., Tylianakis, Tscharntke and Lewis (2007)
Habitat modification alters the structure of tropical host-parasitoid food webs, Nature 445,
pp. 202–205. Indeed, one motivation for this work was to introduce to field and theoretical
ecologists a simple yet powerful approach to separating the effects of abundance from those of
interaction preferences when dealing with network data. Our approach is also intended to be
useful when independent measurements of species abundance are not available, which is the
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case with most studies involving ecological networks.
We acknowledge the reviewer’s point in our discussion (P19L401): “Although many biolog-

ical details will of course vary between network classes, separating relative species abundance
from other factors affecting network structure will still be useful because our general approach,
at its core, represents a fundamental modelling step that has been taken for granted in popula-
tion dynamical models for decades [Brauer and Castillo-Chavez 2000].”

The authors use existing data sets that are then evaluated using the

different, but very basic, models under consideration. In terms of

substance this appears to be very much on the lighter side. In particular

I find it worrying that conclusions are drawn from a small set of numbers

without any challenging test or statistical serious statistical testing.

I realize that may be partly due to the nature of the question, on which

data is very limited, but still the wider readership of nature Comms

would find this one hard to swallow.

The reviewer is correct with his/her impression that there is very limited data with which to
validate the effects of environmental change on ecological networks. Moreover, we were very
careful when choosing which data sets to analyse to ensure that our results were comparable
and robust (a point noted by Reviewer 3, who highlighted that we had assembled an “excellent
database”). As mentioned in the previous version of the Supplementary Information (footnote
on P15), we set a very high bar for a data set to be included in our study. Specifically, we
required that a data set satisfy three criteria for inclusion: i) the lower trophic level involves
cavity-nesting insects, so that the method of data collection was similar among data sets; ii)
networks were sampled from what could broadly be considered “modified” and “unmodified”
habitats, so that we could assess the effect of habitat modification on weighted network struc-
ture; and iii) more than ten networks were sampled from sites in each different type of habitat,
so that we could assess changes in weighted network structure both at the level of individual
field sites and at a larger geographical scale (i.e., across multiple field sites at once).

To add further context, even among the comprehensive collection of antagonistic interaction
networks in Morris, Gripenberg, Lewis and Roslin (2014) Antagonistic interaction networks are
structured independently of latitude and host guild, Ecology Letters 17, pp. 340–349, very few
of the data sets satisfy our three criteria. Of 28 data sets, only 3 satisfy all three criteria (these 3
data sets are included in our study). Only 6 data sets involve cavity-nesting insects; only 5 data
sets include networks sampled from both “modified” and “unmodified” habitats; and only 8
data sets include ten or more replicate networks in total (i.e., irrespective of whether networks
were sampled in different habitat types), with 14 data sets containing only a single network
(see Table S1.1 in the Supplementary Information of Morris et al.). We also analysed a fourth
suitable data set from a more recent study: Coudrain, Schüepp, Herzog, Albrecht and Entling
(2014) Habitat amount modulates the effect of patch isolation on host-parasitoid interactions,
Frontiers in Environmental Science 2, pp. 27. On the topic of data set suitability, it is worth
emphasising that all four data sets analysed were collected by authors of the present study. We
acknowledge that the lack of suitable data has prevented rigorous statistical testing across data
sets, but are optimistic that the data requirements and modelling ideas advanced in this study
will inform and direct future data collection.
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In summary, this is good work, but it presents an incremental methodical

advance and does not present topical results that are of sufficient

substance or importance to merit publication in Nature Communications.

We thank the reviewer for his/her critical but balanced assessment of our work. We hope
that our responses, along with the improved presentation in the revised manuscript following
suggestions by Reviewer 4, more clearly highlights the novel methodological contributions,
conceptual advances and practical usefulness of our new approach to predicting the structure
of weighted ecological networks.

Reviewer 3

This paper is a very smart approach to further developments in ecological

network analysis, especially about its predictability.

We thank the reviewer for taking the time to consider our work and are pleased with his/her
positive assessment.

Separating abundance effects and interaction preferences, and consider-

ing prey switching are interesting and great developments. Methodology

is clearly presented and not over-complicated. The paper is clear and

well-written.

We find it reassuring that the reviewer was able to follow the methodology in the original
manuscript. Nevertheless, given the comments of the other two reviewers, we felt it was neces-
sary to improve the presentation in the revised manuscript so that the widest possible audience
could understand and implement our new approach. We hope that the reviewer still considers
the revised manuscript to be clear and well-written.

One issue is the taxonomic (not temporal) aggregation of networks. Sev-

eral ecological processes are probably best characterizable at the level

of functional groups, not species. Even if we do have high-resolution

data, these may not be the best (most relevant). A brief discussion

on whether and why to describe these communities at the species level

would add to the paper. Clearly, both the questions and the answers

are different in more aggregated networks, the question is how to best

describe the key ecological processes.

This is a good point that has both theoretical and practical implications. Due to space con-
straints, we have added a paragraph about the taxonomic aggregation of networks in the Sup-
plementary Information (Section 1.4) and direct the reader to this discussion on P8L160. The
new paragraph reads: “Our approach is based on food webs resolved to the level of individ-
ual species. At least in host-parasitoid systems, this is likely to be the most relevant level of
analysis because of the intimate, co-evolved relationships between hosts and parasitoids, and
their relatively high specificity. This is also the level of aggregation most frequently used in
empirical network studies, although separation within species (e.g., according to genotypes)
or aggregations of species are occasionally published. More importantly, species-level parti-
tioning of host resources across parasitoids has been shown empirically to relate to functional
properties such as attack rates and their stability [Peralta et al. Ecology 2014], so there is
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an established relationship between network architecture with species as nodes and ecosystem
processes. For larger community networks, particularly those that are more taxonomically and
functionally diverse [Montoya et al. Nature Communications 2015], and which include a wider
range of interactions types (e.g., predator-prey food webs), a definition of nodes in terms of
aggregations of taxa may be equally or more illuminating about dynamics compared to an ap-
proach focused on species-level interactions. Nevertheless, the general approach and methods
introduced in this study are applicable to taxonomically aggregated networks, but care must be
taken that predictive models reflect ecological mechanisms and processes that are appropriate
for the level of aggregation under investigation.”

Since we only have host-parasitoid networks (great databases), one

obvious question emerges: what do the Authors think about the generality

of the results? Would results be similar to pollinators? Any intuitive

idea about some differences?

We thank the reviewer for pressing us to answer these important questions and have extended
our discussion (P19L399): “It will be interesting to apply our models to other classes of
weighted interaction network, such as plant-pollinator networks (in which weights represent the
number of recorded visits between species). Although many biological details will of course
vary between network classes, separating relative species abundance from other factors affect-
ing network structure will still be useful because our general approach, at its core, represents
a fundamental modelling step that has been taken for granted in population dynamical models
for decades.”

For the benefit of the reviewer, we would like to share some initial thoughts from early
analyses of two other data sets that involve different species from those in host-parasitoid net-
works. As analysis is ongoing, it would not be appropriate to include such preliminary findings
in the current manuscript. First, we are applying our approach to an unpublished (at the time of
writing) data set of 360 plant-pollinator networks sampled in urban environments. Interaction
data were collected as part of a single study across four large cities and nine different urban
habitat types. Initial findings suggest that the “alternative preferences model” can be used to
successfully predict network structure between similar habitat types (e.g., private gardens and
allotments), but not dissimilar habitat types (e.g., private gardens and industrial estates). We
have yet to explore which and in what way more complex models (e.g., the “correlated prefer-
ences model”) may be useful for making predictions about urban plant-pollinator communities.

Second, we are analysing a published data set of four mosquito-host networks (two sam-
pled indoors and two sampled outdoors) where, unusually, information is also provided on the
relative abundance of host and mosquito species. We find that our approach using preference
matrices can be successfully combined with independent measurements of species abundance
to predict network structure at new locations. Although tested using a comparatively small data
set, we find that our approach outperforms a more conventional approach based on forage (or
sometimes “foraging”) ratios—see Hess, Hayes and Tempelis (1968) The use of the forage ratio
technique in mosquito host preference studies, Mosquito News 28, pp. 386–389—that we have
adapted for use with interaction networks. Interestingly, the performance of the “alternative
preferences model” can be improved by systematically adjusting host abundance distributions
derived from survey data. Specifically, the largest gain in model fit results from reducing the
effective proportion of humans compared to farm animals when making predictions at outdoor
locations. We suggest this is because survey data lead to overestimates of outdoor encounter

Page 4



rates between mosquitoes and their hosts.

One question is how much we can know about the real preferences of species,

based on the raw measurements even in a totally undisturbed system? Would

be nice to read a little bit more about the potential/realized niche

issue here. Since probabilities are combined in the different models, it

is crucial to have a good assessment on the basic preferences (e.g. like

3-species subsystems in isolation).

This is an interesting question. Due to space constraints, we have added a paragraph about
the issue of potential and realise niche in the Supplementary Information (Section 2.7) and di-
rect the reader to this discussion on P19L396. The new paragraph reads: “In the main text, we
suggested that studying single-parasitoid-multiple-host subsystems under controlled conditions
would help untangle the issue of potential and realised niche. Although in this study we have
focused on predicting the effects of habitat modification on the feeding preferences of species,
it is worth emphasising that even in undisturbed systems we cannot be certain of measuring
what could be considered underlying or ‘true’ preferences. This is because the feeding interac-
tions observed in these systems may be a subset of those that could be achieved in the absence
of competitors: we are likely to be observing the realised feeding niches of these species, and
their fundamental feeding niches may be broader (or differ in magnitude) from those observed
under natural conditions. The only way to fully resolve the relationship between potential and
realised niche would be a series of manipulative experiments where preferences are assessed
across all sets of hosts for each parasitoid species, in isolation from competition. This is not
feasible in most systems. But in the absence of data on true preferences, although imperfect,
our version of preferences are likely to be at least broadly accurate and may be useful as a first
step at predicting changes to weighted network structure.”

One technical idea. Figure 4 may be slightly changed: (1) the columns are

too wide, this is not nice and (2) the location should be given above the

chart and the model name should be given under the chart.

We have made the suggested changes to Figure 4 (P34).

There is a mass of information in the supplementary mate-

rial. This is all right but, at least, 2.7 should be discussed

briefly in the main text, I think. This is so crucial (the

width of the sampling time window and temporal aggregation, see

http://www.sciencedirect.com/science/article/pii/S0304380009003238).

We have moved and adapted the discussion about aggregating networks that was previously
in Section 2.7 of the Supplementary Information to the main text, which also includes the
suggested citation (P7L146): “It is worth emphasising the importance of modelling species
abundances at the level of individual field sites, even if it is necessary to assume the same value
for effective abundance at multiple field sites. This is because representing system properties
using spatially aggregated data can give misleading results. For example, consider five net-
works that each contain the same two host (i = 1 and i = 2) and parasitoid species (j = 1).
When aggregated, there are 15 counts to the first host and 10 counts to the second host; and
we therefore estimate relative host species abundance as Xi=1 = 15 and Xi=2 = 10. However,
following our suggested approach, we find that effective abundances are x̂j=1 = 1 for the para-
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sitoid species, and x̂i=1 = 3 and x̂i=2 = 6 for the two host species. In this example, the relative
magnitudes of host species abundance at the level of individual field sites is the reverse of the
estimate based on aggregated data. This is because, on closer inspection, we might find that
the number of recorded counts at the five field sites is something like {3, 3, 3, 3, 3} for the first
host and {10, 0, 0, 0, 0} for the second host, which means that the second host (i = 2) should
really be modelled as being more abundant than the first host (i = 1). In general, using the sum
of counts across networks as a proxy for abundance or population density will underestimate
values for spatially less-common species. Similar issues arise with temporal data aggregation
[Jordán and Osváthc Ecological Modelling 2009]. We discuss the related topic of aggregating
networks by species taxonomy in Supplementary Information.”

A: the Authors compare different model scenarios for predicting the

effects of habitat changes on host-parasitoid networks.

B: very interesting and original approach.

C: excellent database

D: methodology is powerful but simple. AIC and BIC well used.

E: conclusions are solid but not overselled.

F: both taxonomic and temporal aggregation better discussed.

G: one paper suggested to consult, otherwise all right.

H: enjoyable read, easy to understand.

Again, we thank the reviewer for thoroughly assessing our work.

Reviewer 4

Staniczenko et al. Predicting the effect of habitat modification on

networks of interacting species

Submitted to Nature Communications

This manuscript reports an analysis of the effect of habitat modification

on pairwise species interactions. Results are compiled at the community

level, allowing an interpetation of the effect of habitat modification

on network structure. I previously evaluated this manuscript for an-

other journal and gave a favorable review. I maintain my position, I

find this study interesting, stimulating and innovative. It could be

a relevant contribution for Nature Communications because it improves

our understanding of why ecological networks vary from one place to

another. Traditionnally, community ecology compares lists of species

across sites; now we see a paradigm shift with he comparison of ecological

networks. Such a representation of a community is much more inclusive

because it not only represents the species that are present and changing

from a location to another, but also the way they interact. The second

contribution of this manuscript is technical, it brings new models to

represent the interactions and the methods that are developped could be

useful for other studies. I must admit I do similar stuff myself and I am

still puzzled/challenged by some decisions that were taken to represent

interactions in their statistical model.
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We thank the reviewer (Professor Gravel) for assessing our work for a second time and con-
tinuing to offer a favourable review with constructive feedback. We have implemented all of
his suggestions, which we believe has significantly improved the manuscript. Furthermore, we
hope that our detailed responses to some of the reviewer’s more specific comments, below, will
help clarify and justify our statistical choice for representing interactions when determining
model likelihoods.

That said, the presentation of the study is way too technical for a

general audience journal such as the one of Nature Communications. The

authors report the results of ’models’, not the underlying ecology. Such

a presentation would be ok if the object of the paper was to develop new

methods and if the authors were targetting a more specialized audience,

but this is not the case. The way the objective of the study is formulated

is just one good example. At P2L46 it is said that the object of the study

is to ’test whether we can accurately predict the effects of habitat

modification on the structure of weighted host-parasitoid networks’.

Further, a sub-objective is to evaluate the amount and type of data that

has to be included in the models to perform appropriate predictions. Are

more general and encompassing objective would be to partition the drivers

of network turnover with habitat modification. Predicting networks (ac-

tually what is done is predicting pairwise interactions across an entire

set of species) is a technical objective, understanding the drivers of

network turnover is a more conceptual objective. The structure of the

manuscript follows this perspective, with subtitles corresponding to

each of the model. Results are reported by type of model, which makes the

story way too complicated. Basically, I would summarize the results in

just a few paragraphs. A first one ranking the hypotheses (not models)

for the ’between habitat types with similar levels of modification’ and

the ’between habitat types with different levels of modification’. What

is important is the relative support for each model, not so much their

individual performance.

We agree that the presentation of the manuscript was far too technical for a general audience.
We have rewritten large parts of the text following the reviewer’s excellent suggestions. In
general, his advice to put the ecology first and technical details second has, we feel, greatly
improved the readability and accessibility of our work. There is too much rewritten text to
directly quote in this response, but they are highlighted in orange in the revised manuscript. In
some cases, we have added text to the manuscript, which are highlighted in magenta.

In the introduction, we provide clearer ecological motivation for separating relative species
abundance and interaction preferences (P2L37). We also state the hypothesis (P3L62) that we
are testing in ecological terms and how this relates to the modelling (with a brief summary of
results and conclusions on P3L69) and return to the original hypothesis in light of our findings
in the discussion (P17L359). Our attempts at improving the accessibility of our methods and
models are described in detail, below, in response to other queries raised by the reviewer.
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The description of the methods, both in the main text and in the specific

Methods section tends to be confusing. It has to be edited to become more

accessible for a general audience. This is second time I evaluate this

manuscript, and I do this kind of analysis myself, and even then I had to

read it twice to make sure I do understand. I recognize that some research

is simply too complicated and requires efforts to understand, but it is

not the kind of papers this journal is looking for.

We agree. In addition to rewriting large parts of the main text, we have expanded the Methods
section to more clearly describe our models, such that a general reader would be able to imple-
ment them in his/her own studies.

As an example, the terminology used to describe the hierarchical nature

of the data is very dificult to follow and rather inconsistent. If I try

to summarize, there are four datasets, corresponding to four studies,

conducted at different regions, at different field sites, each with

different habitat types (sometimes referred as, environment or levels

of habitat modification), consumer-resource ratio and groups. The

groups are defined as ’regional scale properties’ (L72), which is in

itself confusing because multiple regions are lumped in each group. The

consumer-resource ratio is not defined (it is the ratio of what that is

computed ?). I am not contesting the classification, but it looks like

the terms used to refer to these different descriptors of the data are

not used consistently. Sometimes with synonyms. For instance, P19L409

in the methods, abundances are compiled across a set of field sites -

there is not enough information for me to understand how abundance was

compiled. I guess this is within a group ? Within a group for datasets

coming from a given region/study/dataset ? This is just a simple example

of a problem that spans the entire manuscript. It makes it particularly

hard to understand the model comparisons. I understand the nature of the

data can’t be simplified really, but the way results are reported could

be.

We thank the reviewer for highlighting specific parts of the text that were difficult to understand
and have tried to clarify all points of confusion in the revised manuscript. We have improved
the description of the hierarchical nature of the data (P5L94): “We analysed each study as a
separate data set and organised data into a three-level hierarchy: network, group of networks,
and data set. Each network was built from interaction data collected at a single field site.
For mathematical convenience, we represent weighted networks as matrices with entries Bijk

that record the number of interactions, also referred to as counts, between host species i and
parasitoid species j at field site k. To test hypotheses more easily, we grouped networks by
habitat type and used metadata to identify two features with each group: habitat complexity
and consumer-resource ratio.”

We have reduced the amount of jargon and number of synonyms, and have been much more
consistent with the use of each term. For example, we have cut all reference to “regional-scale
properties [of networks],” which in hindsight just added confusion. We now only use “habitat
type” and no longer refer to “levels of habitat modification” and “environment” in reference to
our data sets.
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We have added a definition of the consumer-resource ratio to the main text (P5L102): “We
defined consumer-resource ratio as the total number of parasitoids (successful parasitism events
across all species) divided by the total number of parasitised and unparasitised hosts collected
in the field. This measure indicates how easily parasitoids are able to locate their hosts in
particular habitat types, and we labelled groups as being associated with either “high” or “low”
consumer-resource ratio (see Supplementary Information).”

We have clarified the relationship between recorded counts, interaction preferences and ef-
fective abundances. First, we clarify the scope of models and comparisons in our approach
(P6L134): “Th[e] decomposition [Bijk ∝ γijx̂ix̂j] assumes that a single preference matrix is
valid across all field sites included in the set of k-indices under consideration, e.g., across all
networks in the same group. This assumption is useful for prediction because a single, model-
generated preference matrix can then be used to determine weighted network structure at mul-
tiple field sites.” Then we provide additional details about effective abundances (P7L138): “We
refer to x̂i and x̂j as effective abundances because they can be considered a functional prop-
erty of the system that contributes directly to recorded interaction counts, and also to make it
clear that their value may be different from other estimates of species abundance, such as those
obtained from survey data. As explained in Methods, the above decomposition assumes that
effective abundances hold across all field sites in the same habitat type. This is a necessary
assumption because there are often insufficient data in individual networks to determine non-
trivial estimates of relative species abundance at individual field sites, and explains why there
is no k-index attached to effective abundances despite it being mathematically more desirable.”

In the text and the methods, I think it would help making the story more

accessible if the models were first described by their ecology, and then

with the maths. As written right now, I have to go through all equations

and interpret them, which was difficult with with a priori knowledge

of the study and of similar approaches. I can’t believe it would be

accessible to someone interested by the topic but without the appropriate

qualifications in modelling.

This is an excellent suggestion that we have taken to heart and tried to follow when rewriting
the main text and methods. When explaining how interaction preferences can be used to make
predictions, we provide some ecological reasoning for models (P9L191): “The most complex
model [in our approach] assumes that changes in species behaviour are so complex that each in-
teraction preference in the matrix must be characterised individually when making predictions
at a new field site—we call this the complete characterisation model. An intermediate model,
which we call the alternative preferences model, assumes that species behaviour changes very
little between habitat types, and so the preference matrix derived from one group of networks
is useful for predicting weighted network structure at a new field site. This model is expected
to perform well at making predictions between similar habitat types, but poorly if the new field
site is in a very different habitat type from the one used for calibration.”

We provide additional ecological context when describing the aggregate counts model
(P11L229): “Existing analyses implicitly assume that recorded counts have intrinsic predic-
tive value, such that interaction data from one habitat type can be used to make predictions at
field sites in other habitat types without additional data processing. To illustrate the benefit of
separating changes in relative species abundance from changes in interaction preference, we
present results for the aggregate counts model, which does not make this separation.” Also

Page 9



for the random encounter model (P11L239): “Mechanism-based approaches to weighted net-
works typically assume that interaction frequencies are a function of relative species abundance
[Vázquez et al. Oikos 2007]. The simplest application of this idea in our approach is the ran-
dom encounter model, which assumes no species behaviour and so all non-zero entries in the
corresponding preference matrix have the same value.”

We provide practical motivation for the specified preferences model (P14L303): “Of course,
we could improve model performance by empirically characterising all changes in interaction
preference in modified habitat types, but such exhaustive data collection is costly and time con-
suming. It would therefore be useful to know how many and what kind of interactions should be
targeted for empirical study.” We have also added a practical benefit of the model (P16L323):
“For future predictions, influential interactions should be studied in experiments and targeted
when sampling data at new field sites. If the identity of interactions to target is not known
in advance, then a good rule of thumb is to focus on interactions between the more abundant
species. [...] Because abundant species are more likely to to be detected in any sample, our re-
sults suggest that low-intensity samples could be augmented by the specified preferences model
to yield reliable quantification of network structure at substantially lower cost.”

There are still some hidden assumptions in the model formulation that

are unclear to me. I do get why the mass action assumption is used to

estimate relative abundance, but I find it bizarre that this assumption

is also made latter in the ‘random encounter model’, and indirectly

involved as well in the other models where p ijk is computed. It ‘‘looks’’

problematic, but perhaps additionnal explanation could help solving

this issue. First, it sounds like the data is used twice to compute the

likelihood, giving a false impression of circularity. The interaction

count data feeds a first model, used to estimate relative abundance,

and then as the data in the likelihood function (which also includes

the p ijk, using the precently estimated abundances). The second prob-

lem, which is more problematic conceptually, is that the neutrality

assumption is made to estimate abundance, and then relative abundance is

used in non-neutral models (in the correlated, specified and complete

models). Obviously, if these models are right, then the estimate of

relative abundance is wrong. The only solution I see (there might be oth-

ers) is to estimate everything in a single step, via a hierarchical model.

This comment made it very clear that we needed to do a much better job of explaining and jus-
tifying our methodology for estimating relative species abundances (we refer to these estimates
as “effective abundances”), and how this step fits into the workflow for making predictions. We
have updated the revised manuscript accordingly, most notably by adding a five-step outline
of how we use effective abundances and interaction preferences to make predictions (P9L181):
“Testing this approach using our data sets involved five steps. First, we selected a calibration
and test group from the same data set. Second, we inferred effective abundances from interac-
tion data in the test group to represent values at the new field site. Third, we used a predictive
model to generate a preference matrix based primarily on information from the calibration
group. Fourth, we combined the effective abundances with the preference matrix to produce
a predicted set of interaction counts (Eqn 1). And fifth, we assessed model performance by
comparing the predicted distribution of counts among species to the recorded distribution in
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the test group. These steps were then repeated for another pair of calibration and test groups.”
We hope that the above text addition and the other rewrites in the revised manuscript has

clarified matters and will prevent future confusion for readers. Below we include an additional
discussion for the reviewer that goes into more detail about his specific concerns. We begin
with a summary of our treatment of species abundances then directly address the two issues
raised by the reviewer.

Estimating species abundances

The starting point of any mechanistic approach to modelling the relative frequency of species
interactions is relative species abundance. Unfortunately, independent measurements of species
abundance rarely accompany data about ecological networks. This means that we must first ob-
tain estimates of relative species abundance before embarking on more complicated modelling
involving species behaviour etc. As such, our methodological approach involves two distinct
parts: first, we estimate relative species abundance from interaction data; then second, we
use those newly estimated species abundances in our models for predicting weighted network
structure. Previously, we failed to adequately separate the two parts in our presentation of the
methods, which was confusing for the reader.

In the first part, we obtain estimates of relative species abundance at the group level, i.e.,
using interaction data from multiple networks with each network built from data collected a
single field site. For example, imagine that we have 10 networks for forest habitat type in
Ecuador. We use interaction data from all 10 networks to estimate one set of relative species
abundances that we assume is representative of forest habitat in Ecuador. When estimating
relative species abundances, we assume two scaling parameters, α and β, that allow us to find
the most neutral distribution of species abundances. As α and β are “free” parameters, we use
interaction data to find their maximum likelihood estimate (mle) values α̂ and β̂. It is important
to emphasise that finding mle values for α and β is a very different procedure from calculat-
ing the likelihood of our models given observed network data (the focus of the second part,
discussed below), and the two steps should be performed separately from one another. When
computing mle values for α and β, we are using data to inform the most conservative estimates
of relative species abundance under the assumption of neutrality, with mass action as the only
process determining interaction frequency; but when computing likelihoods in the second part,
we are comparing how well the outputs of our models can explain empirical networks. The
result of the first part is a vector of relative species abundances x̂ (what we call “effective abun-
dances”), containing entries x̂i for hosts and x̂j for parasitoids, that we use as inputs in models
for predicting network structure.

In the second part, we assume that the vector of relative species abundances x̂ is an objec-
tive property of the system under investigation (in this example, a representative distribution
of species abundances for forest habitat type in Ecuador). These x̂ are used in our models, the
simplest of which is the “random encounter model,” which assumes that empirical interaction
frequencies can be adequately explained by the product of host and parasitoid abundances, i.e.,
∼ x̂ix̂j . Our more complicated models then modify this baseline expectation using the concept
of interaction preferences. As discussed in more detail below, the output of these models for
network structure can be compared to empirical data using a number of different likelihood
functions (we use the likelihood function associated with the multinomial distribution).
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Issue 1: Data used twice to compute likelihood

The reviewer’s first issue is the concern that data is used twice to compute the likelihood of
a model, giving the false impression of circularity. Although we hope that we have shown
above that data is not used twice to compute the likelihood, there remain a few subtle points
related to this issue that are worth discussing for complete transparency. The first part can be
thought of as an optimisation step where we find the mle values of two parameters (α and β)
that result in the most conservative estimate of a neutral distribution of species abundances,
whereas the second part uses likelihood as a way of comparing predictive models to empirical
data (and therefore predictive models to one another). As such, when we present likelihoods for
the “random encounter model” we are presenting the best possible results for this model. This
is because by using mle values (α̂ and β̂) we are calculating the best likelihoods that can be
attributed to the assumption of random encounter, out of all possible models that are consistent
with random encounter (i.e., among all possible combinations of α and β). This is actually an
advantage of our approach, as more complicated models must explain more of the empirical
data to be judged notably better than the simple “random encounter model” (for reference, we
also present results for the “random encounter model” with α = 1 and β = 1 in the Support-
ing Information, which by definition results in worse likelihoods than the corresponding model
with α = α̂ and β = β̂). Because all of our more complicated models use the same vector
of relative species abundances x̂, we can fairly judge to what extent incorporating additional
ecological processes into models improves predictions.

Issue 2: Validity of neutrality assumption about estimated species abundances

The reviewer’s second issue involves the validity of our neutrality assumption about estimated
species abundances. As mentioned above, we suggest that our approach to estimating relative
species abundances under the assumption of neutrality results in the most conservative val-
ues possible given available data. However, it is worth noting that if a “genuine” interaction
preference is very strong then some of this preference may be absorbed into our abundance
estimates of the interacting species. In other words, in some instances we may be inadvertently
attributing to greater relative abundance what is, in reality, a greater preference for a particu-
lar interaction (i.e., our estimated value for the interaction preference would be lower than the
“true” value). So yes: given that we must estimate relative species abundance, there will be
some discrepancy between our estimated values (“effective abundances”) and the “genuine”
values. Discrepancies will be small when the system is well-explained by mass action/random
encounter and potentially larger when specialist parasitoids are involved in interactions with
very strong, “genuine” interaction preference. This is because when a parasitoid species is
involved in few interactions it is more parsimonious to attribute a relatively large number of
interaction counts to high abundance and mass action rather than to an especially strong in-
teraction preference. However, we suggest that our approach is reasonable given the type of
data typically available, and look forward to conducting a formal assessment of our approach
to estimating relative species abundance once independent measurements are collected along
with interaction data.
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The other technical point that is not explained enough is the conceptual
justification for the multinomial distribution. I remember I’ve made
this point before and I am sorry to see no change in response to it. It
could be a binomial, or a Poisson distribution. The multinomial implic-
itly assumes there is a fixed number of trials and that there is a tradeoff
between potential hosts when a parasitoid is searching for them (ie a
total number of trials, spread across the different species). A binomial
model would treat all species pairs independently and provide exactly the
same likelihood whatever is the composition of the community. In other
words, the decision of taking a multinomial has for consequences that
the number of counts between two pairs of species will change with the
change in the composition of the community from one location to another,
even if the two species are exactly the same absolute abundance. I am not
convinced of this as a general fact (it might be ok though for parasitoids
that do have a single interaction in their life), but I recognize it is
an intuition and that research will have to be conducted to compare the
two approaches. At least, the authors need to detail why this model,
and anticipate the consequences of their decisions relative to other
options. Not that I am in favour of one or another, I think research still
has to be conducted to determine wich is the right distribution, but the
justification has to be provided.

Further, to me abundance has to come somewhere in the distribution used
in the likelihood function. The number of trials for the multinomial
process has to depend on the abundance of the two species, not the counts.
My view of the problem is rather different and I would like to exchange
with the authors about it, or at least provide better justifications
for their approach. I rather see a hierachical model where you have the
expected number of encounters: Nijk prop x ikˆa * x jkˆb

With the the interaction probability:
p ijk = gamma ijk / sum ij gamma ijk

And the number of interactions resulting from a bionomial process P(B ijk|

p ijk, N ijk). The random encounter model would still be possible, but

for the case with gamma equal across all species. As a consequence, I

don’t see conceptually the difference between the aggregate counts model

and the random encounter model. The bottom line of my comment at the end

is that the model has to be grounded on the ecology, not just described

passively as it is right now. This type of approach is highly innovative

and therefore it needs to be better justified.

This is a very interesting line of thinking. Motivated by the reviewer’s comment, we thought
further about the various probability distributions that could be used to calculate likelihoods for
our models and data. In the end, we believe the multinomial distribution is the most appropriate
probability distribution for our models and currently available data, but an approach using the
binomial distribution—as suggested by the reviewer—is potentially useful given additional data
(specifically, independent measurements of relative species abundance). We intend to compare
the two distributions in future work, so thank the reviewer for raising this thoughtful point.
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We have added our motivation for using the multinomial distribution likelihood function in
the main text (P10L208): “We quantified the accuracy of model predictions using a likelihood
function based on the multinomial distribution [Vázquez et al. Ecology 2009] (see Methods,
Eqn 2). We chose this likelihood function because it describes how well a model is able to
explain the recorded distribution of interaction counts among species at a field site.”

Below, we justify our use of the multinomial distribution for computing likelihoods and
discuss the application of six alternative probability distributions:

i. Binomial
ii. Poisson binomial

iii. Poisson
iv. Compound Poisson
v. Hypergeometric

vi. Multivariate hypergeometric

First, we describe our general approach to modelling weighted interaction networks. Then we
describe our use of the multinomial distribution for computing likelihoods. This is followed by
an in-depth discussion of a potential approach involving the binomial distribution. Finally, we
briefly cover the remaining five probability distributions.

Modelling approach

Consider for simplicity an empirical, weighted bipartite network that we represent by the matrix
B with interaction counts Bij (recorded successful parasitism events) that are indexed by host
species i and parasitoid species j. Let the total number of counts in the matrix be F =

∑
ij Bij .

Given matrixB, we first estimate a vector of best-fit relative species abundances x̂, contain-
ing entries x̂i for hosts and x̂j for parasitoids (as discussed above). From each of our models,
we obtain a matrix of interaction preferences γ (with entries γij) that is designed to modify the
expected frequency of interactions according to mass action to provide a more accurate predic-
tion of interaction counts (e.g., with the random encounter model γij = 1 for all i and j, for
non-forbidden interactions).

In order to compare the output of a model to network data using likelihood, we obtain
the relative probability of each interaction given the observed species composition of the local
community, i.e., we are interested in how well a model explains the relative distribution of
counts in an empirical matrix. The appropriate probability for an interaction for use in the
multinomial distribution is pij =

γij x̂ix̂j∑
ij γij x̂ix̂j

.
To a certain extent we are assuming that if a parasitoid encounters a host (∝ x̂ix̂j) then it

does not forgo parasitising the host. In other words, we are modelling encounters as events that
lead directly to parasitism—and therefore counts in an interaction matrix—which is why we
refer to x̂ as “effective abundances.” The preference matrix then represents whether there is
either (i) some kind of foraging preference (γij > 1) or avoidance γij < 1 compared to well-
mixed random encounter (mass action), or (ii) the encounter is unlikely to lead to a successful
parasitism event for the parasitoid (γij < 1), e.g., due to the fact that only one parasitoid can
emerge from an individual host even though multiple parasitoids may have infected the host. As
discussed below, this approach can be thought of as condensing an approach using the binomial
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distribution with two steps (encounter then infection or not) to a single step (biased encounter),
which is necessary due to limited data on relative species abundance.

Ideally, we would also have independent abundance data (from a species survey, for exam-
ple) that could be used to explore how empirical measurements of relative species abundance
convert to effective abundances (we make this point in the Discussion section, P18L382). As
our effective abundances can be considered the functional property of the system that con-
tributes directly to recorded interaction counts, it would be interesting to see how independent
abundances map to effective abundances, and whether this mapping varies by species or even
interaction. We are intending to collect this additional data in future work.

Multinomial distribution

Given the focus of our discussion, it is worth emphasising that the multinomial distribution is a
generalisation of the binomial distribution. However, we suggest there are subtle but important
differences between the two probability distributions when computing likelihoods with network
data in terms of ecological interpretation. Specifically, the binomial distribution is useful for
explaining the count/frequency of an individual interaction while the multinomial distribution
is useful for explaining the distribution of interaction counts/frequencies across a community.
We suggest they are complementary approaches and intend to compare their advantages and
disadvantages in future work once additional data become available.

In general, the multinomial distribution models the probability of counts when rolling a k-
sided die n times. For n independent trials each of which leads to a success for exactly one of k
categories, with each category having a fixed success probability, the multinomial distribution
gives the probability of any particular combination of successes for the various categories.
When n > 1 and k = 2 the multinomial distribution is the binomial distribution.

As such, the multinomial distribution is useful for describing how interaction counts are
distributed among matrix elements. We imagine this is why it was chosen for the likelihood
function in Vázquez, Chacoff and Cagnolo (2009) Evaluating multiple determinants of the
structure of plant-animal mutualistic networks, Ecology 90, pp. 2039–2046 (our inspiration for
using the multinomial distribution). The multinomial distribution allows us to ask: given that
we have recorded a total of F counts in the field, how are counts distributed among possible
interactions according to different predictive models and how do these predictions compare to
the empirical distribution of counts?

With our modelling approach, the likelihood function for the multinomial distribution is
Lmultinomial =

F !∏
i

∏
j Bij

∏
i

∏
j p

Bij
ij . As pij = f(x̂i, x̂j), see above, our likelihood function does

take into account species abundance (or, at least, our version of species abundances in terms of
effective abundances). We stress that although the calculation of likelihood is tied to a specific
data matrix with a fixed number of species and counts (as, indeed, would be the case with any
likelihood calculation), our models still generate an important system-specific property that is
applicable to communities with different species composition and therefore matrices of differ-
ent sizes—this property is the set of preferences γij rather than the set of probabilities pij .

Binomial distribution

As mentioned above, the binomial distribution is a special case of the multinomial distribu-
tion and is useful for describing individual interactions rather than multiple interactions. In
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our context, the number of trials n is most naturally understood as the number of encounters
between a particular pair of species, i.e., n = nij , and the probability that an encounter leads to
an interaction count in B is given by a distinct probability q = qij . With this formulation, the
likelihood function for the binomial distribution is Lbinomial =

nij !

Bij !(nij−Bij)!q
Bij
ij (1− qij)nij−Bij ;

where the recorded number of counts Bij is used for the number of “successes.”
A tricky question given the data we have available is how to determine appropriate val-

ues for nij and qij . Regarding nij , it is not advisable to use effective abundances x̂ for two
reasons. First, the product nij ∼ x̂ix̂j is not guaranteed to give an integer. Second, an ef-
fective abundance is not guaranteed to reflect the general abundance of a species, rather, it
represents the component of abundance that directly contributes to counts in an interaction
network/matrix. Furthermore, if nij = f(x̂i, x̂j) then it is not clear that it would be reason-
able to use qij = f(γij), so we would need to devise an alternative means of determining the
“preference” of an interaction.

We suggest that the binomial distribution is most appropriate when independent measure-
ments of species abundance are available in addition to interaction data. The binomial dis-
tribution then offers a nice two-step approach to calculating likelihoods, as suggested by the
reviewer. Let us represent independent abundances by X , indexed as Xi for hosts and Xj for
parasitoids. In Step I, we can use independent abundances to model the expected number of
encounters between each pair of species, i.e., nij ∼ XiXj , which could also be modified by an
additional multiplicative factor to reflect differences among interactions due to environmental
or foraging effects. In Step II, we can use interaction data to determine the conversion proba-
bility for an interaction count given an encounter, i.e., qij = f(γij) or something similar. The
new interpretation of “preference” then represents whether an individual parasitoid “chooses”
to parasitise the host following an encounter with a particular host, and/or, following an infec-
tion, whether internal competition within the host results in a successful parasitism event or not
for the parasitoid. (With plant-pollinator visitation networks, Step II would capture whether a
pollinator physically “decides” to land on a plant or not.)

Framed in this way, it becomes clear that our current approach with preferences γ and
the multinomial distribution essentially works by condensing Steps I and II into a single step
(which is necessary given the lack of data on independent species abundances).

In summary, the binomial distribution is conceptually more straightforward and arguably
better reflects ecological processes at the level of individual interactions, but the multinomial
distribution is more appropriate for our network data and has the desirable feature of simulta-
neously modelling multiple interactions in a community.

Poisson binomial distribution

Having outline a promising approach to calculating likelihoods using the binomial distribution,
it is worth noting that there is a second more general form (besides the multinomial distribution)
in the Poisson binomial distribution.

The Poisson binomial distribution is the discrete probability distribution of a sum of inde-
pendent Bernoulli trials that are not necessarily identically distributed. In other words, it is
the probability distribution of the number of successes in a sequence of n independent yes/no
experiments with success probabilities q1, q2, . . . , qn. The ordinary binomial distribution is the
special case when q1 = q2 = . . . = qn.

There is a subtle point of difference compared to the binomial distribution when considering
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multiple interactions with the Poisson binomial distribution: the likelihood function associated
with the Poisson binomial distribution would measure the ability of a model to generate the
same number of total counts (i.e., F ) in an empirical matrix, rather than the likelihood of each
interaction individually.

Poisson distribution

As our data are matrices of counts, we can consider using a Poisson distribution to calculate
likelihoods. With our modelling approach, the likelihood function for the Poisson distribution

is LPoisson =
λ
Bij
ij e−λij

Bij !
; where λij is the expected number of counts for the interaction between

host species i and parasitoid species j. In using the Poisson distribution, however, we would
lose many of the nice links to ecological processes and mechanisms afforded by the multino-
mial and binomial distributions. The Poisson distribution would be a somewhat crude model
for computing the likelihood for this and similar systems, with its application largely motivated
by the simple fact that we are dealing with count data.

Compound Poisson distribution

Similar to the relationship between the binomial distribution and the Poisson binomial distri-
bution, the compound Poisson distribution is a potential extension of the Poisson distribution
to multiple interactions in a community. The likelihood function for the compound Poisson

distribution is LcompoundPoisson =
∏

ij

λ
Bij
ij e−λij

Bij !
. We suggest that for our purposes the compound

Poisson distribution suffers from the same disadvantages as the regular Poisson distribution.

Hypergeometric distribution

The hypergeometric distribution is a discrete probability distribution that describes the proba-
bility of k successes in n draws, without replacement, from a finite population of size N that
contains exactly K successes, wherein each draw is either a success or a failure. By contrast,
the binomial distribution describes the probability of k successes in n draws with replacement.

For our system, computing likelihoods using the hypergeometric distribution requires an
approximation for the total number of encounters between two species, e.g., Nij ∝ XiXj; and
an approximation for the total number of success, e.g., Kij ∝ γijx̂ix̂j . The likelihood function
for the hypergeometric distribution then compares these Nij and Kij to the observed number
of successes kij = Bij given some sampling parameter nij . Framed in this way, it is clear
that using the hypergeometric distribution to compute likelihoods is currently not feasible with
available data. It is, however, potentially useful in future to investigate the effect of sampling
effort on the structure of weighted interaction networks. For example, once Nij and Kij have
been adequately parameterised, one could explore how kij varies under different nij .

Multivariate hypergeometric distribution

Similar to the relationship between the binomial distribution and the multinomial distribution,
the multivariate hypergeometric distribution is a potential extension of the hypergeometric dis-
tribution to multiple interactions in a community. Specifically, the multivariate hypergeometric
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distribution is the without-replacement equivalent to the multinomial distribution (which, like
the binomial distribution, assumes replacement).

There is one information I missed from the methods: what if a species

pair in the ‘test group’ is absent from the ‘calibration group’ ? And the

other way around ?

We cover this point under the term “switches” and now include more details in the main text
(P10L202): “We modelled switches (interactions present in the test group but not calibration
group) in two ways: i) switches follow mass action; or ii) switches are inherently less-preferred
interactions (see Methods). Assuming mass action switches consistently led to better model
performance, so we present those results only (it is worth noting, however, that some switches
had interaction preferences that differed significantly from one, see Supplementary Table 2).”
We provide a thorough discussion about switches in the Supporting Information (Section 3).

To directly answer the reviewer’s questions, if the interaction between host species i and
parasitoid species j is not recorded in the “calibration group” but is recorded in the “test group”
then we set its value for interaction preference to the most parsimonious value γij = 1, which
assumes that the interaction follows mass action (an evaluation of an alternative approach where
the interaction is assumed to be unobserved because it is inherently less-preferred is included
in the Supporting Information). There is no need to assign a value for the interaction preference
if no counts were recorded for a host-parasitoid pair in the “test group” when the multinomial
distribution is used to calculate likelihood. If the binomial distribution were used instead, then
one could use information from the “calibration group” to see how much a predictive model
(γijx̂ix̂j) overestimates the observed number of counts—which is zero—in the “test group.”

I haven’t understood how is gamma’ is computed in the novel environment

(L463) ?

We have rewritten our description of the “specified preferences model” referred to by the re-
viewer, both in the main text (P14L300) and Methods section (P23L497), and have extended
our description of the model in the Supplementary Information (Section 5.6).

‘Predictive capability’- I don’t have the same interpretation. To me it

is simply a different null model from the one used to compute explanatory

power (albeit some changes in the formulation of the equation).

We agree with the reviewer and have removed all reference to “predictive capability.” Instead,
we refer to RM as a measure of model performance at the group level. We now also refer to
FM,k (Eqn 3 in Methods) as model performance at individual field sites, and have improved
our motivation for using the two measures (P11L219): “For a given model, we found that FM,k

varied greatly among networks in the same group, which was potentially masking differences
in model performance (Supplementary Fig. 2). This variation was due, in part, to our use of a
single preference matrix to predict weighted network structure at all field sites in a group (see
Eqn 1). So to better compare model performance, we also used the measure RM (Eqn 4 in
Methods), which describes model performance at the group level. This measure still compares
predicted to recorded counts at individual field sites, but involves calculating likelihood for all
field sites in a group at once. WithRM , the likelihood of model M is rescaled to the likelihood
of the simple random encounter model (corresponding to RM = 0) and the likelihood of the
maximally-complex complete characterisation model (corresponding toRM = 1).”
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Reviewers' comments: 

Reviewer #2 (Remarks to the Author): 

In the response to my earlier criticism the authors have restated their point, therefore let me 

restate my previous assessment: The paper presents a nice case study, but all the theory is 

essentially already well established in population dynamics. I do not judge the results to be of 

sufficient novelty for publication in Nature Comms.  

Reviewer #3 (Remarks to the Author): 

The Authors clearly and successfully addressed all of my questions. I do believe that the relatively 

simple nature of the methods is a merit, not a limitation. The paper is acceptable for publication.  

Reviewer #4 (Remarks to the Author): 

I will start by giving my appreciation of the authors' commitment to respond to my comments. It 

was a fruitful exercise, the reply was an interesting discussion and the manuscript is greatly 

improved.  

One of the unfortunate consequences of this generous reply however, is that the manuscript is 

now way too long and essential results are lost in a flow of descriptions. Despite introducing more 

ecology into the description of the models (which will be appreciated I'm sure), the manuscript 

remains technical, as exemplified by the abstract and the structure of the main text. First, we can't 

find in the abstract the answer to the authors' hypothesis. We can only find the take-home at the 

end of the first discussion paragraph, where it is stated that differences in preferences among 

habitat types are more important than differences in relative abundances. The last two sentences 

of the abstract should be revised to emphasize the findings. This would indirectly please the first 

reviewer, who was not convinced of the novelty of the results.  

But most of all, the report of the results is still provided model by model. I would appreciate a 

much more synthetic presentation, with ranking of models instead. The result section should make 

only a few paragraphs, and details description should be provided as supplementary information.   

2. I still find a coherence problem with the way abundance is estimated in non-neutral models

(e.g. complete model). Obviously, there is a conceptual issue with first estimating abundance 

assuming interactions are driven by mass-action only, and then introducing species-specific 

preferences in the likelihood computation. This issue is however not only conceptual, as the 

approach could bias the estimates and alter the final model comparison. Imagine for instance that 

a given host species is highly vulnerable because of its traits (e.g. lack of defenses). The estimated 

relative abundance of this species will be high in the mass-action model and as a consequence, 

this will lower the estimated gamma values in the complete model, much below the 'reality' (it will 

basically tend to 1). It poses obviously a problem for the interpretation of the gammas, but also it 

could bias the inference in the altered habitat. Imagine for instance that abundance of that species 

is reduced considerably in the altered habitat. The predicted interaction probabilities, across all 

parasitoids, will consequently decrease much more than they should if the estimated gamma were 

much larger than 1. As a result, the fit of the 'complete model' in the altered habitat will appear 

much worse than it should if the relative abundance was appropriately estimated.  

The bottom line is that the abundance should be estimated simultaneously as the preference to 

prevent biases.  



3. I appreciate the efforts to compare the different distribution and a summary of this discussion

should fine its place somewhere in the methods. But I must say I remain skeptical of the 

multinomial model. The argument that the multinomial is a generalization of the binomial 

distribution is irrelevant in the actual context, because ecologically speaking they describe two 

totally different stochastic processes. On the one hand, the binomial model represents the 

probability that an interaction occurs if you present a host to a given adult parasitoid, whatever is 

the community composition. This stochastic process describes for instance the probability than an 

egg layed in the host will develop into an adult, which has nothing to do with community 

composition. On the other hand, the multinomial model represents the probability that the 

parasitoid picks a given host, knowing all other potential hosts. The multinomial model has the 

advantage of accounting for higher order interactions (e.g. if there is active foraging), but this 

could also accounted for in a conditional binomial model. Further, there should be a multinomial 

model for each community composition.  

It remains to be proven, I agree, but as I said my intuition is that the interaction between two 

species is a pairwise phenomenon, not a community one. Any individual parasitoid is not sampling 

the entire community before setting into an host. Likely, the adult will attempt oviposition on the 

first host it finds. The development of the larvae will depend on the quality of the host, irrespective 

of the composition of the community. Or may be, with enough information, we would find it is a 

mixture of the two.  

A numerical example will better illustrate my point. Consider a community with host abundances xi 

= {1,6,3} and relative preferences gamma = {1,2,0.5}. The interaction probability with the first 

host will be 1x1 / (1x1 + 6x2 + 3x0.5) = 1/14.5 = 0.069. If for whatever reason, the third host 

species is absent at another location, this interaction probability will change to 1x1 / (1x1 + 6x2) 

= 1/13 = 0.077. This might be reasonable if the total number of larvae remains the same and we 

have to spread them among a reduced set of hosts. This is unlikely to be the reality, but it could 

be a reasonable assumption for host-parasite interactions. I am far from convinced however that 

the same reasoning would apply to other types of interactions where the number of plant visits or 

killing events by predators is not constant.  

Pushed to the extreme, the problem with the multinomial model is that the interaction probability 

between a given pair of host and parasitoid will converge to 1 as other species are removed from 

the community. The interaction then becomes deterministic.  

All of this raise concerns in the interpretation of what is exactly the stochastic process the model is 

describing. My fear is that actually, the two processes above described (ie the pairwise interaction 

and the selection function) are mixed. Perhaps the authors are clear about this, but it is not in the 

main text and will obviously not be for the reader that has never thought about interactions as a 

probabilistic process.  

To be more constructive, I would suggest the authors to better describe what is the stochastic 

process they represent, and consequently why they choose a multinomial model. Finally, the 

hidden assumptions of this decision should be clearly explained. 



Response to reviewer comments

This document accompanies a revised manuscript with all changes highlighted (rewritten text in
orange and added text in magenta); also included is a version without highlighting that is more
suitable for printing. Below, reviewer comments are quoted in full in typewriter font, and
each point is followed by our response. Page and line references in our responses correspond to
the revised manuscript, unless stated otherwise. Please note that there is no Reviewer 1 because
one of the original referees was unfortunately unable to deliver a report and another referee was
therefore recruited in his/her place.

Reviewer 2

In the response to my earlier criticism the authors have restated their

point, therefore let me restate my previous assessment: The paper

presents a nice case study, but all the theory is essentially already

well established in population dynamics. I do not judge the results to be

of sufficient novelty for publication in Nature Comms.

We thank the reviewer for continuing to consider our manuscript. We would like to stress
that we are not attempting to re-invent the theory of population dynamics (as we make clear
in the main text, P17L355). We have continued to revise the manuscript in accordance with
Reviewer 4’s suggestions to better highlight the “novelty of the results.”

Reviewer 3

The Authors clearly and successfully addressed all of my questions. I do

believe that the relatively simple nature of the methods is a merit, not

a limitation. The paper is acceptable for publication.

We thank the reviewer for continuing to consider our manuscript and are pleased that he or she
believes it is acceptable for publication.

Reviewer 4

I will start by giving my appreciation of the authors’ commitment to

respond to my comments. It was a fruitful exercise, the reply was an

interesting discussion and the manuscript is greatly improved.

We are pleased that the reviewer finds the manuscript greatly improved and that he appreciated
our previous reply. We also thank him for continuing to provide constructive feedback. Indeed:
If the manuscript is deemed suitable for publication, then we would like to thank the reviewer
(who signed his review) by name in the acknowledgements section.
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One of the unfortunate consequences of this generous reply however, is

that the manuscript is now way too long and essential results are lost

in a flow of descriptions. Despite introducing more ecology into the

description of the models (which will be appreciated I’m sure), the

manuscript remains technical, as exemplified by the abstract and the

structure of the main text. First, we can’t find in the abstract the an-

swer to the authors’ hypothesis. We can only find the take-home at the end

of the first discussion paragraph, where it is stated that differences

in preferences among habitat types are more important than differences

in relative abundances. The last two sentences of the abstract should

be revised to emphasize the findings. This would indirectly please the

first reviewer, who was not convinced of the novelty of the results.

We have added two sentences to the abstract that answers our hypothesis and clarifies our
take-home message (P1L24): “The models map to ecological mechanisms and we find that
interaction preferences change significantly between different habitat types but not between
similar habitat types. This difference likely reflects changes in species behaviour, and models
that capture systematic changes in interaction preferences provide the best predictive ability
relative to their data requirements.”

But most of all, the report of the results is still provided model by

model. I would appreciate a much more synthetic presentation, with

ranking of models instead. The result section should make only a few

paragraphs, and details description should be provided as supplementary

information.

We agree. We have completely revised the presentation of models in the results section, which
we feel makes the manuscript much more accessible and practically useful. This rewriting
has shortened the manuscript by over 500 words. We thank the reviewer for insisting that we
make this change. We now provide a short, ecologically motivated description of the models
in two paragraphs (P9L191), and have separated model results into two subsections: “Predict-
ing between similar habitat types” (P12L242) and “Predicting between different habitat types”
(P2L251). Model results are introduced in order of complexity and data requirement (which
is the same order with respect to model performance because the more complex models are
associated with better likelihoods), but now in a much less technical manner, and use AIC
and BIC to inform a ranking/recommendation about models for prediction in modified habitat
types. This part of the results section has been dramatically shortened (four paragraphs instead
of eleven), with details of the models still available in the methods section and likelihood values
in Supplementary Table 3. We have also added a new column to Table 1 (P28) that describes the
application of each model to help the reader determine which models may be useful in practice.
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2. I still find a coherence problem with the way abundance is estimated

in non-neutral models (e.g. complete model). Obviously, there is a

conceptual issue with first estimating abundance assuming interactions

are driven by mass-action only, and then introducing species-specific

preferences in the likelihood computation. This issue is however not

only conceptual, as the approach could bias the estimates and alter the

final model comparison. Imagine for instance that a given host species

is highly vulnerable because of its traits (e.g. lack of defenses). The

estimated relative abundance of this species will be high in the mass-

action model and as a consequence, this will lower the estimated gamma

values in the complete model, much below the ‘reality’ (it will basically

tend to 1). It poses obviously a problem for the interpretation of the

gammas, but also it could bias the inference in the altered habitat.

Imagine for instance that abundance of that species is reduced consider-

ably in the altered habitat. The predicted interaction probabilities,

across all parasitoids, will consequently decrease much more than they

should if the estimated gamma were much larger than 1. As a result, the

fit of the ‘complete model’ in the altered habitat will appear much worse

than it should if the relative abundance was appropriately estimated.

The bottom line is that the abundance should be estimated simultaneously

as the preference to prevent biases.

The reviewer raises a very nuanced point about how the effective abundances and interaction
preferences that we propose should be understood. Before we present a more detailed discus-
sion on the topic, we would like to highlight the additions that we have made to the manuscript
in direct response to the reviewer’s insightful comment. First, we have added a fuller discus-
sion of the assumptions made when estimating relative species abundances using our approach
(P15L311). Second, we have added a discussion of potential ways of clarifying the role of
species behaviour in determining network structure (P15L321).

If we may summarise the reviewer’s example: Consider a host species with poor defences
that consequently receives many counts (interactions) from multiple parasitoid species. Due to
the many counts recorded to the host species, the value of the effective abundance estimated for
this host will likely be relatively large. This relatively large effective abundance may then lead
to lower interaction preferences than we think the host ought to have given its poor defences.
When using the interaction preferences associated with this host at a new location with a dif-
ferent distribution of relative species abundances, we may obtain predicted interaction counts
that are lower than they perhaps should be.

This example actually raises two separately interesting questions: (i) How does estimating
relative species abundance affect the reliability of interaction preferences and therefore predic-
tions? and (ii) How are interaction preferences related to species’ biological characteristics?

Before we directly address the two questions, it is important to stress that we do always
estimate abundance simultaneously with interaction preferences. (We had not previously made
this important point in the main text, so we thank the reviewer for bringing this potential confu-
sion to our attention; we have added clarifying remarks in the Methods section, P20L436, with
details in Section 2.4 of Supplementary Information, pages 26 and 27.) What we also often do
though, is combine the interaction preferences from a calibration (training) data set with the
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estimated abundances in a test data set to make predictions about ecological network structure.
This is due to lack of data on independent measurements of relative species abundance, and
is a point we return to when discussing question (i). It is also worth noting that the example
given by the reviewer may not necessarily lead to interaction preferences tending to 1 as a host
species receives more and more interaction counts. This is because the final value for an in-
teraction preference between a given host and parasitoid species depends on how many other
interactions the two species are also involved in, and in what relative frequencies. Depend-
ing on the exact distribution of interaction counts among species in the community, the host
species in the example may indeed be associated with interaction preferences greater than 1.
Nevertheless, this aside does not get to the heart of the reviewer’s point.

What is clear about our approach to estimating relative species abundances (effective abun-
dances) and interaction preferences is that it will tend to “force” an explanation in terms of mass
action. This is essentially the reasoning behind the reviewer’s example: without additional in-
formation, our approach will attribute to mass action as much explanation of empirical data as
possible, potentially at the expense of under-estimating “inherent” interaction preferences (be-
low, we discuss what we mean by “inherent”). Clearly, this is not ideal. But given the current
lack of data, we prefer to use this conservative method that tends to under-attribute changes in
network structure to changes in species behaviour, rather than the opposite case which would
lead to potentially more false-positive attributions to behaviour.

Having just described the tendency for our approach to favour an explanation in terms
of mass action, we now discuss how this affects our ability to use interaction preferences to
make predictions of network structure, i.e., question (i). In our work, we show that interac-
tion preferences from one habitat type can be used to successfully predict network structure
in similar habitat types (using the alternative preferences model). This is despite there being
different distributions of relative species abundances between the habitat types. This strongly
suggests that interaction preferences do reflect some biological/ecological features of a system
that, moreover, can be useful for prediction. We also show that interaction preferences can
change between different habitat types. What is currently difficult to determine, though, is how
much any change in a given interaction preference is due to a more extreme change in relative
species abundance (compared to changes between similar habitat types) and/or changes in en-
vironment (e.g., due to easier host hiding in more complex habitats with greater tree coverage).
At present, both of these influences are rolled into our interaction preferences. We show that
these interaction preferences can still be used to make decent predictions about network struc-
ture in modified environments (using the correlated preferences model etc.), but the next step is
to try and tease apart precisely which species-level and environmental features cause observed
changes in interaction preferences.

A more detailed investigation of interaction preferences is necessary to begin adequately
answering question (ii). As suggested above, our interaction preferences currently confound
two aspects: “inherent” preferences between parasitoid and host, and complicating factors due
to environment. By “inherent” preferences, we mean some kind of baseline expectation for how
often a parasitoid species would select a particular host, given a choice of multiple alternative
hosts (for networks we think of this baseline selectivity at the population level rather than the
individual level). We also discuss “inherent” preferences in the context of potential and realised
niche in Supplementary Information on page 37. In our opinion, the best way of determining
“inherent” preferences is using laboratory experiments. Although usable results are a few years
away, we are actively developing experimental protocols to help inform baseline expectations
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of host selectivity. Once an expectation is established, then one is better able to assess the
effect of environment. For example, whether habitat complexity masks “inherent” preferences
and therefore makes a system more likely to (appear to) follow mass-action-like processes. Our
current work offers a number of exciting generalisable hypotheses that could be tested with new
data and further study.

This is all to say that the reviewer’s comment and example prompted much reflection on
our work. We now touch upon some of these points in the main text, which we hope will help
the reader understand both the power and limits of our approach.

3. I appreciate the efforts to compare the different distribution and

a summary of this discussion should fine its place somewhere in the

methods. But I must say I remain skeptical of the multinomial model.

The argument that the multinomial is a generalization of the binomial

distribution is irrelevant in the actual context, because ecologically

speaking they describe two totally different stochastic processes. On

the one hand, the binomial model represents the probability that an

interaction occurs if you present a host to a given adult parasitoid,

whatever is the community composition. This stochastic process describes

for instance the probability than an egg layed in the host will develop

into an adult, which has nothing to do with community composition. On

the other hand, the multinomial model represents the probability that

the parasitoid picks a given host, knowing all other potential hosts.

The multinomial model has the advantage of accounting for higher order

interactions (e.g. if there is active foraging), but this could also

accounted for in a conditional binomial model. Further, there should be

a multinomial model for each community composition.

As suggested by the reviewer (final comment), we now describe the stochastic processes repre-
sented by the multinomial distribution, as well as a justification for its use, its hidden assump-
tions, and its limitations (P16L332). We also compare and contrast our use of the multinomial
distribution for calculating model likelihoods to the binomial distribution. Furthermore, as
suggested, we now include a detailed description and discussion of other possible distributions
that could be used to calculate likelihood, along with further comparison of the multinomial and
binomial distributions in Supplementary Information (pages 32 to 37; wherein we directly ad-
dress the fact that there is a distinct multinomial distribution for each community composition,
P34L476). Although this discussion does not impact our main methodological contribution of
separating interaction preferences from relative species abundances, it is nevertheless an im-
portant aspect of modelling ecological networks that is now clearer, and, through our broader
discussion, more useful and informative to the reader. We thank the reviewer for stimulating
correspondence that has improved the rigour and relevance of our work.

Page 5



It remains to be proven, I agree, but as I said my intuition is that

the interaction between two species is a pairwise phenomenon, not a

community one. Any individual parasitoid is not sampling the entire

community before setting into an host. Likely, the adult will attempt

oviposition on the first host it finds. The development of the larvae

will depend on the quality of the host, irrespective of the composition

of the community. Or may be, with enough information, we would find it is

a mixture of the two.

This is a very nice ecological interpretation of the difference between using the multinomial or
binomial distribution to calculate likelihood. We have incorporated this idea in our new dis-
cussion of the topic. We have also added an ecological example in which pairwise interactions
may be a community phenomenon (P16L334): “[The multinomial distribution represents] the
probability that a parasitoid picks a given host, conditioned on information about other hosts
in the community. This conditioning is necessary if, for example, the abundances of particu-
lar host species lead to parasitoids forming search images [ref 28] that affect their per capita
probabilities of attacking other hosts in the community.” Although we may differ with the re-
viewer on emphasis, we fundamentally agree with his general point and end our discussion of
the topic with (P16L343): “The binomial distribution assumes that network structure is primar-
ily a pairwise phenomenon, whereas the multinomial distribution assumes that it is primarily a
community phenomenon, and likely it is a mixture of the two.”

A numerical example will better illustrate my point. Consider a commu-

nity with host abundances xi = {1,6,3} and relative preferences gamma =

{1,2,0.5}. The interaction probability with the first host will be 1x1 /

(1x1 + 6x2 + 3x0.5) = 1/14.5 = 0.069. If for whatever reason, the third

host species is absent at another location, this interaction probability

will change to 1x1 / (1x1 + 6x2) = 1/13 = 0.077. This might be reasonable

if the total number of larvae remains the same and we have to spread them

among a reduced set of hosts. This is unlikely to be the reality, but it

could be a reasonable assumption for host-parasite interactions. I am

far from convinced however that the same reasoning would apply to other

types of interactions where the number of plant visits or killing events

by predators is not constant.

We appreciate the example and see the reviewer’s point. Indeed, it is one of the reasons why
we focused on host-parasitoid systems and data sets that each has a similar set of species across
modified and unmodified habitat types. However, we now acknowledge and discuss why using
a multinomial distribution to calculate likelihoods may require more careful thought for other
types of ecological network (Supplementary Information, P34L485).

Pushed to the extreme, the problem with the multinomial model is that

the interaction probability between a given pair of host and parasitoid

will converge to 1 as other species are removed from the community. The

interaction then becomes deterministic.

We agree, and include this point when discussing interpretations of the multinomial and bino-
mial distributions for calculating likelihoods (see Supplementary Information, P34L481).
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All of this raise concerns in the interpretation of what is exactly the

stochastic process the model is describing. My fear is that actually,

the two processes above described (ie the pairwise interaction and the

selection function) are mixed. Perhaps the authors are clear about this,

but it is not in the main text and will obviously not be for the reader

that has never thought about interactions as a probabilistic process.

We hope that the new discussion in the main text, along with a more detailed description of
other probability distributions for calculating likelihoods in Supplementary Information, will
not only help the reader better understand what we have done, but also serve as a more gen-
eral introduction to thinking about interactions as a probabilistic process. In particular, at the
reviewer’s suggestion, we now emphasise the different assumptions about stochastic processes
underlying the multinomial and binomial distributions, and how the two distributions may re-
late under our current approach (see Supplementary Information, P33L464).

To be more constructive, I would suggest the authors to better describe

what is the stochastic process they represent, and consequently why they

choose a multinomial model. Finally, the hidden assumptions of this

decision should be clearly explained.

Again, we thank the reviewer for his constructive comments and now include the suggested
discussion in the main text, as described above.
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REVIEWERS' COMMENTS: 

Reviewer #4 (Remarks to the Author): 

I would like to apologize for delaying my evaluation. I knew it would be impossible to do it faster 

when I accepted the invitation, but I wanted to have a look at the latest revisions.  

Again, I would like to thank the authors for the great attention they gave to my several comments. 

I think the manuscript greatly improved throughout revisions, both in terms of scientific rigor and 

of accessibility. I wish the authors the paper will attract attention and I would like to congratulate 

them for this great contribution.  

I still have opinions about the science, but these will require future research and will not be solved 

through the review process. I signed my first review, so I will be happy if the authors contact me 

and want to keep the conversation going. 



Response to reviewer comments

Reviewer comments are quoted in full in typewriter font, and each point is followed by
our response.

Reviewer 4

I would like to apologize for delaying my evaluation. I knew it would be
impossible to do it faster when I accepted the invitation, but I wanted
to have a look at the latest revisions.

Again, I would like to thank the authors for the great attention they gave
to my several comments. I think the manuscript greatly improved through-
out revisions, both in terms of scientific rigor and of accessibility.
I wish the authors the paper will attract attention and I would like to
congratulate them for this great contribution.

I still have opinions about the science, but these will require future

research and will not be solved through the review process. I signed my

first review, so I will be happy if the authors contact me and want to

keep the conversation going.

We would again like to thank the reviewer (Dominique Gravel) for his continued support and
constructive criticism of our work. We agree that the manuscript has improved throughout
revisions, in large part due his thoughtful comments and suggestions. We thank him in ac-
knowledgements and look forward to continuing the conversation directly.
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