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Abstract  

BACKGROUND:   

Inferring genetic networks from genome-wide expression data is extremely demanding computationally. 

We have developed fastBMA, a distributed, parallel and scalable implementation of Bayesian model av-

eraging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminat-

ing redundant indirect edges in the network by mapping the transitive reduction to an easily solved 

shortest-path problem.  

FINDINGS:  

We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time-series 

yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the 

next fastest method, LASSO, with increased accuracy. It is a memory efficient, parallel and distributed 

application that scales to human genome wide expression data. A 10,000-gene regulation network can be 

obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). 

CONCLUSIONS:  

fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of 

magnitude faster than other fast network inference methods such as one based on LASSO. The improved 

scalability allows it to calculate networks from genome scale data in a reasonable timeframe. The transi-

tive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. 

license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA 
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Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) 

and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/).  
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Findings 

BACKGROUND 

Genetic regulatory networks capture the complex relationships between biological entities which help us 

to identify putative driver and passenger genes in various diseases [1, 2]. Many approaches have been 

proposed to infer genetic networks using gene expression data, for example, co-expression networks [3], 

mutual information-based methods [4, 5] Bayesian networks [6-8], ordinary differential equations [9, 

10], regression-based methods [11-15] and ensemble methods [16]. In addition, methods have been pro-

posed to infer gene networks using multiple data sources, e.g. [17-20]. We have previously described 

ScanBMA [14], an implementation of Bayesian model averaging (BMA) [21] for inferring regulatory 

networks. ScanBMA is available from the “networkBMA” Bioconductor package [22], written in R and 

C++. It has been shown that ScanBMA generates compact accurate networks that can incorporate prior 

knowledge. 

In this paper, we present fastBMA, which is completely written in C++, and uses more efficient and 

scalable regression and hashing methods. The algorithmic improvements increase the speed by a factor 

of 30 on smaller sets (figure 4A), with greater increases observed on larger sets due to improved scala-

bility (figure 4B). fastBMA is parallelized using both OpenMP and MPI allowing for further increases in 

speed when using multiple cores and processors. Although fastBMA uses the same core methodology as 

ScanBMA, the increased scalability allows for more thorough sampling of the search space to increase 

accuracy. The new probabilistic hashing procedure used by fastBMA is faster and utilizes 100,000 times 

less memory when analyzing large numbers of variables (see FastBMA Methodology). This allows 

fastBMA to operate on genome scale datasets without limiting the possible regulators of a given gene to 
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a smaller subset.  

A final feature of fastBMA is the implementation of a new method for eliminating redundant indirect 

edges in the network. The post-processing method can also be used separately to eliminate redundant 

edges from networks inferred by other methods. The code is open-source (M.I.T. license). fastBMA is 

available from GitHub (https://github.com/lhhunghimself/fastBMA), in R as part of the networkBMA 

package ((https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html)) and as Docker 

images (https://hub.docker.com/r/biodepot/fastbma/). The Docker containers include all the supporting 

dependencies necessary for MPI and make it much easier to run fastBMA on a local or cloud cluster. 

Bayesian model averaging (BMA) 

We can formulate gene network inference as a variable selection problem where the dependent variable 

(target gene expression) is modeled as a function of a set of predictor variables (regulatory gene expres-

sion). A regression model can be formed by fitting (1).  

(1) 𝑋𝑋𝑖𝑖 = 𝛽𝛽0 + ∑ 𝛽𝛽ℎ,𝑖𝑖𝑋𝑋ℎ + 𝜖𝜖𝑖𝑖,ℎ∈𝐻𝐻 ,   

where Xi, is the expression level of gene i, H is the set of regulators for gene i in a candidate model, 𝛽𝛽′𝑠𝑠 are the regression coefficients, and 

𝜖𝜖𝑖𝑖 𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖~  (0,𝜎𝜎𝜖𝜖2) is the error term for gene i=1…n. 

Time series data can also be modeled by using the expression at the previous time point to predict the 

next time point.  

(2) 𝑋𝑋𝑖𝑖,𝑡𝑡 = 𝛽𝛽0,𝑖𝑖 + ∑ 𝛽𝛽ℎ,𝑖𝑖𝑋𝑋ℎ,𝑡𝑡−1 + 𝜖𝜖𝑖𝑖,𝑡𝑡ℎ∈𝐻𝐻 ,   

where Xi,t is the expression level of gene i at time t, H is the set of regulators for gene i in a candidate model, 𝛽𝛽′𝑠𝑠 are the regression coeffi-

cients, and 𝜖𝜖𝑖𝑖,𝑡𝑡𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖~  (0,𝜎𝜎𝜖𝜖2) is the error term for gene i=1…n and time t=2,…T. 

Different candidate models can be constructed from different sets of regulator genes.  Models can be 

evaluated based upon a measure of their goodness of fit, such as the sum of residuals. However, in ge-

netic analyses, the number of genes often exceeds the number of samples, and many different models 

can fit the data reasonably well. The core idea behind the BMA methods is that, given a set of starting 
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prior model probabilities, we can find the posterior probability of each model and make a consensus 

prediction giving proportionately more weight to the more probable models. In terms of gene regulation, 

the posterior probability that gene j is a regulator of gene i is the sum of the posterior probabilities of all 

candidate models that include gene j in the set of regulators of i. This posterior probability becomes the 

weight of the edge drawn from gene j to gene i in the gene network. Estimates of the weights from prior 

knowledge can be used to seed the calculation of models to increase accuracy. Alternatively, a set of 

uniform starting weights based on the average number of edges observed in biological networks can be 

used when there is no additional information [23]. 

Estimating model posterior probabilities 

Estimation of the posterior probabilities of the models can be accomplished by a variety of methods, 

some of which are very computationally intensive [12].  The original BMA [21] and iterative BMA 

(iBMA) methods [24] use the Bayesian Information Criterion (BIC) [25] which is simple to calculate 

and penalizes larger models which are easier to fit. However, BIC is an asymptotic approximation that is 

most accurate for large sample sizes. As an alternative, ScanBMA provided the option of using Zellner’s 

g prior [26] to compute the posterior probabilities. The g prior parameter can be estimated as the value 

that maximizes the total posterior probability of the models. Adjusting the range of possible values for 

the g prior allows us to tune the method for smaller sample sizes and produce better networks. fastBMA 

exclusively uses the g prior to estimate the posterior probabilities and replaces ScanBMA’s R code with 

a faster C++ implementation for the expectation maximization (EM) optimization of  the g parameter. 

Sampling candidate models 

The number of possible candidate models grows exponentially with the number of possible regulators, 

necessitating an efficient methodology to find a subset of reasonable models. In the original implementa-

tion of BMA for genetic regulatory network inference, the leaps and bounds algorithm [27] was used to 
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identify the n best models for a given number of variables. Occam’s window [28] was then used to dis-

card models with much lower posterior probabilities than the best model. The leaps and bounds algo-

rithm scales poorly and is limited in practice to fewer than 50 variables. Iterative BMA (iBMA) uses a 

pre-processing step to rank all variables (genes), iteratively applies the original BMA to the top w varia-

bles (w=30 by default), and discards predictor variables with low posterior inclusion probabilities [13]. 

In the iterative step, new variables from the ranked list are added to replace the discarded variables. This 

procedure of repeatedly applying BMA and variable swaps is continued until the w top ranked variables 

have been processed.  In contrast to iBMA, ScanBMA removes the restriction of the search space to an 

initial list of variables [14]. ScanBMA keeps a list of the best current linear regression models found so 

far and adds or removes a variable from these models to search for better models. The process is repeat-

ed until no new models are added or removed from the best set of models. ScanBMA’s greedy approach 

and the implementation of its core routines in C++ enable it to typically run faster than iBMA.  In this 

paper, we present fastBMA that uses the ScanBMA approach but exploits the fact that new models are 

based upon existing models.  In particular, new models are fitted using the results from the existing 

models which increases the speed and scalability of the search. 

Post-processing graphs by transitive reduction 

BMA and other methods for reconstructing biological networks can generate edges between genes that 

are the result of indirect regulation through one or more intermediate genes. While having edges that 

represent either direct or indirect interactions is perfectly acceptable in a graph, biological networks are 

usually represented by edges that represent direct interactions. Such networks allow for more straight-

forward identification of potential driver genes. For genetic networks, it is therefore desirable to remove 

edges between nodes where the regulation is indirect (transitive reduction). This can be done through 

post-processing of the inferred network.  One intuitive approach is based on eliminating direct edges be-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



tween two nodes when there is a better indirect path [29]. For example, Bosnacki recently proposed 

comparing p-values of the best edge in an indirect path with that of the direct path [30]. fastBMA intro-

duces a similar approach that reduces transitive reduction to a shortest path problem which can be solved 

more efficiently for the sparse graphs typically found in gene regulatory networks . 

Table 1 summarizes the key differences between the different BMA implementation. 

 

Table 1 Differences between BMA implementations 

 BMA iBMA ScanBMA fastBMA 

Max variables 50 100 3500 10000+ 

Parallel No No No MPI/OpenMP 

Post-processing No No No Transitive reduction 

Prior specification BIC BIC BIC/g prior g prior 

Implementation R/Fortran R/Fortran R/C++ C++ 
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FASTBMA METHODOLOGY 

Figure 1 shows an outline of fastBMA. In this section, we report our algorithmic and implementation 

contributions in fastBMA and our evaluation procedure. Pseudocode for the entire implementation is 

provided in supplemental materials. 

Algorithmic outline of fastBMA 

The core approach for fastBMA is similar to that used by ScanBMA. The best models are found using 

ScanBMA’s search strategy with a starting value of g in the interval [1… NumberOfSamples]. Brent 

minimization [31] is then used to find the value g in the interval that gives rise to the set of models with 

the highest total marginal probability. A graph is constructed by drawing edges between genes with an 

edge weight equal to the average posterior probability of the regulator over the set of reasonable models. 

Transitive reduction is applied to this graph to remove edges that can be adequately explained by a better 

indirect path. A final graph is constructed by retaining edges with weights greater than a given cutoff.  

There are 4 major algorithmic improvements that increase the speed, scalability and accuracy of fast-

BMA: 

1. Parallel and distributed implementation 

2. Faster regression by updating previous solutions 

3. Probabilistic hashing 

4. Post-processing with transitive reduction 

Parallel and distributed implementation 

Parallelization can be accomplished by using a shared memory system, such as OpenMP 

(http://openmp.org/wp/), which is designed for assigning work to different threads in a single CPU with 

multiple cores. In contrast, MPI (Message Passing Interface) (https://www.mpich.org/ ) launches multi-

ple processes on one or more CPUs and passes messages between processes to coordinate the distribu-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://openmp.org/wp/
https://www.mpich.org/


tion of work. Both of these approaches have their respective advantages and disadvantages. OpenMP is 

applicable only to CPU’s on a single machine and is a bit slower for fastBMA. MPI is usable on a single 

machine or a cluster but requires some work to set up. fastBMA implements both approaches allowing 

the user to choose the preferred methodology based on their requirements. 

Inferring the entire regulatory network involves finding the regulators for every gene in the set. Since 

each of these determinations is carried out separately, each thread or process can be assigned the task of 

finding the regulator for a subset of genes in the set. When OpenMP is used, it provides a scheduler that 

dynamically assigns the regression calculations for a given gene to each thread. Threads work simulta-

neously on their tasks and receive a new task when they finish the previous task. All threads share access 

to memory and the same input data for the regression is available to all the threads. The parallel code 

only extends to the regression loop - the final transitive reduction post-processing and output is done by 

a single thread. 

When MPI is used, we initially split the tasks evenly among the available CPUs. In the case of MPI pro-

cesses, memory is not shared. Instead the input data is read by a master process and distributed to all the 

participating processes using MPI’s broadcast command. All processes then work on their tasks simulta-

neously in parallel and send messages to all the other processes so that all processes know which tasks 

are being worked upon. The length of time required for each calculation varies considerably and as a 

result, some processes will finish before others. A process that finishes early then works on tasks initial-

ly assigned to other processes that have not yet been started. When all the regulators for all the genes 

have been found, a master process gathers the predictions, performs transitive reduction post-processing 

and outputs the final complete network. OpenMP can also be used in conjunction with MPI to further 

subdivide the tasks among threads available to a CPU. 
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Faster regression by updating previous solutions 

Even with the above parallel implementation, each individual calculation of regulators is still accom-

plished by a single process. If the regression procedure is too slow, this step can be rate-limiting for 

large numbers of genes regardless of the number of processors available. ScanBMA uses Cholesky de-

composition to triangularize the regression matrix and obtain the regression coefficients through back 

substitution. These calculations have a time complexity of O(n3) where n is the number of variables in 

the model. However, in the case of fastBMA, new regression models are based upon the previous mod-

els and involve the addition or removal of a single variable. It is possible to use the triangular matrix of 

the previous model to calculate the triangular matrix and regression coefficients for the new model. 

fastBMA’s new C++ implementation of this update algorithm is based on the Fortran code from the 

qrupdate library (http://sourceforge.net/projects/qrupdate/).   

The time required for Cholesky decomposition becomes O(n2) when updating the previous solution. Av-

erage sampled model sizes for typical applications range between 5-20 and this would be the expected 

speedup when using a single thread. However, fastBMA further optimizes the implementation by pre-

calculating matrix multiplications and using lower level linear algebra routines from OpenBLAS 

(http://www.openblas.net/) for further speed increases. OpenBLAS is an optimized open source imple-

mentation of the BLAS (Basic Linear Algebra Subprograms) routines. Custom wrappers were added to 

allow the use of the OpenBLAS Fortran libraries. Our initial prototyping indicated that the improve-

ments in the regression procedure account for the majority of the 30-fold increase in speed observed for 

smaller search spaces on a single thread. 

Replacing the hash table with a constant time and constant space probabilistic filter 

In order to understand the necessity and efficacy of the new probabilistic filter used by fastBMA we 

must first understand the limitations of the simple hash table used by ScanBMA. Before evaluating a 

newly generated model, ScanBMA checks to see if that model has been previously evaluated. This is 
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done by using a hash table to store a string representing the indices of the variables in the model. For 

smaller sets, the time and space required for this operation are negligible compared to the time and space 

required to calculate the regression coefficients. However, when the number of variables is in the thou-

sands, this operation becomes the bottleneck. A regular hash table uses a hash function to map the model 

to a bucket. When the number of models is small relative to the number of buckets (small load factor) it 

is unlikely that two models will be put in the same bucket and the time taken to look up a model is just 

the time to map the model to a bucket. For lexicographical strings, the hash function is applied to small 

substrings and the values are combined.  The time required for hashing the whole string is proportional 

the length of the string. In the case of ScanBMA, the length of the strings formed from the concatenated 

variable indexes is proportional to the number of variables n.  Thus for small numbers of models, the 

time complexity of the lookup operation will also be O(n),  

However, when the load factor is large, it is likely that multiple models map to the same bucket. The re-

sulting collisions must be resolved by searching through the models in the bucket. For the C++ unor-

dered set container used by ScanBMA, this has worse case O(m) time complexity where m is the num-

ber of models giving a total time complexity of O(nm) for the lookup procedure when m is large. In ad-

dition, the memory required to store the hash table will be O(m). Unfortunately, when a large number of 

mostly uninformative variables are coupled with a large Occam’s window, m grows very rapidly. In 

these cases, we observed that the memory and time requirements of the hashing procedure soon become 

limiting. For example, even though it only runs a single thread, ScanBMA will run of out memory on a 

56 GB machine when there are large numbers of variables and no informative priors. 

It is vital that the ScanBMA algorithm does not sample a model more than once to ensure that the meth-

od will converge and terminate. However, the methodology is quite tolerant of falsely excluding models 

that have not been sampled. ScanBMA only explores a small sample of the possible models – the vast 

majority of models are normally excluded. Furthermore, in the BMA approach, many models are aver-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

aged to obtain the final edges. Variables that are important appear in many models. In the rare case 

where a good model is falsely excluded, the impact is minimized because the key regulators in the false-

ly excluded model will be found in other models. When such false negatives are tolerated, an alternative 

to using a hash table is to ignore the collisions. This saves both time and space by removing the depend-

ence on m for both time and space complexity. An example of a noisy or probabilistic hashing approach 

is the Bloom filter [32], which has been used for bioinformatics applications [33] due to fast computa-

tion and low memory requirements. 

fastBMA includes an optimized implementation of a probabilistic hash (see Figure 2) that has constant 

time and constant memory complexity. The dependence of the computation time on m is eliminated by 

ignoring collisions and the dependence on n is eliminated by using an updatable hash function (Mur-

murHash3: https://github.com/aappleby/smhasher ) that calculates the hash value of a model based on 

the hash value of the previous model. fastBMA uses the hash value of the model to map it to a location 

in a two dimensional bit table. The bit at that location is then set to 1. Any model that hashes to a table 

location with a set bit will not be processed. The error rate for the filter is initially very low and errors 

are more likely near the end of the search when more bits in the table have been set. This meshes well 

with the search process used by fastBMA: errors at the end of the search have even less impact because 

almost all changes to good models are rejected at that point.  

Our benchmarking confirms that ignoring collisions does not degrade the accuracy of fastBMA. Using a 

bit table of just 512 kilobytes gives identical results for smaller synthetic dataset and almost identical 

results for the larger genome-wide experimental dataset.  This is reflected in figure 4A where the accu-

racy of fastBMA is the essentially the same (actually slightly higher) than ScanBMA when using the 

same search window. However, ScanBMA can use hundreds of gigabytes of memory to maintain a 

string hash table during wide searches over the yeast dataset. 
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The implementation of the methodology is also further optimized for speed. New hash values are de-

rived from old ones by looking up the value of the pre-calculated hash for the variable to be added or 

deleted and using XOR to combine it with the previous hash. This procedure is very fast and invertible 

but normally would cause very severe collision problems with the same hash being associated with dif-

ferent sets of variables. This is solved by mapping hashes from models of different sizes to different 

rows of the bit table. fastBMA uses a bit table of 64 rows by 65326 columns. fastBMA maps the lower 

16 bits of the hash value to obtain the column c and uses bits 21 and 22 combined with the last 4 bits of 

the model size to obtain the row r (see Figure 2). The value of the bit table at row r and column c is set 

to indicate that the hash value has been seen. Thus the hashing/insert/lookup procedure is constant time, 

using a very small number of fast bit operations. The tiny size of the bit table (512 kB) also makes the 

lookup operation very cache friendly.  During our prototyping of different versions of fastBMA we 

found that the optimized bit filter was much faster than using a full hash table even for small datasets 

where the load factor is small and there are few collisions.  

Transitive reduction: eliminating edges when there is a better indirect path 

fastBMA’s transitive reduction methodology is based on eliminating direct edges between two nodes 

when there is a better alternative indirect path. This approach was first described by Wagner [29]. Bos-

nacki recently proposed comparing p-values of the best edge in an indirect path with that of the direct 

path [30]. fastBMA uses the stronger criterion of comparing the overall posterior probability of the en-

tire path. The linear regression model underlying BMA does not distinguish between direct and indirect 

paths. However, BMA is usually seeded with the prior probabilities of a direct interaction between 

genes, and the posterior probabilities that constitute the edge weights in a fastBMA network are intended 

to be estimates of the confidence that there is a direct interaction. The overall probability of any path can 

be estimated (assuming independence) by multiplying the edge weights together. Equivalently, we can 
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transform the edge weights by taking the negative log and the highest probability path becomes the path 

with lowest sum of negative log edge weights (see Figure 3). The question of whether a better indirect 

regulatory chain exists is thus mapped to the question of whether a shorter indirect path exists between 

the two nodes. This is the a shortest path problem that can be solved by Dijkstra's method with time 

complexity of O(N E logN + N2 logN)  where E is the number of edges and N is the number of nodes. 

By comparison, the GPU methodology of Bosnacki is O(N3) using a less selective criterion of compar-

ing best edge in the path. The search is also bounded: once a path's distance exceeds the direct distance, 

there is no need to further explore that path. In addition, fastBMA produces graphs with few high weight 

edges and in practice, the algorithm is much faster than the worst case as most searches are quickly ter-

minated.  

Datasets used for testing 

We have previously benchmarked ScanBMA[14] against other network inference methods (MRNET 

[5], CLR[34] , ARACNE [4], DBN [8],  and LASSO [11, 35]) on smaller test sets. In this study we fo-

cus on comparing fastBMA only to ScanBMA and LASSO which were the two most accurate methods 

in these benchmarks and are the only two methods that could infer networks from the larger datasets in a 

reasonable time. We also compare fastBMA to other methodologies, GENIE3 [36] and Jump3 [37] 

which has demonstrated high accuracy on the simulated DREAM datasets, 

We used the following 3 datasets for testing. 

1. Simulated 10-gene and 100-gene time-series data (5 sets of each) and the corresponding reference 

networks from DREAM4 [38-42]. As these datasets are simulated, the true regulatory relationships 

are known and are used to evaluate the accuracy of the predicted networks. For figure 4A, all the 10-

gene and 100-gene datasets were used and treated as one big dataset. Individual 100-gene networks 

were used to generate Table 2. 
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2. Yeast time-series expression data (ArrayExpress E-MTAB-412) consisting of 3556 genes over 6 

time points and 97 replicates [43]. Being actual data, there is no absolute ground truth. Instead, we 

compared the regulatory predictions with the literature-curated regulatory relationships from the 

YEASTRACT database [44]. 

3. Human single-cell time-series RNA-Seq data GSE52529 (9776 genes) from GEO [45]. As no satis-

factory gold standard was available, we only used this to demonstrate that fastBMA could scale to 

noisy human genome-wide expression data. 

Assessment metrics and testing methodology 

We define a true positive (TP) as an edge in the inferred network that is also present in the ground truth 

or gold standard set. False positives (FP) are edges in the inferred network that are missing in the gold 

standard. False negatives (FN) are missing edges in the inferred network that are present in the gold 

standard and true negatives (TN) are missing edges that are also missing in the gold standard. Precision 

(TP/(TP+FP)) and recall (TP)/(TP+FN) are useful measures of the positive predictive value and sensitiv-

ity of the methodology. However precision and recall are dependent on the threshold used for the edge 

weights. Plots of precision versus recall over different values for the threshold give a more complete pic-

ture of the accuracy of the network inference. Similarly, receiver operating characteristic plots of 

TP/(TP+FN) versus FP/(FP+TN) for different thresholds are also useful, though less so than precision-

recall plots because we are more interested in TP in sparse biological networks. We distill the overall 

information of these plots into a single number by estimating the area under the curve (AUC) i.e. area 

under precision recall curve (AUPR) and area under receiver operating curve and (AUROC) for all pos-

sible threshold values. Due to the size of the larger yeast networks, all AUC calculations were done us-

ing custom software fastROCPRC (https://github.com/lhhunghimself/fastROCPRC) written in C++. We 

primarily use AUPR and AUROC for the assessment as these metrics measure the overall performance 
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of the methods. In practice, however, predicting some edges accurately, even if only for the most confi-

dent predictions is still valuable for narrowing down a set of potential interactions to be further explored. 

Hence, we also plot the precision-recall graph to assess where the differences in accuracy are occurring. 

Timings for ScanBMA, fastBMA and LASSO were the average of 5 runs on the same 8-core 56 GB Mi-

crosoft Azure A10 instance. fastBMA and ScanBMA were compiled on the instance and the binaries 

used. For the Jump3/GENIE3 comparison we did not run the software ourselves but relied upon the pub-

lished running times. 

RESULTS 

We applied our fastBMA algorithm to both simulated and real time series gene expression data. We had 

previously tested several methods on these datasets [14] and found that ScanBMA and LASSO were the 

fastest and most accurate methods. Therefore we focused on comparing the fastBMA results to 

ScanBMA and LASSO [35, 46] in figures 4 and figures 5. LASSO is a non-Bayesian linear regression 

method that uses a penalty term to prevent overfitting to models with many variables. It is written in 

Fortran and is the basis for one of the fastest network inference methods available. Both fastBMA and 

ScanBMA control the breadth of the search by varying the odds ratio threshold that defines the size of 

Occam's window. The odds ratio is the confidence in the query model relative to the best model. Models 

outside of this window are discarded. Hence, a larger odds ratio threshold drives a wider search which 

naturally takes longer to complete. 

We ran both ScanBMA and fastBMA with increasing larger windows (odds ratios 100, 1000, 10,000) 

and the time and accuracy as measured by AUROC and AUPR plotted as line segments in figure 4. The 

exception was that in figure 4B, ScanBMA was restricted to 100 variables and using priors due to the 

time and memory required to run it using all 3556 variables with the larger odds ratios. All the line seg-

ments have a positive slope, indicating that larger windows do increase the accuracy, at the expense of 
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using more computation time. For both the synthetic DREAM4 and experimental yeast datasets, with or 

without prior information, the line segments for fastBMA in figure( 4A where the conditions are identi-

cal) are well to the left of the corresponding line segments for ScanBMA. The x-axis is logarithmic, in-

dicating fastBMA is orders of magnitude faster than ScanBMA when using the same parameters. Alter-

natively, one can use a larger odds ratio with fastBMA and obtain a more accurate result in same time it 

would take to run ScanBMA with a smaller odds ratio. This is especially important for larger datasets 

such as the yeast dataset with non-informative priors where it is impractical to run ScanBMA.  On the 

same datasets, fastBMA is also more accurate and faster than LASSO, the degree and nature of im-

provement depending on whether the user chooses to emphasize speed or accuracy through the choice of 

the odds ratio parameter.  

One of the main advantages of the BMA methods is that they are able to incorporate prior information to 

improve inference. This was not possible for the DREAM4 dataset as it is a synthetic dataset, for which 

relevant prior information is not available. In this case, an uninformative uniform prior probability is 

used.  However, for the yeast dataset we had access to  priors from external data sources [12]. Specifi-

cally, we applied a supervised learning approach to a training dataset consisting of regulator-gene pairs 

and various attributes assembled from diverse gene expression data, genome-wide binding data, protein-

protein interactions, GO terms and prior knowledge from the literature.  We computed predicted proba-

bilities of regulatory relationships using this supervised learning approach and these predicted probabili-

ties were used as priors in the regression step. These priors are available in the lopriors.tsv file in the 

supplemental materials. The use of informative priors also allowed us to triage the variables to be ex-

plored to the 100 variables with the highest prior probabilities, saving considerable computational re-

sources. In addition, using informative priors often increases computational efficiency by restricting the 

search to a smaller space. As expected, using informative priors increases the accuracy and decreases the 

running time of fastBMA relative to LASSO. In addition, we ran fastBMA, without informative priors 
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and without restricting the number of variables (i.e. using all 3556). This is beyond the capabilities of 

ScanBMA when using wider search windows. Even on this computationally demanding task, inferring 

the yeast network without informative priors, fastBMA is faster than LASSO with increased accuracy as 

assessed by AUROC and AUPR. 

A common use for computational network inference is to identify a small set of potential regulators that 

could be verified with further experiments. For this use case, an improvement in the precision of the 

most confident predictions is more important than a small improvement in the overall performance of 

the method. As some of the differences in AUC for the yeast dataset are relatively small, we plotted the 

precision recall curves in figure 5.  We see that the precision of the most confident predictions (i.e. low-

est recall) is increased. The advantage of using informative priors when available is very clear. Howev-

er, even when prior knowledge is not available, the fastBMA algorithm is superior which is especially 

evident in the case of the Dream4 dataset.  

The effect of post-processing is more limited. In figure 5, the precision-recall curves for the Dream4 da-

taset are almost identical for fastBMA and LASSO with and without post-processing. The same result 

was observed for fastBMA on the yeast dataset and for clarity, we did not plot the overlapping preci-

sion-recall curves for the post-processed networks for fastBMA. However, we do see that post-

processing has an effect on LASSO for the yeast dataset.   

We also tested fastBMA on a human single cell RNA-Seq dataset with 9776 variables. Using a 32 core 

cluster on Microsoft Azure (2 nodes of 16 cores), fastBMA was able to obtain a network in 13 hours 

without using informative priors. Neither ScanBMA, nor LASSO is able to return results for this dataset.  

We do not have a gold standard for this test – the purpose was to demonstrate that fastBMA could han-

dle a very large and noisy genomic sized dataset and return a network within a reasonable time even in 

the worst case scenario where the data is noisy and there is no prior information. 
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One possible drawback of the fastBMA methodology is the narrow search algorithm which restricts 

sampling to models similar to the previously optimal models. While this is a prime reason for the speed 

of the approach, methodologies that sample the space more thoroughly especially on smaller datasets 

may be prove to be more effective. Table 2 compares fastBMA to the methodology of one the best per-

formers on the non-time series data from Dream-4, GENIE3, and its successor Jump3 which use an en-

semble of decision trees for network inference. In Huynh-Thu et al. [37] the AUPR for both GENIE3 

and Jump3 was also described on Dream-4 time series data allowing for a direct comparison with fast-

BMA.  For these tests fastBMA was run with an odds ratio of 10,000 and the AUPR compared with 

those listed in Huynh-Thu et al in Table 2. The best results for each of the 5 networks are highlighted . In 

particular, Jump3 has higher AUPR than fastBMA for 3 of the networks and fastBMA has higher AUPR 

than GENIE3 in 3 of the network with the AUPRs being fairly similar for all the 3 of the methods. How-

ever, the running time difference is significant with fastBMA taking 3 seconds per network and Jump3 

taking 2 days. Running times for GENIE3 the time-series data was not given in Huynh-Thu et al . 

 

Table 2 Comparison of AUPR on Dream-4 100 gene networks for Jump3, GENIE3 and 

fastBMA 

 Network-1 Network-2 Network-3 Network-4 Network-5 Running time per network 

Jump3 0.270 0.110 0.200 0.180 0.174 48 hours1 

GENIE3 0.228 0.096 0.230 0.157 0.168 N/A 

fastBMA 0.232 0.127 0.189 0.227 0.158 3 seconds (using 1 thread)2 

 
1 Jump3 timings were from an Intel i7 processor @1.7 GHz 
2 fastBMA timings were from an Intel Xeon E5-2670 processor @ 2.6 GHz 
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DISCUSSION AND CONCLUSIONS 

We have described fastBMA, a parallel, scalable and accurate method for inferring networks from ge-

nome wide data. We have shown that fastBMA can produce networks of increased accuracy orders of 

magnitude faster than other fast methods even when using a single thread. Further speed increases are 

possible by using more threads or processes. fastBMA is scalable and we have shown that it can be used 

to analyze human genomic expression data even in the most computationally demanding situation of 

noisy data, no informative priors and considering all genes as possible regulators. 

fastBMA includes a new transitive reduction post-processing methodology for removing redundant edg-

es where the predicted regulatory edge can be better explained by indirect paths. Both fastBMA and 

LASSO already penalize large models and favor the exclusion of redundant variables. This explains why 

post-processing has minimal impact on the sparse networks predicted by fastBMA and LASSO. In par-

ticular, fastBMA produces very sparse networks which are not improved by further processing on any of 

the datasets tested. LASSO’s networks are denser. For the small synthetic DREAM4 set, the post-

processing still does not improve the network. However, on the larger experimentally derived yeast da-

taset, spurious edges do appear in the LASSO networks despite the regularization penalty that discour-

ages larger models.  Some of these redundant edges are successfully removed by the transitive reduction 

post-processing, improving the overall accuracy of the network. Thus the transitive reduction methodol-

ogy may prove useful as an adjunct to methods and datasets that give rise to denser networks and are 

more prone to over-predicting edges than fastBMA. With this in mind, and given that this methodology 

is different from other published methodologies, we have included the ability to run the transitive reduc-

tion module of fastBMA on any set of edges, not just those generated by fastBMA. 

Although we have focused on biological time series data, fastBMA can be applied to rapidly infer rela-

tionships from other high dimensional analytics data. Also the fastBMA methodology can be extended 
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for even more demanding applications. For example, multiple bit filters could be used to (i.e. a Bloom 

filter) to hash larger search spaces. fastBMA does have some limitations – the speed relies on sampling  

a small subset of the search space defined by the initial best set of models. This may not be an optimum 

strategy when there are many almost equally good dissimilar solutions and no prior knowledge to pro-

vide a guide to a set of good starting models. In these cases, especially for smaller networks there may 

be better solutions such as Jump3 that can sample the space more thoroughly within a reasonable 

timeframe. However, on the 100 gene Dream4 datasets in Table 2 the differences in accuracy between 

the methods was not large but the speed increase was more than 4 orders of magnitude.  We anticipate 

that the efficiency of fastBMA will be especially useful for very large datasets on the cloud where usage 

is metered. For this purpose, we have provided Docker images to facilitate deployment on local or cloud 

clusters. 
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Availability and requirements 

Project name:  fastBMA 

Project home page: e.g. https://github.com/lhhunghimself/fastBMA), 

Operating system(s): Linux (MacOS and Windows support provided through the Docker container 

((https://hub.docker.com/r/biodepot/fastbma/) and Bioconductor package 

(https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html)  

Programming language: C++ 

Other requirements: gcc version > 4.8, OpenBLAS, mpich2 (if MPI desired) to compile code. 

License: M.I.T. 

Any restrictions to use by non-academics: None other than those required by the license 
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Availability of supporting data 

 

Simulated 10-gene and 100-gene time-series data (5 sets of each) and the corresponding reference net-

works from DREAM4 was obtained from https://www.synapse.org/#!Synapse:syn2825304/wiki/71131 

Yeast time-series expression data (ArrayExpress E-MTAB-412) consisting of 3556 genes over 6 time 

points [43] and literature-curated regulatory relationships from the YEASTRACT database [44]. 

Human time-series RNA-Seq data GSE52529 (9776 genes) were obtained from GEO [45].  
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Declarations 

LIST OF ABBREVIATIONS 

AUC  area under the curve 

AUROC area under receiver operator curve 

AUPR  area under precision recall 

BMA  Bayesian model averaging 

iBMA  iterative Bayesian model averaging 

BIC  Bayesian information criterion 

EM   Estimation Maximization  
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Figure titles and legends 
 

Figure 1 Outline of fastBMA algorithm 

Figure 2 ScanBMA hash table versus fastBMA bit filter.  The differences between the 

hashing methods used by ScanBMA and fastBMA are shown. ScanBMA concatenates the in-

dices of the regulator variables in the model to form a unique string. The string is then mapped 

to one of a set of buckets. Strings mapping to the same bucket are kept in a second data struc-

ture that must be navigated to look up the string. In contrast, fastBMA pre-calculates the hash-

es for all the possible variables. New regression models are based upon the previous models 

and involve the addition or removal of a single variable. The hash value for the new model is 

obtained by XORing the hash value for the variable to be added or deleted with the hash value 

of the previous model. The hash value is used to map the model to a position in a 512 kB bit 

table with the row dependent on the number of variables. Mapping different sized models to 

different rows prevents the large number of collisions that would otherwise arise when using 

the XOR operator to combine hash values. A bit is set in the bit table to indicate that the model 

has been observed. Collisions are ignored - it is possible to falsely conclude that a novel model 

has been evaluated when it has not. As discussed in the Methods section, this type of error is 

well-tolerated by the fastBMA protocol. 

Figure 3 Transitive reduction post-processing. A simple example of the transitive reduction 

procedure is illustrated. The three edge weights in the mini-graph are the posterior probabilities 

that A regulates B, B regulates C and A regulates C. The probability of A regulating C through 

an indirect path through edges A→B→C is the product of the edge weights for A→B and B→C. 
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We take the negative log of the probabilities (middle panel) to transform the multiplication into 

distances. The indirect path A→B→C is shorter than the direct path A→C which is equivalent 

to the probability of A regulating C through B being greater than the probability of A directly 

regulating C. As a result, the edge between A and C is removed. 

Figure 4 Graphs of the overall accuracy of networks as a function of running time on the 

DREAM4 simulated and yeast time series data. The area under the receiver operating char-

acter curve (AUROC) and area under the precision recall curve (AUPR) of networks inferred 

from the DREAM4 dataset using fastBMA (no post-processing), ScanBMA and LASSO are 

plotted against the running times. The different points within a line segment represent fastBMA 

and ScanBMA with increasingly wider searches as determined by the odds ratio (OR) parame-

ter (OR=100,1000,10000) – the leftmost point representing the smallest OR which is the fast-

est and least accurate. LASSO does not have an equivalent parameter and was run with the 

default settings. For the yeast datasets, prior probabilities of regulatory relationships (informa-

tive priors) were obtained using external data sources as described in Lo et al. For all methods 

not using informative priors (including LASSO) variables were ordered by their absolute corre-

lation to the response variable. For the ScanBMA on the yeast dataset, the search space was 

restricted to the 100 variables with the highest prior probabilities. fastBMA was run with a 

search space of 100 variables using 1 core and all 3556 variables using 8 cores, with and 

without the Lo et al. prior probabilities. All tests were conducted using Ubuntu 14.04 on an A10 

Microsoft Azure cloud instance, which is an Intel Xeon CPU with 8 cores and 56 GB of RAM 

and are the average of 5 runs. Docker images were not used during benchmarking. Error bars 

are not shown as the variation between runs is too small to appear on the graphs. 
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Figure 5 Precision-recall curves.  The precision-recall curves were plotted for the networks 

inferred from the Dream4 data using LASSO, LASSO+post-processing, fastBMA+post-

processing (Odds Ratio=10,000). No informative priors were available for this synthetic da-

taset. Curves were plotted for the networks inferred from the yeast time series data using 

LASSO, LASSO+post-processing, fastBMA and fastBMA with informative prior. For the yeast 

dataset, curves for post-processed networks for fastBMA are not shown as they are essentially 

identical to the curves for networks inferred without post-processing.  
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