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Abstract 1 

Background 2 

Genetic analyses of plant root systems require large datasets of extracted architectural traits. To 3 

quantify such traits from images of root systems, researchers often have to choose between 4 

automated tools (that are prone to error and extract only a limited number of architectural traits) 5 

or semi-automated ones (that are highly time consuming).  6 

Findings 7 

We trained a Random Forest algorithm to infer architectural traits from automatically extracted 8 

image descriptors. The training was performed on a subset of the dataset, then applied to its 9 

entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract 10 

meaningful architectural traits based on image descriptors. We also show that these traits are 11 

sufficient to identify Quantitative Trait Loci that had previously been discovered using a semi-12 

automated method. 13 

Conclusions 14 

We have shown that combining semi-automated image analysis with machine learning algorithms 15 

has the power to increase the throughput of large scale root studies. We expect that such an 16 

approach will enable the quantification of more complex root systems for genetic studies. We also 17 

believe that our approach could be extended to other areas of plant phenotyping. 18 

 19 
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Findings 1 

Background 2 

 3 

Plant root systems have many physiological roles, including the acquisition of water and nutrients, 4 

making them of critical importance for yield establishment in crops. The improvement of root 5 

architectural traits will thus be crucial in delivering the yield improvement required to ensure future 6 

global food security [1, 2]. Unfortunately, root systems are difficult to analyse and quantify: they 7 

are intrinsically complex due to their highly branched tree structure [3], and their growth in an 8 

opaque medium (soil) makes them difficult to observe. 9 

 10 

For many years, root researchers have used specific experimental setups to observe and quantify 11 

root system architecture. Among these, the "pouch system" is widely used by the community to 12 

acquire large number of images of root systems [4–6]. In this approach, plants are grown on the 13 

surface of paper allowing the root system to be imaged. The analysis of the resulting root images 14 

can be performed either using semi-automated [7, 8] or fully-automated root image analysis 15 

software [9, 10]. Semi-automated tools require input and validation by an expert user to faithfully 16 

extract the geometry of the root system. However, such user interaction is time consuming, which 17 

can strongly hinder the application of these approaches to large datasets (such as those required 18 

for quantitative genetic studies). Fully automated software tools are faster, but the extracted 19 

descriptors are prone to unexpected errors and the quantified traits are usually less informative 20 

[3].  This has led to image analysis being described as a new “bottleneck” in plant phenotyping 21 

[11]. 22 

        23 

Machine learning (a multidisciplinary field of computer science, statistics, artificial intelligence, 24 

and information theory) encompasses a range of techniques for the automatic production of 25 

analytical models and has been attracting the interest of the plant science community in recent 26 

years. Machine learning is breaking new ground in plant science via the automation of procedures 27 

and experiments that previously required manual curation. These automated workflows are 28 

catalysing the development of new data-driven plant science [12]; including remote sensing [13], 29 

species identification [14], and phenotyping [15–18]. Recently, a new approach utilising machine 30 

learning algorithms has been proposed for the identification of root system architectural traits; a 31 
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Random Forest model was trained on corresponding ground-truth and image descriptors. The 1 

resulting trained model was used to analyse a new set of simulated images and was shown to be 2 

much more accurate than the direct image descriptors [3].  3 

 4 

Here, we have evaluated this technique using a similar approach with experimental images, and 5 

assessed its application to a large scale genetic study. Our rationale was twofold. Firstly, we can 6 

reasonably expect a certain level of homogeneity within datasets coming from a single genetic 7 

screening as root systems from a given species share common attributes. Secondly, semi-8 

automated root image analysis tools can be used to extract the ground-truth on a subset of 9 

images. Such ground truths can be used to train a machine learning algorithm that can then be 10 

used to analyse the remaining images in the dataset.  11 

 12 

We show that such an approach can (i) yield better results than fully automated software analysis, 13 

(ii) is time-efficient compared to performing a semi-automated analysis on the whole dataset and 14 

(iii) is able to correctly identify previously found quantitative trait loci (QTL) for root traits.  15 

Overview of the analysis workflow 16 

The dataset consists of 2614 RGB images of the roots of wheat seedlings obtained from growth 17 

pouch experiments as detailed in [5]. The images are of the root systems of the parental lines and 18 

94 members of the Savannah x Rialto doubled haploid mapping population, with a minimum of 19 

15 replicates per line.  All images were processed using the semi-automatic root analysis tool 20 

RootNav (RootNav, RRID: SCR_015584) [7] to extract phenotypic root system architectural traits, 21 

representing the “ground-truth” values.  A subset of these images has been previously used to 22 

identify QTL for root traits [5]. The dataset was divided in two (Fig. 1A): a training dataset, Dtrain, 23 

of variable size (between 100 and 900 images out of 969) and a test dataset, Dtest, of 1645 images, 24 

comprising the image set used to identify QTL in the original experimental work [5]. For all images, 25 

we first extracted the true values of the traits (ground-truth; Ttrain, Ttest) using RootNav [7].  We then 26 

extracted a k-dimensional feature vector (“the image descriptor”) of each image using a fully 27 

automated analysis pipeline, RIA-J [3]; the corresponding sets are Itrain, Itest (Fig. 1B). We used the 28 

extracted data (Itrain, Ttrain) to train a Random Forest model M: I → T, to predict the different ground-29 

truths based on the image descriptors [3] (Fig. 1C, F). The trained Random Forest model  M  was 30 

then applied to the image descriptors Itest  from the test dataset Dtest, to predict the different ground-31 

truth Ttest (named Random Forest estimators, Fig. 1D). The accuracy of both the image descriptors 32 
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and the Random Forest estimators were then compared to the ground-truth acquired with 1 

RootNav.  2 

 3 

One of the aims of our analysis was to assess the minimal size required for a training dataset. 4 

Therefore, we used different numbers of images for training: 100, 200, 300, 400, 500, 600, 700, 5 

800 and 900. For each set, we randomly selected the images out of the 969 images that 6 

comprised the training dataset, then repeated the training/accuracy procedure described above. 7 

To account for the fact that the images were randomly selected, for each test size, we repeated 8 

the procedure 10 times.  9 

 10 

For each training dataset size, we used the Random Forest estimators to detect QTL regions 11 

associated with the different traits quantified (Fig. 1G). The identified QTL regions were then 12 

compared to those previously identified using RootNav, as well as those identified using the direct 13 

image descriptors. 14 

Random Forest estimators have a greater accuracy and greater 15 

biological relevance than image descriptors 16 

 17 

It has been previously shown that Random Forest estimators are better at predicting the ground-18 

truth values of various root system metrics compared to direct image descriptors [3]. However, 19 

this evaluation used simulated images, rather than a “real” experimental dataset.  20 

 21 

Here we show that this approach can also be used with experimental data yielding better results 22 

than the direct image descriptors (Fig. 2). We also show that, as expected, increasing the size of 23 

the training dataset increases the accuracy of the estimated metrics. For our data, we observe a 24 

strong increase in accuracy up to a dataset size of 500 training images, after which the 25 

improvement becomes marginal. Our approach also allows for the prediction of new metrics, not 26 

obtained using the direct image descriptors. For instance, the direct descriptors do not 27 

differentiate between the different root orders, whereas the Random Forest model does. 28 

 29 

We observed a decrease in the variability of the predicted values as the number of training images 30 

increases. This may be the result of a greater accuracy of the prediction, but may also be due to 31 

the fact that the same images are randomly selected for each repetition. As the number of training 32 
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images increases, we expect the number of identical images across repetitions to increase as 1 

well (the total number of images in the training set being 969).    2 

Random Forest estimators identify the correct QTLs 3 

 4 

Plant phenotyping studies often use mapping populations to dissect the genetic architecture of 5 

complex traits by identifying regions of chromosomal DNA that correlate with phenotypic variation 6 

termed quantitative trait loci (QTL). The images in our test dataset were used in such a study to 7 

identify several QTL for root traits in wheat seedlings [5]. In addition to testing the accuracy of the 8 

Random Forest approach in estimating root system parameters, we wanted to know if these 9 

parameters could be used reliably for the identification of QTL. Since QTL identification had 10 

already been performed on our test dataset, we could directly assess the performance of our new 11 

pipeline against the original approach by using the same QTL detection technique on both the 12 

direct image descriptors and the traits derived from the random forest models. 13 

 14 

The Random Forest models, trained on different numbers of images (100:900), were used on the 15 

image descriptors from the test dataset to predict nine estimator datasets (named EST-100 to 16 

EST-900) for use in the QTL analysis (see Table 1). This was done to assess the minimum size 17 

for the training dataset required for reliable QTL detection, which may be lower than that required 18 

to accurately predict the trait values themselves. The R package R/qtl [19] was used for QTL 19 

detection on the image descriptor dataset and the nine Random Forest predicted datasets [5]. 20 

Identified QTL were then directly compared to those found in this paper. 21 

 22 

We observed that 12/13 of the expected QTL were correctly identified using the estimators from 23 

the Random Forest models trained on 600 or more images (EST-600:EST-900). We also 24 

observed that even using the smallest training set of 100 images (EST-100), most of the QTLs 25 

were identified (10/12), with 12/13 being identified with the estimators from the model trained with 26 

300 images (EST-300). We did not observe an increase in the logarithm of odds (LOD) score with 27 

the increase of images (Table 1). 28 

 29 

In addition, 4 extra QTL were identified on chromosomes 4D and 6D. Two of these were identified 30 

for width and width-depth ratio from EST-300, EST-500 and EST-800 datasets (Table 1). Although 31 

in this example, these have been labelled as false positives as they were not detected in the 32 

original study, they both have related QTL co-localising in the same positions (the 4D width QTL 33 
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7 

co-localises with a W/D QTL and the 6D W/D QTL co-localises with both a width and depth QTL 1 

at the same location). Both QTL were also found using the image descriptors utilised to train the 2 

Random Forest model, possibly explaining their identification. Two additional QTL for seminal 3 

(first order) root number were identified on chromosomes 6D and 7D from the EST-300 to EST-4 

900 datasets. This is most likely due to the inability of the Random Forest to accurately predict 5 

the seminal number in our dataset (r-squared < 0.3, Fig. 2).  6 

 7 

In the majority of cases, the identified QTL had the same confidence intervals and similar peak 8 

marker positions as previously reported for all Random Forest models. Interestingly, the 4D QTL 9 

had a very similar confidence interval (position 0.8-67.6 previously reported vs 0-67.6 here), but 10 

a different peak marker position (position 4.8 previously reported vs position 30-34 here). It was 11 

also noted that lateral root QTL found on 7D had a reduced confidence interval compared to those 12 

previously reported (positions 0-101.8 previously vs 0-62.4 here). 13 

  14 
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Table 1: Results from the QTL comparison for the different estimator datasets: Green is a 1 
correct identification compared to results obtained using the RootNav pipeline, Red is a miss, 2 
yellow is a false positive and grey is not comparable.  Numbers represent the significant LOD 3 
(logarithm of odds) score for each detected QTL generated by R/qtl [19]. Chr: chromosome, GT: 4 
ground truth, ID: image descriptors derived from RIA-J, EST-100:900: random forest estimators 5 
derived from 100 – 900 images. 6 
 7 

 Trait 

 

ID EST

100 

EST

200 

EST

300 

EST

400 

EST5

00 

EST

600 

EST

700 

EST

800 

EST

900 

GT 

4D Width  2.5     2.7              

 W/D 2.71 2.6 2.2 2.6 2.2 2.2 2.5 2.3 2.9 2.5 2.7 

6D Seminal number      3.6 3.1 4.7 3.3 3.8 3.3 3.1  

 Total root length  17 13.6 15.0 14.4 15.2 14.2 16.0 14.7 16.3 15.3 24 

 Mean sem. length   13.4 13.7 13.8 13.8 13.8 14.0 13.9 13.5 15.6 22.2 

 Lateral number  12.6 19.0 18.2 17.6 18.5 17.0 17.6 16.7 15.4 9.1 

 Tot lateral length  11.2 13.0 14.2 12.0 15.3 12.6 13.3 12.2 11.7 6.4 

 Tot seminal length  13.8 13.1 14.1 14.8 13.7 15.2 14.7 14.7 14.4 25.6 

 Width 13.5 11.9 13.0 14.8 12.9 12.8 13.1 12.5 12.5 12.5 6.4 

 Depth 13.6 14.3 14.3 14.1 14.0 15.6 15.0 15.2 15.8 14.8 22.7 

 W/D          2.2     1.9    

7A Seminal number           2.1 

7D Lateral number  4.3 5.5 5.9 6.6 5.2 5.0 5.3 5.0 4.4 2.4 

 Seminal number        3.8   3.4 3.4 4.0 4.5  

 Tot lateral length  4.4 4.0 6.0 4.6 4.9 4.2 4.9 4.2 4.0 2 

 Tot root length  4.1   2.7 2.5 2.9  3.1 2.9 4.7 3.3 9 

 Tot seminal length      2.9 2.7 2.1 2.8 3.1 2.8 3.2 9.7 

 SUM 6 10 11 14 14 13 14 14 15 14 13 
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 10 

 11 
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Combining semi-automated analysis and machine learning 1 

techniques increase the throughput of our image analysis pipeline 2 

 3 

Extracting meaningful information from images of root systems is a subjective, tedious and often 4 

time-consuming process. As a general rule, automated techniques can only extract a limited 5 

amount of biologically relevant metrics and are often limited to young plants. Semi-automated 6 

tools are able to extract more metrics and with a greater accuracy, but at the expense of user 7 

interaction time (which makes them unsuited for large-scale genetic studies). As a result, large 8 

genetic screens targeting root system traits often focus on a set of simple traits that can be 9 

automatically extracted. 10 

 11 

Here we have shown that machine learning techniques can be used to automatically extract a 12 

large set of root system metrics. To train the machine learning algorithm on our dataset, we 13 

estimated that 600 root images are needed. Additional images are needed to validate the 14 

accuracy of the machine learning estimators (around 100). These images have to be traced with 15 

a semi-automated tool to extract the parameters in the first place. Thus, instead of tracing all the 16 

images (in our case about 2600), only a subset (700) was needed. It was previously estimated 17 

that tracing one image takes, on average, 2 minutes. In our case, the whole dataset would 18 

represent a workload of 87 hours. With the combined pipeline, the workload decreased to 23 19 

hours (27%). 20 

 21 

In this example, we used a published dataset, for which the ground-truth data were already 22 

available [5]. In order to easily apply this approach to future studies, we have created the R 23 

application PRIMAL (Pipeline of Root Image analysis using MAchine Learning [20] (Fig. 3).  We 24 

recommend the following analysis strategy: 25 

  26 

1. Use a fully automated tool to extract image descriptors for the entire dataset. 27 

2. Use a semi-automated tool to extract the ground-truth for 200 random images (the 28 

GROUND-TRUTH DATASET). Remove these images from the global dataset. 29 

3. Use PRIMAL to train the Random Forest model and analyse the data. 30 

4. Check the accuracy of the prediction of the Random Forest model. If the prediction is not 31 

satisfactory, increase the number of images in the ground-truth dataset and repeat the 32 

procedure. The final number of images in the ground-truth dataset will vary between 33 
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experiments, plants, conditions, etc. In our example, 500 images were needed to reach 1 

a satisfactory accuracy for the Random Forest predictions.  2 

  3 

A detailed version of this protocol is available from protocols.io [21].  4 

 5 

It should be noted that the prediction accuracy of the Random Forest estimation is highly 6 

dependent on the homogeneity of the data. For example, a Random Forest model trained on 7 

maize root systems will most likely fail when applied to wheat. However, for large scale genetic 8 

studies, where only one species is used in the analysis, this should not be an issue. The accuracy 9 

of the Random Forest estimators is also function of the variability of the direct descriptors in the 10 

dataset. Using a large set of descriptors, that better discriminate the different images, might help 11 

increase the accuracy of the Random Forest descriptors. 12 

Conclusions 13 

Genetic studies on root architecture require large annotated datasets of biologically-relevant 14 

traits. Automated analysis tools can be used to extract descriptors from large libraries of root 15 

images. Unfortunately, these descriptors are prone to error and their biologically relevancy is not 16 

always clear. Alternatively, semi-automated tools enable the retrieval of more precise architectural 17 

traits but, due to the requirement for skilled user inputs, they are often unsuitable for large 18 

datasets.  19 

 20 

Here, we used a Random Forest model to predict architectural traits based on automatically-21 

extracted image descriptors. The model was trained on a subset of the whole dataset that had 22 

been previously analysed using a semi-automated tool. This strategy allowed us to (i) decrease 23 

the time required for the analysis by 73% (compared to the semi-automated analysis of the whole 24 

dataset) and (ii) accurately predict meaningful architectural traits. 25 

 26 

In order to make our pipeline available to the community, we have created an application available 27 

at [20].   28 
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Methods 1 

A detailed version of the protocol described here is available at protocols.io [21].   2 

 3 

Availability of supporting source code and 4 

requirements 5 

 6 

- Project name: PRIMAL, Pipeline of Root Image analysis using MAchine Learning 7 

- Project home page: https://plantmodelling.github.io/primal/  8 

- Operating system(s): Platform independent 9 

- Programming language: R 10 

- Other requirements: none. 11 

- License: GPL 12 

 13 

 14 

Availability of supporting data 15 

 16 

The following supporting data are open and available from the GigaScience repository, GigaDB 17 

[22]: 18 

1. Root system image dataset #1. Images of root systems of plants tagged with genotype 19 

information. 1665 images from [5]. 20 

2. Root system image dataset #2. Training images without genotype information. 969 21 

images. 22 

3. Root System Markup Language files for both image datasets. 23 

4. Full genotype mapping information for the population, from CerealsDB:  24 

http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/Excel/SavannahXRialto_map_d25 

ata_May_2013.xls. 26 

 27 

 28 
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Figure Legends 1 

 2 

Figure 1: Overview of the analysis pipeline used in this study. A. We divided the full dataset 3 

(2614 images) into two: a training set (100 to 900 images) and a test set (1645 images). B. For 4 

each dataset, all the images were analysed using a semi-automated root image analysis tool 5 

(RootNav) to extract the ground-truth, as well as with a fully automated root image analysis tools 6 

(RIA-J), to extract  image descriptors (see text for details). C. We trained a Random Forest model 7 

on the image descriptors and the ground-truth from the training dataset. D. We applied the 8 

Random Forest model on the image descriptors from the test dataset. E. We compared the image 9 

descriptors and the Random Forest estimators from the test dataset with their corresponding 10 

ground-truth. F. Comparison of biologically-relevant metrics extracted with the automated 11 

analysis and the Random Forest analysis. G. QTL were identified and compared using both 12 

Random Forest estimators and the ground-truth data.  13 

 14 

Figure 2: Accuracy of the Random Forest estimators. The r-squared values of the linear 15 

regression between the Random Forest estimators and the ground-truths were computed for each 16 

size and repetition of training datasets. The dotted line represents the r-squared value between 17 

the most closely related image descriptors and the ground-truth.  18 

 19 

Figure 3: Screenshot of PRIMAL. A. Variable to evaluate with the Random Forest algorithm. B. 20 

Random Forest algorithm parameters. C. Visualisation of the accuracy of the Random Forest 21 

estimators. D. Accuracy metrics for the different descriptors. 22 
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