SUPPORTING INFORMATION

A Screen for Protein-Protein Interactions in Live Mycobacteria Reveals a

Functional Link Between the Virulence-Associated Lipid Transporter LprG and

the Mycolyltransferase Antigen 85A

Megan H. Touchette, Erik R. Van Vlack, Lu Bai, Jia Kim, Armand B. Cognetta III, Mary L. Previti, Keriann M. Backus, Dwight W. Martin, Benjamin F. Cravatt, Jessica C. Seeliger

Со	ntents	Page
Su	oporting Materials and Methods	
	GFP fluorescence measurements	S2
	Cloning	S2 – S3
Su	oporting References	S4 – S5
Su	oporting Results	
	Figure S1. Validation of site-specific incorporation of the photocrosslinking unnatural amino acid pBpa into GFP47TAG via nonsense suppression in <i>Msm</i> .	S6
	Figure S2. The growth attenuation of $\Delta l prG$ is complemented.	S7
	Figure S3. <i>ag85A::</i> Tn accumulates TMM without loss of TDM independent of the growth medium.	S8
	Table S1. LprG-6xHis expression constructs and oligonucleotide primers.	S9
	Table S2. Unnatural amino acid incorporation expression constructs and oligonucleotide primers.	S9 – S11
	Table S3. Unnatural amino acid incorporation expression constructs and oligonucleotide primers used to confirm MS-identified LprG-interactor proteins.	S11
	Table S4. Constructs and oligonucleotide primers used for the production of the $\Delta lprG$ and $\Delta lprG$: $lprG$	S11
	Table S5. LprG(98pBpa) proteomic data	Excel file

SI Materials and Methods

GFP fluorescence measurements. A 10-mL culture of *Msm* transformed with pSMT-pHsp60-MjtRNA-3xFLAG and pMV361-pHsp60-MjTyrRS was grown in 7H9 for 9 hours at 37 °C at 225 rpm to an $OD_{600} \sim 0.2$. Filter-sterilized 100 mM pBpa in 1:5 1 N NaOH:water was added to the cells to a final concentration of 2 mM pBpa and incubated at 37 °C with shaking at 225 rpm in the dark for another 15 hours. Control cells were treated with an equivalent volume of 1:5 1 N NaOH:MQ water. Cells were harvested at 4,000 rpm and resuspended in PBS with 0.05% Tween80 to OD_{600} 1.0 and 150 µL were aliquoted in a 96-well plate (Corning). Fluorescence was measured using a Synergy 2 plate reader (BioTek) with an emission filter at 485 nm and an excitation filter at 538 nm.

Cloning. All LprG-6xHis constructs were generated by InFusion (Clontech) between vector digested with the specified enzymes and a gel-purified PCR product generated by the primers in Table S5. *Msm lprG* was first cloned into the *E. coli* vector pET24b (Novagen) to append a 6xHis tag and simultaneously insert a TEV protease cleavage site (ENLYFQS). The *lprG*-6xHis fusions were then subcloned into the mycobacterial shuttle plasmid pMV261 to generate the final expression constructs.

The pSMT-MsmLprG-3xFLAG-MjtRNA plasmid and its variants were developed from pSMT-MjtRNA-GFP(151TAG) (gift of Peter Schultz, Scripps Research Institute, La Jolla, California). DNA sequencing revealed that the TAG codon was located at amino acid 47, not 151; the plasmid was accordingly renamed pSMT-MjtRNA-GFP(47TAG). The *gfp* sequence was excised using restriction enzymes Ndel and Xbal, the 3xFLAG tag was amplified from pET24b pMop-3xFLAG using primers listed on Table S1 and subcloned into the pSMT vector via In-Fusion (Clontech) to create pSMT-3xFLAG-MjtRNA. The Ndel site was not reconstituted in the vector in order to maintain the unique nature of a second Ndel site in the insert. The gene for *lprG* (MSMEG_3070) was amplified from *Msm* mc²155 genomic DNA using the primers listed on

S2

Table S1 and subcloned into pSMT-3xFLAG-MjtRNA via In-Fusion (Clontech). The pMV361_MjTyrRS plasmid was constructed largely as described. MjTyrRS was amplified from the pEVOL-pBpF plasmid (Addgene, cat# 31190) and subcloned into pMV361 via In-Fusion (Clontech) using the primers listed on Table S1.

The pBpa and YH mutants were created by site-directed mutagenesis of *lprG* in pET24b-MsmLprG-TEV-6xHis or pMV261-MsmLprG-TEV-6xHis using the primers listed on Table S2. Mutated *lprG* was amplified and subcloned into pSMT-3xFLAG-MjtRNA using either In-Fusion or traditional ligation.

The constructs used to confirm crosslinking of LprG(98pBpa) with MS-identified interacting proteins were generated by amplifying the target gene from *Msm* mc²155 genomic DNA using the primers listed in Table S3. The PCR products were subcloned into pSMT-MsmLprG(98pBpa)-3xFLAG-MjtRNA-6xHis by In-Fusion. For the additional LprG(pBpa) mutants LprG(136pBpa) and LprG(232pBpa), the corresponding alleles were excised from the appropriate pSMT-MsmLprG-3xFLAG-MjtRNA vector using NdeI and NheI. The pSMT-MsmLprG-Q98pBpa-3xFLAG-MjtRNA-(interactor)-6xHis (where "interactor" is *lprG, lppl,* or *lppk*) constructs were also digested with NdeI and NheI to remove *lprG*-Q98pBpa, and the *lprG*-A136pBpa or *lprG*-T232pBpa inserts were subcloned into this vector via traditional ligation to provide site-specific interaction controls. Sequence confirmed plasmids were electroporated into *Msm*::pMV361_MjTyrRS.

The *Msm* Δ *lprG* strain was generated as reported (1). Briefly, regions from the 5' and 3' ends of *lprG* were amplified from *Msm* mc²155 genomic DNA using the primers listed in Table S3 and inserted on either side of the hygromycin resistance cassette in pJSC407 (2) by In-Fusion. The recombineering substrate was amplified using the 5' flank forward primer and the 3' flank reverse primer and 1 µg of the gel-purified product was transformed into *Msm*. Clones were recovered on selective medium and verified for recombination by PCR. The complement plasmid pMV306-*lprG* was generated using the primers in Table S3. Briefly, *lprG* and a 1kb

S3

segment of the region upstream of the start codon (as a native promoter) was amplified and inserted into pMV306 (*3*) by In-Fusion. The sequence-verified plasmid was transformed into $\Delta l prG$ to generate the strain $\Delta l prG$::*lprG* containing a single chromosomally integrated copy of *lprG* under control of a native promoter.

References

- Murphy, K. C.; Papavinasasundaram, K.; Sassetti, C. M., Mycobacterial recombineering. Methods in Molecular Biology 2015, 1285, 177-99.
- Stanley, S. A.; Raghavan, S.; Hwang, W. W.; Cox, J. S., Acute infection and macrophage subversion by *Mycobacterium tuberculosis* require a specialized secretion system. *Proc Natl Acad Sci U S A* 2003, 100 (22), 13001-6.
- Stover, C. K.; de la Cruz, V. F.; Fuerst, T. R.; Burlein, J. E.; Benson, L. A.; Bennett, L. T.; Bansal, G. P.; Young, J. F.; Lee, M. H.; Hatfull, G. F.; et al., New use of BCG for recombinant vaccines. *Nature* 1991, 351 (6326), 456-60.
- Bigi, F.; Gioffre, A.; Klepp, L.; Santangelo, M. P.; Alito, A.; Caimi, K.; Meikle, V.; Zumarraga, M.; Taboga, O.; Romano, M. I.; Cataldi, A., The knockout of the *lprG-Rv1410* operon produces strong attenuation of *Mycobacterium tuberculosis*. *Microbes Infect* 2004, 6 (2), 182-7.
- Gaur, R. L.; Ren, K.; Blumenthal, A.; Bhamidi, S.; Gibbs, S.; Jackson, M.; Zare, R. N.; Ehrt, S.; Ernst, J. D.; Banaei, N., LprG-Mediated Surface Expression of Lipoarabinomannan Is Essential for Virulence of *Mycobacterium tuberculosis*. *PLoS Pathog*. **2014**, 10 (9), e1004376.
- Farrow, M. F.; Rubin, E. J., Function of a mycobacterial major facilitator superfamily pump requires a membrane-associated lipoprotein. *J. Bacteriol.* 2008, 190 (5), 1783-91.

Martinot, A. J.; Farrow, M.; Bai, L.; Layre, E.; Cheng, T. Y.; Tsai, J. H.; Iqbal, J.; Annand, J. W.; Sullivan, Z. A.; Hussain, M. M.; Sacchettini, J.; Moody, D. B.; Seeliger, J. C.; Rubin, E. J., Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate Triacylglyceride Levels, Growth Rate and Virulence in *Mycobacterium tuberculosis*. *PLoS Pathog.* 2016, 12 (1), e1005351.

SI Results

Figure S1. Validation of site-specific incorporation of the photocrosslinking unnatural amino acid pBpa into GFP47TAG via nonsense suppression in *Msm. Msm* expressing different components of the nonsense suppression machinery and either GFP(WT) or the mutant GFP47TAG were grown with or without 2 mM pBpa for 15 h. GFP fluorescence was measured in whole cells as a readout for expression of full-length GFP.

Figure S2. The growth attenuation of $\Delta I prG$ is complemented. (*left*) The introduction of a single copy of *lprG* in the $\Delta l prG$ deletion mutant partially restores growth on modified Sauton with either glycerol (dashed lines) or propionate (solid lines) as the primary carbon source. Complementation with both *lprG* and the downstream gene *rv1410c* further restores growth, suggesting that deletion of *lprG* compromises the expression of *rv1410c*, as has been noted previously (*4*, *5*) . (*right*) In contrast, *Msm* $\Delta lprG$ -*rv1410c* (*6*) complemented with *Mtb rv1410c* shows a similar growth defect that is restored upon the addition of *Mtb lprG* (*7*). These additional data show that the observed growth attenuation is not due to loss of function in the downstream gene *rv1410c*.

Figure S3. *ag85A::***Tn accumulates TMM without loss of TDM independent of the growth medium.** TDM/TMM analysis was performed as in Figure 7C except the growth medium was 7H9 (see Methods). The calculated TDM and TMM levels (as a percent of total lipid) differed between experiments due to experimental variation in TLC resolution (especially for TDM). However, the relative lipid levels between strains were consistent, *i.e.*, with an

elevated TMM level and TMM/TDM ratio for ag85A::Tn.

 Table S1. LprG-6xHis expression constructs and oligonucleotide primers.

Vector_Construct_(Gene)	Forward primer (5' to 3')	Reverse primer (5' to 3')	Template
pET24b_MsmLprG-TEV- 6xHis_(MSMEG_3070)	AAGAAGGAGATATA <u>CATATG</u> CAGACGCGCCCACGC	GTGCGGCCGC AAGCTT GGATTGGAAGTACAGGTTT <u>TC</u> GGCCGCGGGCTTGG	<i>Msm</i> gDNA
pET24b_NA-MsmLprGTEV- 6xHis_(MSMEG_3070)	AAGAAGGAGATATA <u>CATATG</u> TCGTCGTCATCGGAGA CCTCC	GTGCGGCCGC AAGCTT <u>GGATTGGAAGTACAGGTTT</u> <u>TC</u> GGCCGCGGGCTTGG	<i>Msm</i> gDNA
pMV261_MsmLprG-TEV- 6xHis_(MSMEG_3070)	GGAATCACTTCGCAA TGGCCA GCCAGACGCGCCCA CGC	ACATCGATAAGC <u>TTCGAA</u> TTCCTTTGTTAGCAGCCG GATCTCAGTG	pET24b_MsmLprG-TEV- 6xHis_(MSMEG_3070)
pMV261_NA-MsmLprGTEV- 6xHis_(MSMEG_3070)	GGAATCACTTCGCAA TGGCCA GCTCGTCGTCATCG GAGACCTCC	ACATCGATAAGC <u>TTCGAA</u> TTCCTTTGTTAGCAGCCG GATCTCAGTG	pET24b_NA-MsmLprGTEV- 6xHis_(MSMEG_3070)
* Destriction sites Malel Ilinell			

* Restriction sites: <u>Ndel</u>, *HindIII*, Mscl, <u>EcoRI</u>. In 3' primer: <u>TEV cleavage site</u>

Table S2. Unnatural amino acid incorporation expression constructs and oligonucleotide primers.

Mutation	Description	Forward primer (5' to 3')	Reverse primer (5' to 3')	Template
Ү132рВра	pSMT-pHsp60-MsmLprG- Y132pBpa-3xFLAG-MjtRNA	ggccaacatctaggacgtgtcggcgatcctg	ccgacacgtcctagatgttggccgcggcacc	pET24b-MsmLprG-TEV-6xHis
L70 pBpa	pSMT-pHsp60-MsmLprG-L70pBpa- 3xFLAG-MjtRNA	ggtcgacgggtagcccgtggagaagctcgac	ctccacgggctacccgtcgaccttgccctg	pET24b-MsmLprG-TEV-6xHis
F96pBpa	pSMT-pHsp60-MsmLprG-F96pBpa- 3xFLAG-MjtRNA	cctgatcgcgtagggccagaagatcgccgac	cttctggccctacgcgatcaggtcggcggtg	pMV261-pHsp60-MsmLprG-TEV- 6xHis-MscI+EcoRI
Q98pBpa	pSMT-pHsp60-MsmLprG-Q98pBpa- 3xFLAG-MjtRNA	cgcgttcggctagaagatcgccgacgcgaag	cggcgatcttctagccgaacgcgatcaggtc	pMV261-pHsp60-MsmLprG-TEV- 6xHis-MscI+EcoRI
D102pBpa	pSMT-pHsp60-MsmLprG- D102pBpa-3xFLAG-MjtRNA	gaagatcgcctaggcgaagttcgtgatcgccg	cgaacttcgcctaggcgatcttctggccgaac	pMV261-pHsp60-MsmLprG-TEV- 6xHis-MscI+EcoRI
L37pBpa	pSMT-pHsp60-MsmLprG-L37pBpa- 3xFLAG-MjtRNA	ccgacgcaccgtagcccgacggtgccgcgctg	caccgtcgggctacggtgcgtcggaggtctccg	pET24b-MsmLprG-TEV-6xHis
N130pBpa	pSMT-pHsp60-MsmLprG- N130pBpa-3xFLAG-MjtRNA	gtgccgcggcctagatctacgacgtgtcggcg	cgtcgtagatctaggccgcggcaccgtagttc	pMV261-pHsp60-MsmLprG-TEV- 6xHis-MscI+EcoRI
K187pBpa	pSMT-pHsp60-MsmLprG- K187pBpa-3xFLAG-MjtRNA	caccggcgctctaggccgacggcccggtgccc	ggccgtcggcctagagcgccggtgcgatcttg	pET24b-MsmLprG-TEV-6xHis
K181pBpa	pSMT-pHsp60-MsmLprG- K181pBpa-3xFLAG-MjtRNA	cgcggtcaactagatcgcaccggcgctcaag	ccggtgcgatctagttgaccgcgtcggcgctg	pMV261-pHsp60-MsmLprG-TEV- 6xHis-MscI+EcoRI
A149pBpa	pSMT-pHsp60-MsmLprG- A149pBpa-3xFLAG-MjtRNA	caacgtgctgtagaacttctccgacgccacg	cggagaagttctacagcacgttggccaggc	pET24b-MsmLprG-TEV-6xHis

А136рВра	pSMT-pHsp60-MsmLprG- A136pBpa-3xFLAG-MjtRNA	cgacgtgtcgtagatcctgaaccccgacacg	ggttcaggatctacgacacgtcgtagatgttg	pMV261-pHsp60-MsmLprG-TEV- 6xHis-MscI+EcoRI
E160pBpa	pSMT-pHsp60-MsmLprG- E160pBpa-3xFLAG-MjtRNA	cgacggccgctagtcgatcaacggcaccgag	cgttgatcgactagcggccgtcggccgtggc	pET24b-MsmLprG-TEV-6xHis
D109pBpa	pSMT-pHsp60-MsmLprG- D109pBpa-3xFLAG-MjtRNA	cgtgatcgcctagggcaatctctacgcggc	gagattgccctaggcgatcacgaacttcgc	pMV261-pHsp60-MsmLprG-TEV- 6xHis-MscI+EcoRI
L60pBpa	pSMT-pHsp60-MsmLprG-L60pBpa- 3xFLAG-MjtRNA	cgtgcacctgtagctgacggtgcagggcaag	gcaccgtcagctacaggtgcacgctctgctgcg	pET24b-MsmLprG-TEV-6xHis
L93pBpa	pSMT-pHsp60-MsmLprG-L93pBpa- 3xFLAG-MjtRNA	caccgccgactagatcgcgttcggccagaag	cgaacgcgatctagtcggcggtgccctccgc	pET24b-MsmLprG-TEV-6xHis
L75pBpa*	pSMT-pHsp60-MsmLprG-L75pBpa- 3xFLAG-MjtRNA	cgtggagaagtaggacggcgacctgaccaac	ggtcgccgtcctacttctccacgggcagcccg	pET24b-MsmLprG-TEV-6xHis
V218pBpa	pSMT-pHsp60-MsmLprG- V218pBpa-3xFLAG-MjtRNA	gggcaacagctagacgatgacgctctcggac	gcgtcatcgtctagctgttgcccggcgtgggc	pET24b-MsmLprG-TEV-6xHis
К227рВра	pSMT-pHsp60-MsmLprG- K227pBpa-3xFLAG-MjtRNA	gactggggttagcaggtcaacgtcaccaag	cgttgacctgctaaccccagtccgagagcg	pET24b-MsmLprG-TEV-6xHis
Т232рВра	pSMT-pHsp60-MsmLprG- T232pBpa-3xFLAG-MjtRNA	gaatcacttcgcacatatgcagacgcgcccac	ccttgtagtcgctagcggccgcgggcttc	pET24b-MsmLprG-TEV-6xHis
A236pBpa	pSMT-pHsp60-MsmLprG- A236pBpa-3xFLAG-MjtRNA	gaatcacttcgcacatatgcagacgcgcccac	ccttgtagtcgctagcctacgcgggcttggtg	pET24b-MsmLprG-TEV-6xHis
V23pBpa	pSMT-pHsp60-MsmLprG-V23pBpa- 3xFLAG-MjtRNA	gcgctgtaggccgggtgttcgtcgtcatcggaga cctccgacg	cccggcctacagcgcagcagcggtggcaagga tgg	pET24b-MsmLprG-TEV-6xHis
S29pBpa	pSMT-pHsp60-MsmLprG-S29pBpa- 3xFLAG-MjtRNA	tcgtcgtagtcggagacctccgacgcaccgcttc ccgacg	ctccgactacgacgaacacccggcgaccagcg cagcagc	pET24b-MsmLprG-TEV-6xHis
E31pBpa	pSMT-pHsp60-MsmLprG-E31pBpa- 3xFLAG-MjtRNA	tcatcgtagacctccgacgcaccgcttcccgac ggtgccg	ggaggtctacgatgacgacgaacacccggcga ccagcgcagc	pET24b-MsmLprG-TEV-6xHis
Т32рВра	pSMT-pHsp60-MsmLprG-T32pBpa- 3xFLAG-MjtRNA	catcggagtagtccgacgcaccgcttcccgacg gtgcc	gtcggactactccgatgacgacgaacacccggc gaccagcg	pET24b-MsmLprG-TEV-6xHis
D34pBpa	pSMT-pHsp60-MsmLprG-D34pBpa- 3xFLAG-MjtRNA	acctcctaggcaccgcttcccgacggtgccg	cggtgcctaggaggtctccgatgacgacgaaca cccggc	pET24b-MsmLprG-TEV-6xHis
Y115H	pSMT-pHsp60-MsmLprG-Y115H- 3xFLAG-MjtRNA	cggcaatctccacgcggcgctgacgcccggcg	cagcgccgcgtggagattgccgtcggcgatcac	pET24b-MsmLprG-TEV-6xHis
Y125H	pSMT-pHsp60-MsmLprG-Y127H- 3xFLAG-MjtRNA	gctgtcgaaccacggtgccgcggccaacatc	gccgcggcaccgtggttcgacagcggatcgccg	pET24b-MsmLprG-TEV-6xHis

Y132H	pSMT-pHsp60-MsmLprG-Y132H- 3xFLAG-MjtRNA	gccaacatccacgacgtgtcggcgatcctg	gacacgtcgtggatgttggccgcggcacc	pET24b-MsmLprG-TEV-6xHis
Y2xH (Y115H + Y125H)	pSMT-pHsp60-MsmLprG-Y115H- Y127H-3xFLAG-MjtRNA	gctgtcgaaccacggtgccgcggccaacatc	gccgcggcaccgtggttcgacagcggatcgccg	pSMT-pHsp60-MsmLprG-Y115H- 3xFLAG-MjtRNA
Y3xH (Y115H + Y125H + Y132H)	pSMT-pHsp60-MsmLprG-Y115H- Y125H-Y132H-3xFLAG-MjtRNA	gccaacatccacgacgtgtcggcgatcctg	gacacgtcgtggatgttggccgcggcacc	pSMT-pHsp60-MsmLprG-Y115H- Y125H-3xFLAG-MjtRNA

*Traditional ligation

Table S3. Unnatural amino acid incorporation expression constructs and oligonucleotide primers used to confirm MS-identified LprG-interactor proteins.

Interactor	Description	Forward primer (5' to 3')	Reverse primer (5' to 3')
LprG	pSMT-pHsp60-MsmLprG-Q98pBpa-3xFLAG- hsp60-lprG-6xHis-MjtRNA	tcacttcgcaacgcgtgcagacgcgcccac	ggtgatggtgggatccggccgcgggcttggtg
Lppl	pSMT-pHsp60-MsmLprG-Q98pBpa-3xFLAG- hsp60-lppI-6xHis-MjtRNA	tcacttcgcaacgcgtgcggactgctgtgatcctc	ggtgatggtgggatccatccggttcgcagctgaac
LppK	pSMT-pHsp60-MsmLprG-Q98pBpa-3xFLAG- hsp60-lppK-6xHis-MjtRNA	tcacttcgcaacgcgtgaaccggaaccgaatcgcag	ggtgatggtgggatccgactgcccgccaccgg
Ag85A	pSMT-Hsp60-LprG- Q98∆TAG-Flag, Hsp60- ag85A-6xHis-MjtRNA	tcacttcgcaacgcgtgaagttcgttgggagaatgcgcg	tggtgatggtgggatccggcggtcggggtcgc

Table S4. Constructs and oligonucleotide primers used for the production of the $\Delta lprG$ and $\Delta lprG: lprG$

Construct	Description	Note	Forward primer (5' to 3')	Reverse primer (5' to 3')	Template
Δ <i>lprG</i> recombineering substrate	pJSC407-∆ <i>lprG</i>	5' flank inserted using <u>HindIII</u>	tggatccacg <u>aagcttgg</u> atggtcagacgggcgg	ggccaccatg <u>aagctt</u> ctaggtggcaaggatggcgaac	<i>Msm</i> mc ² 155 genomic DNA
		3' flank inserted using <u>Xbal</u>	cggacagga <u>ctctaga</u> gactggggtaagcaggtcaac	ccggggatc <u>ctctagagg</u> tttatcgcgatgccgacg	<i>Msm</i> mc ² 155 genomic DNA
<i>lprG</i> complement plasmid	pMV306- <i>lprG</i>	inserted using <u>Xbal</u> and <u>Clal</u>	gatctttaaa <u>tctaga</u> ccagccggtcgcagatc	actacgtcgac <u>atcgat</u> tcaggccgcgggc	<i>Msm</i> mc ² 155 genomic DNA