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 10 

Abstract. 11 

Background. Detailed and realistic tree form generators have numerous applications in ecology and 12 

forestry. For example, varying morphology of trees contribute differently to formation of landscapes, 13 

natural habitats of species, and eco-physiological characteristics of the biosphere. Additionally, virtual 14 

clones might be used in studies of real (e.g. genetic) clones. 15 

Findings. Here, we present an algorithm for generating morphological tree “clones” based on the 16 

detailed reconstruction of the laser scanning data, statistical measure of similarity, and a plant growth 17 

model with simple stochastic rules. The algorithm is designed to produce tree forms, i.e. 18 

morphological clones, similar as a whole (coarse-grain scale), but varying in minute details of 19 

organization (fine-grain scale). Although we opted for certain choices in our algorithm, individual 20 

parts may vary depending on the application, making it a general adaptable pipeline. Namely, we 21 

showed that specific multi-purpose procedural stochastic growth model can be algorithmically adjusted 22 

to produce the morphological clones replicated from the target experimentally measured tree. For this, 23 

we developed a statistical measure of similarity (structural distance) between any given pair of trees, 24 

which allows for the comprehensive comparing of the tree morphologies in question by means of 25 

Manuscript Click here to download Manuscript MorphoClones_Giga.docx 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/giga/download.aspx?id=11636&guid=18a8f6b1-2b31-4220-9d3b-f22a7e590d60&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=11636&guid=18a8f6b1-2b31-4220-9d3b-f22a7e590d60&scheme=1


2  

empirical distributions describing geometrical and topological features of a tree. Finally, we developed 26 

a programmable interface to manipulate data required by the algorithm. 27 

Conclusions. Our algorithm can be used in variety of applications for exploration of the morphological 28 

potential of the growth models (both theoretical and experimental), arising in all sectors of plant 29 

science research. 30 

 31 

Keywords: quantitative structure tree model; morphological clone; stochastic data driven model; 32 

terrestrial laser scanning; large scale data; empirical distributions; distribution tomography 33 

 34 

Findings 35 

 36 

I. Background 37 

 38 

Models for plant architecture attract significant attention due to their ability to assist the empirical 39 

studies in ecology, plant biology, forestry, and agronomy [1]. The modeling activity is especially 40 

useful in research since it arises as fruitful collaboration between specialists in different fields of 41 

studies: computer scientists, mathematicians, and biologists [2]. 42 

 43 

Modeling plant architecture is approached from many directions. Some progress has been achieved in 44 

synthesis of realistic plant forms in the field of computer graphics [3-5]. These models, although based 45 

on heuristic rules of growth, produce realistic shape outcomes in a fast and efficient manner, which is 46 

usually dictated by the application of this approach, that is natural sceneries in computer visualization. 47 

Heuristic growth rules of the procedural models for graphics applications are not firmly based on 48 

biological principles, but nevertheless elucidate some algorithmic properties of the growth process (for 49 

example, recursive [6] vs. self-organizing [3, 7] character of architecture development). 50 
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 51 

However, the most promising plant architectural models are so called functional-structural plant 52 

models (FSPM), also known as “virtual plants” [8-10], because this type of models allows for a 53 

balanced description between morphological and functional/physiological properties of a plant. Thus, 54 

it is capable of connecting the external abiotic factors (e.g. radiation, temperature and soil) and the 55 

most vital functions of a plant organism (such as photosynthesis, respiration, and water and salts 56 

uptake) with its structural characteristics [1, 2]. 57 

 58 

Nevertheless, biologically relevant architectural plant models rely on data in a form of empirically 59 

fitted functions and parameters that correspond to a particular species and/or certain site conditions 60 

[11-14]. Thus, the change in these conditions requires re-calibration of the models, which is done in a 61 

manual fashion every time the model is simulated for the new conditions. Strong dependence on data, 62 

where each simulation would be calibrated automatically by data, is limited by both computation time 63 

and lack of the fast measurement and processing systems allowing for a detailed 3D morphological 64 

reconstruction of the real plant/tree. 65 

 66 

The most recent advances in laser scanning techniques allow for fast and non-destructive measurement 67 

of trees with subsequent reconstruction of various characteristics depending on application (e.g. [15, 68 

16]). Most of such studies dedicated to reconstruction of 3D point clouds obtained from laser scanning 69 

measurements deal with overall characteristics, such as height, width, and volume of stems/crowns, 70 

leaf index, biomass etc., resembling traditional destructive methods of measurement [15, 17]. 71 

However, the detailed precise geometrical and topological reconstruction with the preserved tree 72 

architecture as is, is rarely sought after.  73 

 74 
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We use a fast, precise, automatic, and comprehensive reconstruction algorithm initially presented in 75 

[18] and further developed and tested in [19]. The algorithm reliably reconstructs a quantitative 76 

structure model (QSM), which contains all geometrical and topological characteristics of the object 77 

tree. Input for the method is the 3D point cloud, sufficiently covering the tree, obtained from the 78 

terrestrial laser scanning measurements (TLS) and no additional allometric relations used for 79 

estimation of the branch proportions (as in [20, 21]) are needed. Compared to other similar techniques 80 

(e.g. [20-22]) this method requires few parameters and no user interaction and reconstructs the tree 81 

surface with subsequent cylinder (or any other geometrical primitive) approximation, which is usually 82 

consistent with theoretical plant growth models. The reconstruction algorithm has been validated in 83 

several studies with several different tree species and different scanner instruments [19, 23-26]. There 84 

are other published QSM reconstruction methods from TLS data that can produce similar quality 85 

QSMs, at least [23]. 86 

 87 

In this work, we utilize an inverse iterative procedure to optimize model’s parameters as to match the 88 

(empirical) distribution of structural features of the simulated stochastic tree models (FSPM, graphical 89 

or other) to that of the tree reconstructed from the laser scanning data. Meanwhile, we formulate a 90 

measure of similarity of the tree structures grounded in tomographic analysis of the structural 91 

distributions (e.g. Radon transform) [27, 28]. Finally, the optimal parameter set produces 92 

morphological “clone” trees with similar overall structure, but varying minute details of organization. 93 

 94 

Recently, we have reported a proof-of-concept study where we used reconstruction of a pine tree and 95 

the corresponding FSPM (named LIGNUM [13, 29]) to demonstrate the practical feasibility of the 96 

approach [30]. Here, however, we develop a unifying interface (in the form of a programmable 97 

toolbox) for our procedure and use general-purpose fast procedural tree growth model from [3], since 98 

such a simple procedural model is easier to adapt  (it is simple, fast, and efficient) for technical 99 
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experimentation with the whole algorithm. Similar algorithmic pipeline was reported in [5] for 100 

procedural tree growth models in the context of graphics synthesis. However, in our approach we see 101 

the tree growth as a random process and, consequently, apply corresponding statistical methods for 102 

measuring the similarity between trees. Moreover, in our algorithm the special concern is on 103 

biologically and physically relevant descriptions, hence, the careful choice of the reconstruction 104 

algorithm; possibility to use FSPM to relate physiological parameters to the morphogenetic processes 105 

in trees; and no extra structures improving visual properties of trees but not supported by empirical 106 

observation (e.g. leaves). Finally, any other choices of parameters and feature descriptions can be used 107 

in our approach, further facilitated with a programmable interface. 108 

 109 

II. Algorithm overview 110 

 111 

Our approach is based upon five distinct parts: 112 

1. Quantitative Structure Model (QSM) is a reconstruction of a tree model from 3D point clouds 113 

obtained from terrestrial laser scanning measurements (TLS). Here we use specific algorithm for 114 

such reconstruction reported in [18] and [19] but others could be used as well. 115 

2. Stochastic Structure Model (SSM) is a tree growth model that is chosen depending on the 116 

application. There are no limitations on the class of the model, except it must produce measurable 117 

3D branching structure. 118 

3. Structural data set (U) is a collection of structural features (empirical distributions) to be 119 

compared between QSM and SSM. Importantly, U data sets must be determined in the same way 120 

both for QSM and SSM. 121 

4. Measure of structural dissimilarity, or structural distance DS, is a measure of discrepancy between 122 

any two data sets, in other words, DS(U1, U2) results in a value quantifying how much different the 123 

two data sets U1 and U2 are. 124 
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5. Optimization algorithm is a numerical routine capable of finding a minimum of any given function 125 

by varying its arguments (Newton algorithm, genetic algorithm, simulated annealing etc.) 126 

 127 

The connection between these components is outlined in Fig. 1 with explanation in the text below. 128 

 129 

Figure 1: The algorithm outline (see explanation in the text). 130 

 131 

The algorithm outline (Fig. 1): 132 

 133 

Preparation stage A: 134 

A1: build QSM from TLS. 135 

A2: extract Ud from QSM. 136 

 137 

Main cycle B: 138 

B1: simulate SSM (with fixed random generator seed for reproducibility) for the given parameters and 139 

extract Um. 140 

B2: compare Um and Ud getting an estimation of the distance D between them. 141 

B3: change SSM parameters trying to decrease D, go to B1 or stop and go to B4 (changing of the 142 

parameters and stopping criteria depend on any particular realization of the optimization routine). 143 

B4: simulate SSM with the “best-fit” parameter values corresponding to the smallest found D. 144 

B5: loose the randomness of the best-fit SSM and generate morphological clones. 145 

 146 

At the preparation stage, the QSM is formed from the TLS point cloud (A1). The detailed description 147 

of this process is reported in [18, 19]. The resultant QSM contains all geometrical and topological 148 
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features needed to form the empirical distributions Ud. The distributions can be formed for several tree 149 

individuals if they are close by shape to ensure the sample size. 150 

 151 

At the main cycle of the algorithm, the empirical distribution Um is formed from the simulated SSM 152 

tree (B1). Next, Um is compared against Ud using the measure of distance (B2). The optimization 153 

routine iteratively minimizes the distance value every time changing the parameter values of SSM 154 

(B3), simulating SSM, and repeating the cycle from B1. After the stopping criteria of the optimization 155 

routine (number of iterations, minimal allowed distance etc.) are met, the algorithm stops and produces 156 

the best-fit SSM tree (B4). The best-fit SSM with different random sequences produces different 157 

outcomes – morphological clones. 158 

 159 

In Methods, we describe each of the main components of the algorithm in further detail. 160 

 161 

III. Testing of the algorithm 162 

 163 

First, we run the optimization within each of the parameter groups I – V, representing different 164 

processes of growth (see Methods for details), to determine the basic values of the parameters. These 165 

basic values represent choices that generate a viable tree structure with proportions and scale 166 

approximately equal to those of the target QSM. Each optimization run takes the best parameters for 167 

the group optimized at the previous step. The target structural distributions U for these runs are 168 

segment-related (S) features of the branches of topological order w = 0, 1, that is S0,1 (see the details of 169 

the notations and description of the features in Methods). Note that this exercise serves a basic 170 

exploration of the model’s behavior, which can be (partially) replaced, for example, by the expert 171 

guesses for the parameter values or some calibration process (if the model is designed for specific 172 

purposes and/or species). 173 
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 174 

Second, based on these preliminary results we determine the most influential parameters for each of 175 

the group and combine them in a single optimization set up. Several independent optimization runs 176 

were taken in order to determine the most influential parameters. For example, we found that the 177 

angular properties vary the least among these runs, whereas the apical dominance requires subtler 178 

adjustments (as can be understood from the complex structure of the target QSM). This step is required 179 

to reduce optimization time, and it is not needed if one possesses large computational resources. 180 

 181 

Low order topological adjustment of the shape 182 

 183 

After these initial manipulations, we obtained a model with 11 parameters and good fit of the trunk 184 

(w = 0) and first order branches (Fig. 2C) with classical metrics dh = 0.05, dg = 0.42, dc = 0.57 (see 185 

Methods for the definition of the classical metrics). However, the overall form of the resulting minimal 186 

score tree does not resemble the target QSM due to its rosette-shape (Fig. 2A, B). A closer look at the 187 

tree reveals that the higher order branches (w > 1) are mainly responsible for the formation of the 188 

rosette-shape of the tree, i.e. the orders which were not subject to the optimization (Fig. 2). This 189 

example demonstrates the contribution of the higher order branches to the overall tree shape, which 190 

suggests using the scatters of these orders in further optimization steps. Moreover, the branch-related 191 

(B) features, such as the angular properties of branches of order w > 1, were not captured well 192 

(Fig. 2E), although similar order segment-related S-features show right stochastic tendencies (Fig. 2D) 193 

generated automatically by the growth algorithm of the SSM. However, note that these features of 194 

w > 1 were not subject to optimization. This further stipulates usage of the branch-related B-scatters of 195 

orders w > 1 (see the details of the notations and description of the features in Methods). 196 

 197 
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Figure 2: The rosette-shape SSM resulting from the adjustment of the low order segment-related 198 

(S0,1) scatters. (A) The SSM tree; (B) the target QSM; (C) some segment related (S0,1) scatters used in 199 

the optimization; (D) higher order (w = 2) S-scatters (not used in optimization); (E) higher order (w = 200 

2, 3) branch related B-scatters (not used in optimization). SSM/QSM scatters are shown in red/blue. 201 

 202 

Low and high order topological adjustment 203 

 204 

The increase in number of the structural feature tables is coupled with the increase in number of 205 

distinct distance values, that is, each pair of tables (QSM vs. SSM) produces a distance score to be 206 

optimized. Although the optimization of the mean distance value for all tables hinders the 207 

improvement for each table separately, the low order and high order branches need to be fitted to the 208 

corresponding branches of the target QSM as we have shown above (Fig. 2). To reduce the number of 209 

distinct feature tables for the optimization we further utilize the merged data sets resulting in two joint 210 

segment- (S) and branch-related (B) tables for all topological orders (see Methods for description of the 211 

merged data sets). 212 

 213 

Thus, we opted for S0,1 and B2,3,4 merged data sets in the next run of optimization to account for the 214 

higher order branch variability (Fig. 3, dh = 0.08, dg = 0.20, dc = 0.68). No longer we can see the 215 

rosette-shape due to the correct account of the angular properties of the higher order (w > 1) branches 216 

(Fig. 3E). The poor convergence of the branch linear dimensions (radii, lengths etc.) present in the 217 

branch-related tables might be due to the parameter choice of the model. Namely, the small proportion 218 

of branches demonstrating right Rf values (Fig. 3E) appears to be the result of the fixed segment length 219 

we opted for as a compromise between reality and computational complexity (the QSM minimal 220 

segment length is close to zero, median is 0.06 m, whereas that of SSM is fixed to 0.2 m). Noteworthy 221 

is the similar span of the curvature data points of SSM and QSM for w = 1, 2 (Fig. 3C and D), 222 
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although w = 2 branch curvature was not subject to the optimization. Additionally, due to the lack of 223 

the orientation landmark in the feature data sets our best-fit SSM is fitted to the target QSM with 224 

accuracy of the rotation around Z-axis (this could be adjusted, for example, by associating South 225 

direction with a coordinate axis). 226 

 227 

Figure 3: Low and high order adjustment of the stochastic feature tables. The best-fit SSM is 228 

obtained through optimization against S0,1 and B2,3,4 merged feature data sets. (A) The best-fit SSM 229 

tree, (B) the target QSM tree, (C) some projection scatters from S1, (D) S2 projection scatters, (E) B2 230 

and B3 projection scatters. 231 

 232 

Clonal nature of the best-fit SSM 233 

 234 

Due to the highly discrete and stochastic nature of the tree growth, the structural distance hyper-235 

surface in the space of the parameters is extremely abrupt (Fig. 4A). Hence, finding the global minima 236 

of such surface is not a trivial task (the classical smooth function optimizers are not suitable in this 237 

case, while stochastic discrete optimizers, like the genetic algorithm, seem to be more appropriate). 238 

Moreover, the hyper-surface itself is a stochastic entity changing every time the new sample of random 239 

numbers is used for a particular SSM growth realization. Therefore, any best-fit SSM is the best for a 240 

particular realization of this stochastic process: one needs to study variability of the tree shape and the 241 

chances are that other SSM growth realization can produce a lower distance value (Fig. 4B). We call 242 

these many realizations of the SSM growth morphological tree clones. 243 

 244 

Figure 4: Stochastic structure distance profiles in the parameter space. (A) Three realizations of 245 

the distance hyper-surface projection along a dimensionless parameter of the SSM, controlling the 246 

apical dominance of a tree (the shown fragment of the projection with the step of 0.001 approximates 247 
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30% of the allowed variability of the parameter during optimization, which was [0.35, 0.65]). (B) 248 

Structural distance (U = {S0,1, B2,3,4}) values for 100 randomly generated SSM trees for each value of a 249 

discrete SSM parameter, i.e. number of growth iterations (red line connects the median points of the 250 

distance distributions for each parameter value; blue line shows the same median distance profile but 251 

for the disturbed system, see (C)). (C) Same as in (B), but U = S0,1 (blue line is the median profile; red 252 

line is from (B)). The SSM is the best-fit SSM obtained in the experimentation reported in Fig. 3; the 253 

black arrow indicates the parameter value of the best-fit SSM found in the experimentation. 254 

 255 

The structural distance profile depends not only on the parameters of the SSM, but the choice of the 256 

structural data sets. For example, in Fig. 4B and C the median distance profile is depicted given U = 257 

{S0,1, B2,3,4} (red line) and U = S0,1 (blue line). In the given parameter span the latter seems to be more 258 

flattened and lifted compared to the former. The addition of the B2,3,4 data set might be seen as a 259 

perturbation to the distance profile changing the landscape properties (like minima). In our simulations 260 

we maintain the global parameter boundaries, which allows for the search within the full available 261 

space. However, we sequentially improve the model characteristics by perturbing the system, i.e. 262 

changing the parameters, their intervals, and the U data sets to address problematic parts of the SSM 263 

(like rosette-shape, Fig. 2) such that at every next optimization run the genetic algorithm is instructed 264 

to search around the previous best point using the initial ranges (see Methods for details).  265 

 266 

Given the considerations above about the nature of the structural distance hyper-surface, the further 267 

study of the morphological clones is needed. Specifically, the variability and plausibility of the clonal 268 

shapes need to be addressed. For example, the clones must be further selected as to produce realistic 269 

tree shapes (especially, when the general purpose SSM is used, like in this study), however, in our 270 

analysis we did not find any unrealistic tree sampled from the best-fit SSM (any specific application 271 

imposes additional constraints on the parameters, which results in removal of the unrealistic shapes). 272 
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Additionally, the variability of the clones can be further calibrated, for instance, by the analysis of the 273 

natural/QSM clonal individuals. 274 

 275 

Morphological tree clones 276 

 277 

The quintessence of our work is the generation of the morphological clones. In our pipeline, this 278 

occupies the last stage (see Fig. 1, B5). After the optimization is finished and the best-fit SSM is 279 

found, one can further randomize the outcome of SSM by letting the random number generator 280 

produce different sequences every time SSM is run. As a result, the different realizations of SSM 281 

should constitute the morphological clone generator yielding structural copies close to QSM and to 282 

each other and varying in fine detail of organization of their branches. In other words, the coarse-grain 283 

structure is repeated in each clone (and possibly grasps that of the target QSM), whereas the fine-grain 284 

structure varies. 285 

 286 

Figure 5: Morphological clones generated from the best-fit SSM. The best-fit SSM was found 287 

using the higher topological order adjustments (Fig. 3) with number of growth iterations 30 (A), 26 288 

(B), and 18 (C). The height, girth, crown spread, and classical metrics distributions are shown in (D) 289 

for the clones in (A), (B), and (C) (the total number of generated clones for each case is n = 100, only 6 290 

are shown). The black horizontal line indicates the corresponding measure of the target QSM. 291 

 292 

We demonstrate visualization of six clones for three distinct cases in Fig. 5 (clones from other best-fit 293 

SSM’s are provided at [31]). One can see the fine-grain variation in the structure in each panel of the 294 

figure, although the overall (coarse-grain) structure is preserved and presumably captures that of the 295 

target maple QSM (Fig. 6). The three models are: the one found during the optimization process (Fig. 296 
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5A), the one minimizing the sample median distance profile for DS(U = {S0,1, B2,3,4}) shown in Fig. 4B 297 

(Fig. 5B) and one minimizing the sample median profile DS(U = S0,1) from Fig. 4C (Fig. 5C). 298 

 299 

Out of 100 simulated clones for each case, we can see that the best-fit SSM obtained directly as the 300 

optimization outcome (Fig. 5A) produces larger proportion of individual trees exhibiting the three 301 

standard allometric measures closer to those of QSM (Fig. 5D). However, we argue that such simple 302 

description of a tree, as using the allometric measures, cannot be exhaustive enough to capture both the 303 

overall structure and its fine details. Moreover, such static measures are absolutely useless for 304 

generation of morphological clones. 305 

 306 

The height statistics have the largest variability but by the visual inspection of the drawn clones in 307 

Fig. 5 one can see that this variability does not exert significant alterations of the Z axis span and the 308 

trees seem to have even heights. Perhaps, the way we calculate the height of a tree produces such large 309 

deviations in each particular case, which makes it a non-robust estimator (see Methods for the details 310 

of the height calculation).  311 

 312 

Similarly, the girth estimation, although being captured decently, produces large errors dg, which 313 

seems to be a result of variation in its linear dimensions (Fig. 5D). The girth dimension spans a small 314 

proportion of the dimension of the whole tree: from several to tens of centimeters compared to meters 315 

of the whole tree. This makes the girth specific error look gigantic (exceeding in some cases 100%) 316 

and thus non-robust as well. 317 

 318 

The crown spread measure shows significant variation (Fig. 5D). We believe that this takes place due 319 

to the environment of the real tree the QSM was reconstructed from, which was not modeled 320 

appropriately in the SSM. Namely, the environmental effects (positions relative to the sun, as the tree 321 
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grows in the Northern country, animals, winds, neighboring trees etc.) might cause systematic 322 

influences exerted on the shape of the QSM tree. These influences were not accounted for in the SSM, 323 

which was allowed to grow in any direction, limited by the uniform light conditions, existing branches 324 

of the same tree, and global boundaries of the available space. In addition to the environment 325 

influences, there are TLS measurement and QSM reconstruction errors, arising from the physical 326 

limitations of the instrumental technique and stochasticity of the QSM formation, respectively (see 327 

Methods).  328 

 329 

Finally, the true understanding of the variability of any measures of the morphological clones comes 330 

with the measurements of the real clones. Carrying out control experiments with QSM reconstructed 331 

from the real clonal individuals (with the application dependent definition of a clone, e.g. genetic 332 

clones) can only assess the variability.  These real clone controlled experiments can further identify 333 

whether the obtained variability is large/small for the given species/clones and lead to the adjustment 334 

of the optimization parameters. 335 

 336 

IV. Bayes Forest toolbox 337 

 338 

We have further developed a unified interface using Matlab, facilitating exploration, drawing, 339 

optimization, and simulation of SSM and QSM as well as study of the morphological tree clones. Our 340 

interface allows for faster and easier manipulation of the required data, models, and optimization 341 

routines from the Matlab Optimization Toolbox, using only the required elements of otherwise 342 

complex Matlab configuration for the analysis. 343 

 344 

The Bayes Forest toolbox is freely available at [31] (the version used in this study) and at [32] (the link 345 

is preferred for contributions and contains the latest version of the package). We also encourage the 346 
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plant and computer scientists’ community to expand their efforts using the toolbox with other species 347 

and models. Such a systematic approach can further be useful in tinkering the best options for creating 348 

QSM, SSM, and construction of the structural data sets. 349 

 350 

V. Discussion 351 

 352 

In this work, we described an algorithmic pipeline aimed at producing stochastic structural replicas, or 353 

morphological “clones”, of trees from a QSM tree (data from TLS reconstruction) and a 354 

complimentary SSM tree (analytical/procedural growth model). The pipeline is based on an iterative 355 

minimization of a distance between morphological structures. The distance is based on construction of 356 

the structural data sets of the tree morphologies and subsequent measure of their discrepancy using the 357 

ideas of distribution tomography analysis. The resulting best-fit morphological clones are statistically 358 

similar which is expressed in overall similarity of their form (coarse-grain), but, nevertheless, 359 

difference in fine details of structural organization (fine-grain). 360 

 361 

Here, we have shown the general logic behind the pipeline and principle possibility for generation of 362 

the morphological clones as defined above. For this purpose we used a highly variable procedural tree 363 

model [3], which is more difficult to optimize. As the pipeline consists of several elementary steps, 364 

each of which can be changed according to the application and target analysis, we have proposed an 365 

initial set-up and basic configuration that are capable of the task we have set. We assume larger 366 

possibilities of exploration of the proposed configuration, let alone changing the steps and individual 367 

algorithms within the pipeline, which could be fulfilled by the community of plant science researchers 368 

(for this reason, we also created a little toolbox in Matlab for easier representation and simulation of 369 

the algorithm). 370 

 371 
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Developing the principles of the pipeline, we were interested in biological plausibility of the results 372 

rather than visualization purposes. Thus, for example, we use real TLS measurements and general-373 

purpose measure of the distance, while omitting visual effects (e.g. shades, leaves etc.). We believe 374 

this pipeline can be useful in the rigorous analysis of the plant morphogenesis and corresponding 375 

applications (in contrast to some similar studies done in computer graphics field, e.g. [5]). 376 

 377 

Moreover, in our algorithm we employ the distance measure taking into account significant portion of 378 

the data (in fact, all data points of a given topological order(s)), not merely scalar overall entities 379 

proposed by other authors (e.g. [5, 33]). This allows for a more comprehensive analysis of forms and 380 

their description, stemming from the statistical inference theory and in the spirit of Systems Biology 381 

studies. Due to this reason, we do not rely on the traditional metrics comparison in this work as we 382 

found that similar values for the height, girth, and crown distances may correspond to different tree 383 

forms and, thus, be non-robust. 384 

 385 

Use of several QSM trees can enhance the robustness of the statistical analysis presented here. In this 386 

case, similarly looking trees should be used and the degree of similarity might be established using our 387 

definition of the structural distance. For example, the trunk features are more reliably reproduced in 388 

statistical sense, when several QSM’s are used. In these lines, it might be stressed that other notions of 389 

“clone” can be used to establish relationship with morphology. Thus, the genetic clones might be 390 

utilized to establish to what degree the morphology of a tree is encoded into genes (nature vs. nurture 391 

problem). 392 

 393 

Methods 394 

 395 

I. Quantitative Structure Model (QSM) 396 
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 397 

QSM is derived from the point cloud obtained by TLS. Essentially, QSM is a surface reconstruction of 398 

the branches of the real tree measured by TLS. The reconstruction itself is a stochastic process, giving 399 

different architecture results for different runs. Therefore, the reconstruction introduces internal errors 400 

in addition to the TLS measurement errors. Besides giving spatial locations of parts of the tree, QSM 401 

also reconstructs topological relations between the tree branches. The branches of QSM consist of 402 

elementary units, i.e. circular cylinders, but other geometrical primitives can also be applicable [34]. 403 

Thus, any potential structural information about the original tree can be approximated with high 404 

accuracy with QSM (details of the reconstruction algorithm are presented in [18, 19], for the validation 405 

of the algorithm see [19, 23-25]). 406 

 407 

In this work, we use the reconstructed QSM of a maple tree (Fig. 6). The tree was measured in leaf-off 408 

conditions and our system consisted of a phase-based terrestrial laser scanner (Leica HDS6100 with a 409 

650–690 nm wavelength). The distance measurement accuracy and the point separation angle of the 410 

scanner were about 2–3 mm and 0.036 degrees, respectively. The horizontal distance of the scanner to 411 

the trunk was about 7–12 m, thus the average point density on the surface of the trunk (at the level of 412 

the scanner) for a single scan is about 2–5 points per square centimeter. The QSM of the subject maple 413 

tree consists of 19,000 cylinders approximating 3,078 branches. 414 

 415 

Figure 6: The target QSM structure in three main 2D projections. 416 

 417 

The subject QSM was chosen due to its non-trivial form and obvious irregularities in the tree growth. 418 

This is needed to determine whether the stochastic rules of SSM growth can account for this variability 419 

(which, in fact, might come from some deterministic sources, like constant wind, shading from the 420 

neighbors, animal influences etc., and which we do not know as we do not know the history of 421 
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growth). Thus, our algorithm tries to compensate the unknowns of the growth with simple stochastic 422 

rules of SSM and optimization of the stochastic distance function. 423 

 424 

II. Stochastic Structure Model (SSM) 425 

 426 

SSM is a simulated model, preferably based on analytical and/or heuristic rules for the tree growth; 427 

however, any viable algorithm for generating tree forms may be used. Importantly, the ultimate output 428 

of the SSM simulation is a table containing data sets U (see IV.3 Structural data sets), describing the 429 

tree structure. 430 

 431 

Additionally, SSM may be supplied with stochastic variability in its parameter values. Through our 432 

studies we implement simple stochastic variations (in the form of normal and uniform distributions) 433 

added to the parameter values of SSM. 434 

 435 

Finally, the elementary units forming the SSM branches should be similar to that of QSM for the 436 

appropriate comparison or, otherwise, any differences in the form primitives must be taken into 437 

account. Usually cylinders are used in SSM studies and they were also shown, when used in QSM, to 438 

produce most reliable estimation of the real tree characteristics [34]. 439 

 440 

Examples of SSM are: LIGNUM [13] – a functional-structural plant model based on the physiological 441 

principles of growth of pine trees, but also applicable to other tree forms [35]; self-organizing tree 442 

model [3] is based on the heuristic principles of growth, the algorithm is capable of producing various 443 

tree shapes and is used in computer graphics; plastic trees  [4] are procedural growth models used in 444 

computer graphics; AMAP/GreenLab (see e.g. [36, 37]) is a modeling approach to generate FSPM 445 

based upon empirical rules of growth with some physiological processes taken into account. 446 
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 447 

In this work, we use self-organizing tree model (SOT) with shadow propagation algorithm [3] as SSM 448 

with the minimal changes as to calculate the morphological features and produce the resulting data sets 449 

for comparison with QSM (in this work we used SOT implemented in the LPFG simulator, part of the 450 

Virtual Laboratory software suite [38], version 4.4.0-2424 for 64-bit Mac OS, see [39]). This 451 

procedural tree model is fast and able to generate variety of forms, hence we can use it effectively to 452 

optimize the whole algorithm in respect to technical details as well as to cover various tree shapes. 453 

Note that more specialized tree growth models designed for the species in question would be easier 454 

subjects for the morphology optimization, but, nevertheless, can be more valuable in biologically 455 

motivated studies (the usual choice is FSPM’s, e.g. [30]). 456 

 457 

The total number of growth parameters of the model is 27: 23 are grouped, 4 are fixed for all times. 458 

The values of the latter are dictated both by suggestions of the authors in [3] and the compromise 459 

between computation time and details of the morphological description. For example, the segment 460 

length is 0.2 m (we found this optimal to grow a full size tree within a reasonable span of time, 461 

although this is not the minimum length of the target QSM segments), the voxel size is 0.2 m, and the 462 

model tree grows within 12x12x12 m cube from the center of XY plane of the cube (Z-axis is oriented 463 

upwards). 464 

 465 

The grouped parameters are divided between 5 distinct groups corresponding to different related 466 

processes: 467 

Group I: the initial growth parameters, including limiting values, and pipe model related parameters. 468 

Group II: environmental effects such as sensing of the neighborhood shading, vertical gradient of the 469 

light, tropism etc. 470 

Group III: apical dominance parameters. 471 
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Group IV: shadow propagation related constants (see [3]). 472 

Group V: angular/branching properties. 473 

 474 

III. Structural data sets (U) 475 

 476 

Structural data sets for any given tree structure are empirical collections of the physical dimensions 477 

and spatial orientation measures of segments and branches that are composed of segments. These data 478 

sets must be similarly obtained for any pair of {Um,Ud} that is to be compared by means of the distance 479 

algorithm. 480 

 481 

Quantities in the data sets may represent scalar characteristics and/or relations between several 482 

covariates (e.g. radii, lengths, angles, tapering function of a branch etc.). On the one hand, one needs to 483 

exhaustively describe morphology of the tree using various geometrical and topological features. On 484 

the other hand, as the number of compared data sets {Um,Ud} grows the efficiency of the optimization 485 

routine decreases, since the number of distance measures to be minimized grows correspondingly (one 486 

distance value for each pair {Um,Ud}). Thus, one needs more compact representation of the data. One 487 

solution is to use larger data sets with all possibly needed (for a given application) features. (Another 488 

solution is to use multi-objective optimization routines finding, e.g. Pareto front, though we do not 489 

employ such an approach in this work.) Therefore, we use larger tables of all measured features; hence, 490 

one table represents a data set. However, we are unable to merge segment- and branch-related features 491 

into a single table as these differ in dimension (Table 1). Thus, we usually compare the array of pairs 492 

{Um,Ud}, having as a result the array of distance values, but with such larger table representation we 493 

have smaller size of these arrays. 494 

 495 
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Branch- and segment-related data are described in Table 1 and Fig. 7. Throughout the manuscript we 496 

maintain the notations Bw and Sw for the branch and segment-related data sets of the (Gravelius) order 497 

w, respectively. The zero order w is assigned to the trunk (a branch connecting the tree with the 498 

ground). At the branching points, the lateral buds give rise to branches with order w+1, where w is the 499 

order of the parent branch, while the apical buds continue the branch of the same order. 500 

 501 

Table 1: Branch and segment features. 502 

 503 

Branch features, units Description 

, degree Inclination angle of the branch, i.e. angle with its parent branch. 

 

, degree Azimuthal angle of the branch, i.e. angle around its parent branch 

(calculated from the fixed direction). 

Lt, m Total length of the branch (calculated as the sum of the segment lengths 

constituting the branch). 

Rf, m Initial radius of the branch, i.e. radius of its first segment. 

La, m Length of over the parent branch from its beginning segment to the point 

where the current (child) branch emanates. 

Segment features, units Description 

R, m Radius of the segment. 

L, m Distance from the beginning of the branch to the segment. 

, degree Angle between horizontal projections of the segment and its parent. 

, degree Angle between vertical projections of the segment and its parent. 
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Figure 7: Visual structure of a tree and its representation using the structural data sets U. (A) A 504 

sample tree; (B) geometrical features of the branch- (B) and segment-related (S) data sets; and (C) 505 

various projections of the U data sets. 506 

These features are not exhaustive and can be augmented at will, but we found this set sufficient for 507 

obtaining realistic tree shape outcomes. Representation of the data sets in the form of large branch and 508 

segment related tables reduces the complexity of optimization process by reducing the number of 509 

distance values to minimize. Additionally, such representation of the data allows for the fast extraction 510 

of all required relations between covariates or scalar entities without having them as separate data sets. 511 

 512 

In a simulated SSM structure the extraction of topological relations between branches is 513 

straightforward as the user observes the whole process of growth: the lateral buds start the next order 514 

and apical buds continue the current order. However, this is not the case with QSM since it is a time 515 

snapshot of a tree form that does not retain the history of the tree growth. Thus, the reconstruction 516 

algorithm requires other principles for extraction of topology. Although the reconstruction algorithm 517 

defines a complicated procedure that outlines the topology of a tree, it could be roughly approximated 518 

by the following rule: at branching points the thickest branch is the continuation of the same order w, 519 

while thinner branches are lateral expansions of the order w + 1 [18]. For the species with weak apical 520 

dominance (shrubby trees) we maintain similar procedure when simulating corresponding SSM (for 521 

the species with strong apical dominance, both techniques should converge to the same result). 522 

 523 

Finally, it is possible to merge the corresponding data sets, which results at maximum in two large data 524 

sets of branch- and segment-related features, respectively. While this simplifies the search of the 525 

distance minimum (max two values to minimize), this technique must be used with care as in this case 526 

one heavily relies upon the growth rules of SSM. If these rules are not based on biologically motivated 527 

rules, SSM can produce highly unrealistic tree forms as the “best-fit”, since there is a possibility to mix 528 
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the features of different topological orders. For example, the branches of higher order could be much 529 

thicker than those of the lower order, which is unrealistic and naturally is taken care of in the 530 

biologically based growth algorithms (e.g. pipe model). 531 

 532 

IV. Measure of structural distance (DS) 533 

 534 

The distance DS between any two data sets, or empirical distributions (dimension or number of 535 

variables of which is not limited), measures the difference between the local densities of the points in 536 

U-space for these data sets (i.e. large segment- (S) or branch-related (B) tables of morphological 537 

features). Here, it is constructed by measuring SSM vs. QSM difference of the normalized cumulative 538 

distributions of the point densities projected onto a number of line directions in the coordinate space of 539 

the variables in U. The directions of lines are generated with quasi-Monte Carlo method using low-540 

discrepancy (quasi-/sub-random) sequences, which cover the given space more evenly than uniformly 541 

generated sequences. The difference between the projected cumulative distributions is further 542 

measured by the Kolmogorov-Smirnov statistic (any other can be used) and the resulting distance 543 

between the two data sets U is an average of all statistics calculated from each of the lines (see 544 

Fig. 8A). 545 

 546 

In general, 𝑈 ∈ 𝑅𝑁, in our case N = 4 (segment) or N = 5 (branch) as can be seen from Table 1. The 547 

empirical probability density function p(U) can be approximated by the series of 1D density functions 548 

p1D(U,L), where L is a line in 𝑅𝑁, each of these 1D functions is constructed by projecting all the data 549 

points of U (thus, it is not a marginal distribution) onto a line L (in total we use 1000 such line 550 

directions formed quasi-randomly). Cumulative distributions P1D(Um,Li) and P1D(Ud,Li) for each line 551 

direction Li are compared, thus, for any given data set pair {Um, Ud} the resultant distance value is: 552 
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𝐷𝑆(𝑈𝑚, 𝑈𝑑) =
1

𝑛
∑𝐾[𝑃1𝐷(𝑈𝑚, 𝐿𝑖), 𝑃1𝐷(𝑈𝑑, 𝐿𝑖)],

𝑛

𝑖=1

 553 

where n is the number of lines and operator 𝐾[∙,∙] returns the Kolmogorov-Smirnov statistic for the 554 

given pair of 1D empirical cumulative distributions. 555 

 556 

Figure 8:  Distribution tomography of the structural data sets (A) and classical metric for the 557 

crown spread (B).  (A) Data points in U (projected here for simplicity onto (ui,uj) plane, i.e. in 2D) are 558 

used to construct the projection onto a line L. Cumulative empirical distribution is calculated along L 559 

(red). Only one line is shown, although typically one should use sufficiently enough number of lines 560 

(uniformly distributed over all directions) to describe the form of the distribution. (B) Top view of a 561 

tree: spokes (red) emanate from the ground segment (green) extending up to the most distant points 562 

(blue). 563 

 564 

Traditional metrics (dx). In order to provide a reference to traditional tree measurement systems, we 565 

also calculate three main tree characteristics that are used for describing a tree shape (Frank, 2010). 566 

Height is calculated as the highest point of a tree. Girth is calculated as the diameter of the ground 567 

segment (the breast-height diameter is not appropriate for the shrubby trees). Crown spread is 568 

calculated as follows. First, on XY-plane (top view, Fig. 8B) the set of spokes (red lines in Fig. 8B) 569 

emanating from the center of a tree (the ground segment, green circle) is formed (here, we opted for 570 

the spokes with azimuthal separation of 10 degrees). Then the length of each spoke is calculated as a 571 

distance from the tree center to the most distant point of the crown in the direction of the spoke (blue 572 

circles). The crown spread is twice an average of all spokes of a tree. 573 

 574 

Finally, when comparing two tree shapes we calculate the distances as follows: 575 
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𝑑ℎ =
|ℎ𝑑 − ℎ𝑚|

ℎ𝑑
; 𝑑𝑔 =

|𝑔𝑑 − 𝑔𝑚|

𝑔𝑑
; 𝑑𝑐 =

|𝑐𝑑 − 𝑐𝑚|

𝑐𝑑
. 576 

In this, hd, gd, and cd are the height, girth, and crown spread of the QSM tree, respectively, whereas hm, 577 

gm, and cm are the corresponding entities of the best-fit SSM tree. Thus, the classical distance dx shows 578 

how large is the difference between entities x in proportion of the corresponding reference/QSM tree 579 

value. 580 

 581 

V. Optimization routine 582 

 583 

The measure of structural distance DS(Um, Ud) is minimized by adjusting the parameters v of SSM. 584 

In principle (with infinite sampling), DS = 0 for two trees (or, more precisely, infinitely large groups of 585 

stochastically varying trees) that have exactly the same parameters v. These trees are not copies of each 586 

other, but they are structurally (statistically) similar. The choice of the U defining DS is not unique, but 587 

ideally well-chosen U should satisfy the following uniqueness condition for DS to yield an acceptable 588 

measure of distance. Let three trees be given by vA, vB, and vC. Then, if DS(UA,UB) < DS(UA,UC), one 589 

can update CB, find any new vB for which the inequality holds, and repeat until DS(UA,UB)  0 and 590 

vBvA. In practice, this should be true in a large enough neighborhood of vA (any steps down the right 591 

valley lead to its bottom); however, DS > 0 due to the finite sampling and insufficient model. 592 

 593 

Any algorithm from a standard optimization library (e.g. Matlab Optimization Toolbox) that finds a 594 

minimum of an objective function (DS = F(v)) can be used. However, to facilitate global minimum 595 

search and given the nature of the problem we use the genetic algorithm (implemented in Matlab, 596 

version R2015b). Additionally, some parameters of SSM may take only integer values, so the genetic 597 

algorithm handles the integer parameters correctly unlike, for example, the classical steepest decent 598 

algorithm. The genetic algorithm iteratively finds a minimum of DS, each iteration being called 599 

generation. Each generation is characterized with a number of individuals, i.e. population; one 600 
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individual is equivalent to one set of the parameter values. The variation is controlled by the crossover 601 

rate (rate of recombination of the population parameters) and mutation rate (rate of introduction of the 602 

new variability into the population). The former is fixed to 80% in the Matlab Optimization Toolbox, 603 

whereas the latter is controlled by our configuration. The user controls ranges of the parameters. There 604 

are two types of ranges: global lower and upper boundaries for each of the parameter values and initial 605 

range, from which the algorithm tries to construct the initial population (and, perhaps, where the best 606 

solution lies). The latter controls the convergence rate: if it is too broad poor convergence is attained. 607 

Finally, algorithm stops when there have passed a fixed number of generations without improving the 608 

distance. 609 

 610 

Thus, the objective function takes the input parameters v, simulates SSM with v, calculates and returns 611 

structural data sets Um. Subsequently, the objective function calculates DS(Um, Ud) and returns it to the 612 

optimization routing. The SSM, being a stochastic model, must have a fixed random generator seed 613 

during optimization, i.e. the same input parameter set must produce the same structural output. This is 614 

needed for convergence of the optimization. After obtaining the final best-fit form of SSM, one can 615 

further explore the variability coming from different random number sequences used in the SSM 616 

simulations (in addition to Matlab, we used GNU Octave version 4.2.0 for clone generation, see [40]). 617 

Thus, such random best-fit SSM is capable of producing the clonal morphologies (the same overall 618 

structure with varying details of organization), which is the main goal of our algorithm. 619 

 620 

Availability of supporting source code and requirements 621 

Project name: Bayes Forest 622 

Project home page: http://math.tut.fi/inversegroup/app/bayesforest/v1/ 623 

Operating system: Platform independent 624 

Programming language: Matlab 625 
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Other requirements: VLAB software suite, version >= 4.4.0-2424 626 

License: MIT 627 

 628 

Data availability 629 

All data needed to reproduce the results of this study, some additional materials, and Bayes Forest 630 

Toolbox are available at [31]. The most recent version of the Toolbox is also available at [32] (this 631 

interface is preferred for the contributors and also contains the most recent version of the software). 632 

 633 
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FSPM – functional-structural plant model. 635 

QSM – quantitative structure model. 636 

SSM – stochastic structure model. 637 

SOT – self-organizing tree model. 638 
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