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Abstract 68 

Background: Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-69 

branching clade known for forming intimate partnerships with complex communities of 70 

microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction 71 

and amplification methodologies to target the microbial communities of a limited number of sponge 72 

species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we 73 

provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons 74 

across large spatial, temporal and environmental scales. 75 

Findings: Samples from marine sponges (n=3568 specimens), seawater (n=370), marine 76 

sediments (n=65) and other environments (n=29) were collected from different locations across the 77 

globe. This dataset incorporates at least 269 different sponge species, including several yet 78 

unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted 79 

DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed 80 

and clustered with a) a standard protocol using QIIME closed-reference picking resulting in 39,543 81 

Operational Taxonomic Units (OTU) at 97% sequence identity, b) a de novo protocol using Mothur 82 

resulting in 518,246 OTUs, and c) a new high-resolution Deblur protocol resulting in 83,908 unique 83 

bacterial sequences. Abundance tables, representative sequences, taxonomic classifications and 84 

metadata are provided.  85 

Conclusions: This dataset represents a comprehensive resource of sponge-associated 86 

microbial communities based on 16S rRNA gene sequences that can be used to address overarching 87 

hypotheses regarding host-associated prokaryotes, including host-specificity, convergent evolution, 88 

environmental drivers of microbiome structure and the sponge-associated rare biosphere.  89 

 90 
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Data Description 94 

Purpose of data acquisition 95 

Sponges (phylum Porifera) are an ancient metazoan clade [1], with more than 8,500 formally 96 

described species [2]. Sponges are benthic organisms that have important ecological functions in 97 

aquatic habitats [3, 4]. Marine sponges are often found in symbiotic association with 98 

microorganisms and these microbial communities can be very diverse and complex [5, 6]. Sponge 99 

symbionts perform a wide range of functional roles, including vitamin synthesis, production of 100 

bioactive compounds and biochemical transformations of nutrients or waste products [7-9]. The 101 

diversity of microorganisms associated with sponges has been the subject of intense study (the 102 

search of “sponge microbial diversity” returned 348 publications in Scopus database [10]. Most of 103 

these studies were performed on individual species from restricted geographic regions [e.g., 11, 12]. 104 

A comparative assessment of these studies is often hindered by differences in sample processing 105 

and 16S rRNA gene sequencing. However, two recent studies incorporating a large number of 106 

sponge microbiomes (> 30) [5, 13] revealed the potential of large-scale, standardised, high-107 

throughput sequencing for gaining unique insights into the diversity and structure of sponge-108 

associated microbial communities. The purpose of this global dataset is to provide a comprehensive 109 

16S rRNA gene-based resource for investigating and comparing microbiomes more generally across 110 

the phylum Porifera.  111 

Sample collection, processing and 16S rRNA gene sequencing 112 

Sample collection and processing, species identification and DNA extractions were 113 

conducted as previously described [13]. A total of 3568 sponge specimens were collected, 114 

representing at least 268 species, including several yet unidentified taxa (hereafter collectively 115 

referred to as species) (Supplementary Table S1). Of the total species, 213 were represented by at 116 

least three specimens. Carteriospongia foliascens had the highest replication comprising 150 117 

individuals. Seawater (n=370), sediment (n=65), algae (n=1) and echinoderm (n=1) samples as well as 118 

biofilm swabs (n=21) of rock surfaces were collected in close proximity to the sponges for 119 

comparative community analysis. Six negative control samples (sterile water) were processed to 120 

identify any potential contaminations. Of the samples included in this current dataset, 973 samples 121 

had been analysed previously [13]. Samples were collected from a wide range of geographical 122 

locations (Figure 1 and Supplementary Table S1). Total DNA was extracted as previously described 123 

[13] and used as templates to amplify and sequence the V4 region of the 16S rRNA gene using the 124 

standard procedures of the EMP [14, 15].  125 
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Processing of sequencing data 126 

Clustering using the EMP standard protocols in QIIME: 127 

Quality-filtered, demultiplexed fastq files were processed using the default closed-reference 128 

pipeline from QIIME v. 1.9.1, providing the EMP standard method for cross-dataset comparisons and 129 

allowing direct comparison with the tens of thousands of other samples processed in the EMP and 130 

available via the Qiita database [16]. Briefly, sequences were matched against GreenGenes (v. 13_8 131 

at 97% similarity) reference database. Sequences that failed to align were discarded. Taxonomy for 132 

each sequence was taken from the cluster to which it aligned.  133 

 134 

Clustering using Mothur: 135 

Quality-filtered, demultiplexed fastq files were also processed using mothur v. 1.37.6 [17] 136 

and Python v. 2.7 [18] custom scripts with modifications from previously established protocols [13]. 137 

Detailed descriptions and command outputs are available at the project notebook (see Availability of 138 

supporting data). Briefly, sequences were quality-trimmed to a maximum length of 100 bp. To 139 

minimize computational effort, the dataset was reduced to unique sequences, retaining total 140 

sequence counts. Sequences were aligned to the V4 region of the 16S rRNA gene sequences from 141 

the SILVA v 123 database [19]. Sequences that aligned at the expected positions were kept and this 142 

dataset was again reduced to unique sequences. Further, singletons were removed from the dataset 143 

and remaining sequences were pre-clustered if they differed by one nucleotide position. Sequences 144 

classified as eukaryote, chloroplast, mitochondria or unknown according to the Greengenes (v. 13_8 145 

at 99% similarity) [20] and SILVA taxonomies [21] were removed. Chimeras were identified with 146 

UCHIME [22] and removed. Finally, sequences were de novo clustered into Operational Taxonomic 147 

Units (OTUs) using the furthest neighbour method at 97% similarity. Representative sequences of 148 

OTUs were retrieved based on the mean distance among the clustered sequences. Consensus 149 

taxonomies based on the SILVA, Greengenes and RDP (v. 14_032015) [23] databases were obtained 150 

based on the classification of sequences clustered within each OTU.  151 

 152 

De-noising using Deblur: 153 

Recently, sub-OTU methods that allow views of the data at single-nucleotide resolution have 154 

become available. One such methods is Deblur [24], which is a denoising algorithm for identification 155 

of actual bacterial sequences present in a sample. Using an upper bound on the PCR and read-error 156 
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rates, Deblur processes each sample independently and outputs the list of sequences and their 157 

frequencies in each sample, enabling single nucleotide resolution. For creating the deblurred biom 158 

table, quality filtered, demultiplexed fasta files were used as input to Deblur using a trim length of 159 

100, and min-reads of 25 (removing sOTUs with < 25 reads total in all samples combined). Taxonomy 160 

was added to resulting biom table using QIIME [25], RDP classifier [26] and Greengenes 13.8 [20].  161 

 162 

Database metadata category enrichment: 163 

For enrichment analysis of metadata terms in a set of sequences, each unique metadata 164 

value is tested using a binomial test. For a bacterial sequence s and metadata value v, denote N the 165 

total number of samples, O(s) the number of samples where s is present, Kv(s) the number of sample 166 

with value v where s is present, and T(v) the total number of samples with value v. The p-value for 167 

enrichment was then calculated as: 168 

p-value =  binomial_cdf ( T(v)-Kv(s), T(v), PNull (s) ) 169 

where PNull(s)= O(s) / N 170 

We have set up a webserver (www.spongeemp.com) that performs this enrichment analysis for 171 

user-defined sequence submissions. The code for the webserver is also available in Github [27] for a 172 

local installation. 173 

 174 

Data description 175 

The dataset covers 4032 samples with a total of 1,167,226,701 raw sequence reads. These 176 

sequence reads clustered into 39,543 OTUs using QIIME’s closed-reference processing, 518,246 177 

OTUs from de novo clustering using Mothur (not filtered for OTU abundances), and 83,908 sOTUs 178 

using Deblur (with a filtering of at least 25 reads total per sOTU). We recommend that data users 179 

consider the differences in sequencing depths per sample and abundance filtering for certain 180 

downstream analyses, such as when calculating diversity estimates [28] and comparing OTU 181 

abundances across samples [29]. In terms of taxonomic diversity, most Mothur OTUs were assigned 182 

to the phylum Proteobacteria, although more than 60 different microbial phyla were recovered from 183 

the marine sponge samples according to SILVA (n=63) and Greengenes classifications (n=72) (Figure 184 

2).  185 

 186 
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Potential uses 187 

This dataset can be utilised to assess a broad range of ecological questions pertaining to 188 

host-associated microbial communities generally or to sponge microbiology specifically. These 189 

include: i) the degree of host-specificity, ii) the existence of biogeographic or environmental 190 

patterns, iii) the relation of microbiomes to host phylogeny, iv) the variability of microbiomes within 191 

or between host species, v) symbiont co-occurrence patterns as well as vi) assessing the existence of 192 

a core sponge microbiome. An example of this type of analysis is shown in Figure 3, where samples 193 

were clustered using unweighted UniFrac data [30] with a Principal Coordinate Analysis and 194 

visualization in Emperor [31] based on their origins from sponges, seawater or kelps [32].   195 

 196 

Availability and requirements 197 

Project name: The Sponge Microbiome Project 198 

Project home page: GigaScience repository; www.spongeemp.com; 199 

https://github.com/amnona/SpongeEMP 200 

Operating system(s): Unix 201 

Programming language: Python and R 202 

Other requirements: Python v. 2.7, Biopython v. 1.65, Python 3.5, R v. 3.2.2, mothur v. 203 

1.37.6, QIIME v. 1.9.1, Deblur 204 

License: MIT 205 

Any restrictions to use by non-academics: None 206 

 207 

Availability of supporting data 208 

Raw sequence data were deposited in the European Nucleotide Archive (accession numbers: 209 

ERP020690). Quality-filtered, demultiplexed fastq files, Deblur and QIIME resulting OTU tables are 210 

available at Qiita database [16] (Study ID: 10793). The additional datasets that support the results of 211 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/amnona/SpongeEMP


8 
 

this article are available in the GigaScience repository (DOI of the dataset) and include an OTU 212 

abundance matrix (the output “.shared” file from mothur, which is tab delimited), an OTU taxonomic 213 

classification table (tab delimited text file), an OTU representative sequence FASTA file, and a table 214 

of samples’ metadata. The project workflow, mothur commands and additional scripts are available 215 

as HTML TiddlyWiki notebook [33], which is viewed in any browser (DOI of the workflow).  216 

The deblurred dataset has also been uploaded to an online server [34] that supplies both 217 

html and REST-API access for querying bacterial sequences and obtaining the observed prevalence 218 

and enriched metadata categories where the sequence is observed (Figure 4). This allows an 219 

interactive view of which sequences are associated with which specific parameters, such as depth or 220 

salinity. 221 

 222 

 223 
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 344 

Figure 4. 345 

 346 

Legends 347 

Figure 1. Global sample collection sites. Bubbles indicate collection sites of (A) marine 348 

sponges, (B) seawater and (C) marine sediment samples. Bubble sizes are proportional to number of 349 

samples as indicated. 350 

Figure 2. Microbial taxonomic profile of marine sponge samples classified using (A) SILVA, (B) 351 

Greengenes and (C) RDP. OTU sequence counts were grouped according to phylum and class. Taxa 352 

with relative abundances ≤ 0.5% were grouped as ‘others’. Classes with relative abundances > 1% 353 

are shown in the legend (phylum “;” class). Relative abundances are represented on the x-axes.  354 

Figure 3. Unweighted UniFrac Principal Coordinates Analysis (PCA) of samples from sponges 355 

(“animal=associated”, red), ocean water (green) and kelp (blue). A separation can be seen between 356 

samples based to the environmental origin. Samples were rarefying to 10,000 sequences per sample. 357 

 358 

Figure 4. Output of the enrichment analysis through the online server 359 

www.spongeemp.com.  Top line shows taxonomic assignment for the user-submitted sequence in 360 

the second line. Pie charts below show relative abundance and sample distribution plus their 361 
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associated significant enrichment results for the submitted sequence based on the scientific names 362 

of the host. At the bottom, fields can be opened to show results of the enrichment analyses for 363 

other metadata types (e.g. country). 364 
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