
Author's Response To Reviewer Comments

We greatly appreciate the feedback from both reviewers and feel that the manuscript has been

markedly improved with their feedback.

Reviewer 1

1) The authors claim that the transitive reduction based network post-processing method is a

novel and important feature of their algorithm. Firstly, very similar techniques were previously

used in many papers, some of which were cited by the authors in their manuscript. Therefore, I

do not think it is appropriate to call it novel. Secondly, in the benchmarking studies, the

transitive reduction method did not seem to improve the accuracy of the networks inferred by the

fastBMA algorithm. If it does not improve the performance of fastBMA then why is it being

packaged together with fastBMA and being presented as an important feature of the fastBMA

algorithm?

The point is well taken that a reader might well construe "novel" to refer to overall transitive

reduction approach based on the existence of a better paths, rather than the shortest path mapping

approach which is the "novel" part of the implementation. We have removed the word "novel" to

avoid confusion.

Response

While the methodology did not improve the sparse fastBMA networks, it did improve the

LASSO networks which were less sparse and is a very fast and natural quantitative extension of

the original method proposed by Wagner (who did not use edge weights). To our knowledge, no

one has directly mapped the search for better paths to a shortest path problem. Therefore we

included it as a module for those who wish to use this type of methodology for denser graphs

generated by fastBMA on different datasets or from graphs generated using different methods. A

few sentences have been added to the discussion to better explain this.

2) In the "Background" section (under "Findings") the authors cited many relevant research

papers. However, in the regression based methods category the authors mostly cited their own

work. I thinks the authors should cite other similar works in the same category, e.g.

doi:10.1038/srep37140,http://d/bti487.

Response

We have added the first reference. The url to the second reference was mistyped and at first we

could not identify it. However, we guessed that the reviewer meant

doi:10.1093/bioinformatics/bti487. So, we added Rogers et al. as well.

3) It seems that the underlying principles of the fastBMA algorithm is written under the heading

"Related work". This is confusing since "related work" typically refers to similar work by other

researchers.

Response

This is a good point. We have removed the heading to avoid confusion.

4) The authors claimed that their algorithm can incorporate prior knowledge of the network

topology in the inference process. In the benchmarking studies they have shown how prior

knowledge improve the performance of their algorithm. However, I did not find a description of

how prior knowledge is incorporated in the core algorithm. A brief description of this process

will help readers understand the algorithm in its entirety.

Response

The methodology starts with a list of prior probabilities (edge weights). When these are NOT

provided, we use a uniform non-informative prior for the starting edge weights. We have added a

few sentences to the methods to make this clearer in the Background section to clarify.

5) The benchmarking studies performed in this manuscript are not convincing. The authors did

not compare the performance of their algorithm with some of the most well known methods such

as GENIE3 (http://dx.doi.org/10.1371/jou and JUMP3), JUMP3 (10.1093/bioinformatics/btu863)

which were shown to be significantly superior to algorithms such as ARACNE, MRNET, CLR

etc. which were used to compare the performance of scanBMA whose performance was

compared with the fastBMA algorithm in this manuscript. To gain a better understanding of

where their algorithm stands in terms of accuracy, compared to the current state of the art, they

should compare the performances of their algorithm with the current top performers.

Response

The point is well taken that we have only focused on computationally efficient methods such as

LASSO which can scale to large numbers of genes and large numbers of samples and have not

compared with other methods that may be suitable for smaller networks. While the original

GENIE3 paper did not address the performance of on Dream4 time-series data, the follow-up

paper on Jump3 did, allowing us to compare the results. We have added Table 2 to compare the

results and relevant sentences to the Methodology, Results and Discussion sections.

6) The authors did not properly discuss the weaknesses of their algorithm, for instance in which

scenarios their algorithm is not expected to perform well?

Response

We have added a few sentences to the discussion about the potential weaknesses of the approach

– mainly the sampling of a small search space around an initial set of good models which is very

fast and efficient, but may miss optimal solutions when there are many dissimilar models of

similar quality -when more thorough sampling is possible and warranted.

Reviewer 2

1. For technical notes, the article sections should include only "Findings" and "Methods", which

can then be broken down into subsections. While this has been done for a portion of the article,

the article flow could be improved significantly to increase the clarity of the scientific content.

Conclusions should also be moved into a subheading of "Findings", instead of falling after

"Methods". Results should also be integrated into the "Findings" section.

Response

By our subheading “Methods” we did not mean protocols or workflows used to reproduce results

which is what is meant by Gigascience section heading “Methods”. We meant methodology of

the new technique which do belong in the Findings section. We have re-labeled the section

fastBMA Methodology to clear up the confusion.

2. Would recommend placing "Related Work" in the background and integrating "Our

Contributions", rather than including this as a separate section.

Response

We have removed the headings and re-organized the order of the text to improve the flow of the

article.

3. Several references to the speed of fastBMA are made in the Background/Contributes/Related

Work sections, without any supporting evidence or figures in those sections.

- Second paragraph of "Our Contributions" in 2 locations

- In "Estimating model posterior probabilities" and others, should

indicate/explain what is meant by "faster C++ code" for fastBMA -- do the other applications use

a different language? Less performant algorithms?

Response

Quite a bit of prototyping work went into the methodology that does not make it into the final

manuscript. We now refer to this explicitly in the text so that the reader understands that this is

not a major point that is established by the figures and tables. In the above paragraphs, the speed

increases referred to are in figure 4A and discussed later in the methodology and the text has

been adjusted to make this clear.

The “faster C++ code” is indeed confusing. ScanBMA uses R for the EM – fastBMA uses almost

the same algorithm in C++ which is faster. The text has been adjusted to explicitly state this.

4. The implementation methods of fastBMA are also described in the "Our Contributions"

section, prior to "Related Work"

Response

This is meant to be a précis of what was is new in the work, intended for those who may not read

the subsequent sections carefully. There is a bit of repetition necessary in order to make this

section self-contained.

5. Methods are written more like results (ie, "Algorithmic outline..."discusses the performance

enhancements rather than just the approach) and discussion sections instead of being used as an

explanation of implementation details and data sets-

Response

The optimization process involved prototyping with many different versions. While the details

are really not essential to final results, we do feel they are of use to the reader who is considering

whether to perform similar optimizations and who may want to know how varying each

component roughly affects the speed. We have adjusted the text to clearly indicate when we are

referring to internal benchmarks and prototyping rather than the major results reported in the

manuscript.

"Replacing the hash table" has similar issues, and also discusses "crashing a 56 GB machine"

with minimal explanation (possibly out of memory? unclear how large of a dataset for this to

occur).

Response

We have changed the text to make it clear that this is due to running out of memory. The

conditions when this happens are described in the text – uninformative priors – large search

windows. Exactly when this will happen is hard to predict beforehand because it depends on the

number of models sampled (as described in the text) and not the size of the dataset per se.

- Most of the "Replacing the hash table" section appears to reference ScanBMA rather than

fastBMA -- would focus on methods of fastBMA and how this improves on the prior work in the

findings, instead of going into in-depth explanations in the methods

As noted by the reviewer, the fastBMA approach (probabilistic hash) and the benefits of using it

are described in the final paragraphs of the section. We feel that it is necessary to describe the

ScanBMA approach to understand why this is feasible, especially for readers less familiar with

the inner workings of a hash table. We have added an introductory sentence to the text so that the

reader knows the roadmap and skip to the section on fastBMA if desired.

- The end of this section states that fastBMA is much faster than using a full hash table, but no

supporting data are provided (only a descriptionof the approach)

Response

This was done using internal prototyping with versions of fastBMA with and without the

probabilistic hash and is now made clear in the text.

6. Figure 3 is never referenced in the text

Response

Figure 3 is now referenced in the text

7. The text in the section "Transitive reduction to eliminate redundant edges" is not entirely clear.

While the purpose is in the title, the text does not necessarily support the title, nor offer any

evidence (figures,data) to support the conclusions in the section

Response

This is a bad title which we have changed to “Transitive reduction: eliminating edges when there

is a better indirect path.” We have changed the text to make it clearer that the core idea derives

from Wagner and is an established methodology – only the implementation using shortest paths

is new.

8. While the fastBMA results in Fig 4B cannot all be compared to ScanBMA since runs with

equivalent data were not possible, the statement that all fastBMA lines are to the left of

ScanBMA should be better explained in the text, as the larger fastBMA data with (without

priors) takes as long or longer than ScanBMA (agree these cannot be compared, but the text does

not explain this as currently written). This may be clarified by splitting references to Fig 4A and

4B in the text, rather than only referencing "Figure 4". May also want to explain why running

with priors takes substantially less time than running with priors on fastBMA.

Response

We have changed the reference to 4A and added a sentence to explain why using priors results in

shorter running times.

9. More background on what informative priors were used from external datasets may be of

benefit

This was already done in detail in the ScanBMA paper referenced. We really tried to focus on

the performance aspects of fastBMA in this technical note.

10. For the 32 core cluster, was this multiple machines totaling 32 cores? Or a single 32 core

node?

Response

Two nodes of 16 cores. This has been clarified in the text.

11. Some discussion as to why the AUC is better in Fig 4A for fastBMA 8 core compared to

fastBMA 1 core would be warranted

Response

The AUC is not better and this is indicated by the identical height/Y coordinate of the points.

12. The OR parameter used for fastBMA in Figure 5 should be stated, to better compare results

from the AUC and Precision-Recall curves

Response

This has been added.

13. Can reduce the number of times links to the software in the article are referenced (ie, the

Docker images are noted in the abstract, contributes, and conclusion)

Response

We have removed the link in the conclusions to avoid multiple references in a single section. We

have kept the links in the different sections as readers may only look at the abstract, or main

body of the paper.

14. For DREAM4 data set, both 10-gene and 100-gene data are referenced in the "Datasets"

section, but not indicated which was used in the results/figures

Response

Actually all the datasets were merged and used to calculate AUC. This is now explicitly stated in

the text.

15. A prior ScanBMA article appears to have used all 3556 variables in the Yeast data set

(http://bmcsystbiol.biomedcent) -- any reason that ScanBMA was only run with 100

variables+prior here, instead of including the 3556 without prior?

Response

The previous work on the yeast dataset was restricted to using informative priors. Furthermore it

only used an odds ratio of 100 and only assayed the effectiveness on 20 genes (while using all

3556 variables). Larger odds ratios and using the full 3556 genes just takes too long especially

for 5 runs. A sentence has been added to the Results to better explain this.

16. Explanation of the software environment setup and its impact on performance/run time

should be included -- were all tools installed on a single virtual machine? Running the same OS?

Were they run within Docker containers? Any potential performance changes due to the use of

shared/virtual hardware? Were the applications run a single time, or were they run multiple times

to determine if there was any variability between runs based on potential storage/network

capacity within the shared environment? Were data sets stored locally on within the instance?

Response

They were run 5 times on the same OS/instance and averaged. We had error bars originally but

they were not visible because of the low variability. Containers were not used. This is now

explained in the text and figure legend.

