
Supplementary Text 2:

Details of models and simulations

This supplementary document provides details of the gene regulatory network models and

simulation algorithm used to generate the simulations shown in Movies 1-13. Output data

from these simulations are also presented in several of the main text figures.

I first provide overviews of the general modelling framework (theory), and its specific

implementation (software). I then list the details (control logic, time delay values, and initial

conditions) of each individual simulation. Where necessary, I discuss the way in which I have

translated inferred genetic interactions into a formalised model, pointing out any ad hoc or

uncertain assumptions. I also highlight situations where the regulation in the embryo is

clearly more nuanced than can be captured by the simple models I use.

General modelling framework

I use a Boolean network approach [1–5] to model the interactions between a number of

transcription factors in a given cell. In order to capture some of the essential “biology” of gene

expression, cell state is separated into two distinct layers, roughly equivalent to transcript and

protein respectively [6]. The current state of the “protein” layer determines the transcriptional

output from the cell at the next timepoint, based on the control logic of the network. The state

of the “transcript” layer is in turn converted into protein state at some later timepoint. Each

component of the network is associated with specific time delays that govern the conversion

process between transcript state and protein state, allowing different gene products to exhibit

different “synthesis speeds” and/or “protein stability”. Given some set of initial conditions, cell

state will evolve deterministically over time, eventually arriving at a stable state or a limit

cycle.

Each component in the network (i.e. each transcription factor) is represented by a Boolean

variable. If the variable equals 0, the component is “off”, while if the variable equals 1, the

protein is “on”. Given n components in the network, there are therefore 2n possible network

states. (If helpful) these possible states can be thought of as the vertices of an n-dimensional

hypercube. A particular network state (protein state) can be specified by a one-dimensional

array of length n, where the value (0 or 1) of index i gives the expression state of the ith

component in the network. For example, for a network of three gene products A,B, and C, the

array [1,0,1] would represent the state where A and C are on, and B is off.

The transcriptional output of each particular component in the network can be calculated

from the current protein state array by a specific logical function (the “control logic” of the

gene). Each network component will have its own logical function, which may take into

account the protein states of all, some, or none of the components in the network, including

itself. There is no constraint on the form of the logical functions, so long as they map each of

the 2n possible network states to a specified level of transcription (0 or 1). Combinatorial

regulatory interactions are therefore easily represented, although quantitative regulatory

effects are ruled out by definition.

Stable states of the network can be easily calculated from the overall set of protein state 

transcriptional output mappings; they are those where the output state for each component is

unchanged from its input state. These stable attractor states can be thought of as representing

particular cell “fates”.

The network is updated synchronously, by discrete timesteps. The transcriptional output of

the network at timepoint t+1 is simply calculated from the network protein state at time t.

However, calculating the new protein state is more complicated, because of the time delays

that need to be accounted for.

Each component in the network is associated with two positive integer parameter values, a

“synthesis delay”(s) and a “decay delay” (d). The synthesis delay determines how long a

component must be transcribed before the component turns on at the protein level, while the

decay delay determines how long a component has to be transcriptionally silenced before the

component turns off. Each component is also associated with two non-negative integer

variables, “transcript age” and “protein age” respectively, that provide some “memory” to the

system.

The particular rules governing the conversion process for a given network component are as

follows:

if (transcript=0 and old_protein=0) then new_protein  0, transcript_age 

if (transcript=1 and old_protein=0) then increment transcript_age:

 if (transcript_age < synthesis_delay) then new_protein  0; else new_protein  0

if (transcript=1 and old_protein=1) then new_protein  1, protein_age  0

if (transcript=0 and old_protein=1) then transcript_age  0, increment protein_age:

if (protein_age < decay_delay) then new_protein  1; else new_protein  0, protein_age

 0

Note: “transcript” = transcriptional output at timepoint t+1; “old_protein” = protein state at

timepoint t; “new_protein” = protein state at timepoint t+1.

The simulation algorithm is thus set up so that a protein will only turn on if there is

continuous transcription for the entire duration of the synthesis delay, and will only turn off is

transcription is continuously absent for the entire duration of the decay delay, effectively

ignoring very brief changes to transcriptional output.

Implementation

The simulation software is written in object-oriented Python (www.python.org), using the

additional libraries NumPy and Matplotlib [7,8]. All the functions necessary for producing and

visualising a simulation are contained in one .py file (S1 File). The user simply specifies a

network model and simulation parameter values in a separate script (see S2 File for a

template), and can thereby easily carry out bespoke simulations. Simulations can be run

simultaneously for an arbitrary number of “cells”, each of which behaves independently. Each

cell has the same network model and parameter values, but can be assigned different initial

conditions.

The things the user must specify are:

1) The network components (i.e. the various transcription factors in the system)

2) The control logic (i.e. regulation) of each component. This is done simply by defining a

function that takes the current state of the network as its argument and returns either

0 or 1 as appropriate.

3) The synthesis and decay delays associated with each component. There are also

functions to set default values for all components, if desired.

4) The number of “cells” to be simulated.

5) The initial conditions of each cell. Protein state, protein age, transcript state, and

transcript age may all be specified. Values are set to zero by default.

6) The number of timepoints to simulate.

7) If visualising the output with an animation, the colour associated with each gene

product, and other aesthetic preferences.

The user then simply has to call the simulation function to calculate the system state at each

timepoint, given the chosen initial conditions, control logic, and parameter values. The user

may then export or visualise the output data.

Visualisations represent individual cells as different columns (named C1, C2, C3…) and

different gene products as different named rows. Both “transcript” and “protein” outputs are

shown for each row. Depending on user preference, transcript and protein ages can also be

represented in the visualisation, with “decaying” proteins shown as increasingly transparent

before they turn off, and “nascent” transcripts shown as increasingly opaque until protein

appears.

Visualisations can be shown as an animation, or the individual frames may be saved as image

files. The frames can then be stitched together to produce video files, for example using

ffmpeg (www.ffmpeg.org).

Pair-rule model details

Each simulation referenced in the main text models pair-rule gene expression along an

idealised anteroposterior axis. The simulations show an array of 20 “cells”, each of which

evolves independently. This cellular autonomy is justified for the model by the apical

localisation of real pair-rule transcripts, which precludes diffusion between nuclei during

cellularisation of the blastoderm [9,10]. (Note also that all the pair-rule genes code for

transcription factors, rather than e.g. components of signalling pathways.) Initial conditions

for each simulation consist of a pattern that repeats every 8 cells, with each group of 8 cells

representing an idealised double segment repeat.

“Early network” simulations (Movies 1-8) are the simplest, restricted to modelling the

establishment and maintenance of the original pair-rule pattern observed at mid-

cellularisation. They model the expression of the five primary pair-rule genes (hairy, eve, runt,

ftz, and odd), as patterned ultimately by abstracted gap inputs (e.g. “G1”, “G2”).

“Whole system” simulations (Movies 9-11) are more complicated, additionally including the

patterning of the secondary pair-rule genes, and the transition to single-segment periodicity.

As well as the primary pair-rule genes and the gap inputs, they model the secondary pair-rule

genes prd, slp, and the segment-polarity gene en. They also utilise two temporal signals, Cad

and Opa. Cad controls the onset of secondary pair-rule gene expression, while Opa controls

the switch between the early and the late pair-rule networks.

“Modified network” simulations (Movies 12 and 13) are based on the “whole system”

simulations, but tweak the inferred Drosophila network so as to produce a more autonomous

patterning system that can operate in the absence explicit gap inputs.

In all simulations, the seven pair-rule factors and En are all assigned identical synthesis and

decay delays, both equal to 6 timesteps. Studies of pair-rule gene expression kinetics indicate

that protein synthesis and turnover rates in the embryo are equally rapid, and are both

processes occurring on the order of 10 minutes [11,12]. The time delays associated with the

remaining system components (gap inputs, Cad, and Opa) are chosen in an ad hoc manner so

as to provide appropriate spatiotemporal signals to the pair-rule genes.

The control logic, time delays, and initial conditions for each simulation are described below.

Note that any unspecified initial conditions can be assumed to be set to zero.

“Early network”simulations (Movies 1-8)

The core control logic of these simulations is the “early network” shown in Fig 1A (left) of the

main text. It is formulated as below:

hairy: if (G1=ON) then hairy  OFF; else hairy  ON

eve: if (G2=ON) then eve  OFF; else eve  ON

runt: if (Hairy=ON or Odd=ON) then runt  OFF, else runt  ON

ftz: if (Hairy=ON or Eve=ON) then ftz  OFF, else ftz  ON

odd: if (Hairy=ON or Eve=ON) then odd  OFF, else odd  ON

In each simulation, no initial pair-rule gene expression is specified (i.e. in each cell, for each of

the five variables, the initial conditions are transcript=0, protein=0, transcript age=0, protein

age=0).

Effects of shifting gap inputs (simulations 1-5)

Simulations 1 to 5 explore the effects of dynamic gap inputs on pair-rule gene expression. The

only differences between them relate to the “gap inputs” G1 and G2.

Control logic:

 G1 and G2 autoactivate in simulation 1 so as to produce stable domains, and autorepress in

simulations 2-5 so as to produce dynamic domains.

Simulation 1 (static gap inputs):

g1: if (G1=ON) then g1  ON; else g1  OFF

g2: if (G2=ON) then g2  ON; else g1  OFF

Simulations 2-5 (dynamic gap inputs):

g1: if (G1=ON) then g1  OFF; else g1  ON

g2: if (G2=ON) then g2  OFF; else g1  ON

Time delays:

In each of the simulations 2-5, the time delays and initial conditions of G1 and G2 are

specifically chosen so as to produce a particular gap domain shift rate while preserving an 8

cell pattern repeat. Simulation 2 produces a shift rate of one cell every 6 timesteps (equal to

the synthesis/decay delay of the pair-rule factors), which requires G1/G2 expression to go

through a full oscillation every 48 timesteps. Simulations 3-5 have time delays and initial

conditions equivalent to those of simulation 2, except multiplied by a scaling factor to give

slower or faster oscillations of G1/G2 in each cell and hence slower or faster shifts. Simulation

3 is scaled by 2, Simulation 4 is scaled by 1/2, and Simulation 5 is scaled by 1/3.

 Sim 1 Sim 2 Sim 3 Sim 4 Sim 5

G1/G2 synthesis delay 6 18 36 9 6

G1/G2 decay delay 6 30 60 15 10

Intitial conditions:

Common to all simulations:

 C1 C2 C3 C4 C5 C6 C7 C8

G1 value 0 0 0 1 1 1 1 1

G2 value 1 1 0 0 0 1 1 1

Common to simulations 2-4:

 C1 C2 C3 C4 C5 C6 C7 C8

g1 value 1 1 1 0 0 0 0 0

g2 value 0 0 1 1 1 0 0 0

Specific to simulation 2:

 C1 C2 C3 C4 C5 C6 C7 C8

g1 age 0 6 12 0 0 0 0 0

G1 age 0 0 0 0 6 12 18 24

g2 age 0 0 0 6 12 0 0 0

G2 age 18 24 0 0 0 0 6 12

Specific to simulation 3:

 C1 C2 C3 C4 C5 C6 C7 C8

g1 age 0 12 24 0 0 0 0 0

G1 age 0 0 0 0 12 24 36 48

g2 age 0 0 0 12 24 0 0 0

G2 age 36 48 0 0 0 0 12 24

Specific to simulation 4:

 C1 C2 C3 C4 C5 C6 C7 C8

g1 age 0 3 6 0 0 0 0 0

G1 age 0 0 0 0 3 6 9 12

g2 age 0 0 0 3 6 0 0 0

G2 age 9 12 0 0 0 0 3 6

Specific to simulation 5:

 C1 C2 C3 C4 C5 C6 C7 C8

g1 age 0 2 4 0 0 0 0 0

G1 age 0 0 0 0 2 4 6 8

g2 age 0 0 0 2 4 0 0 0

G2 age 6 8 0 0 0 0 2 4

Effects of additional gap inputs (simulations 6-8)

These three simulations model situations where runt and/or ftz/odd are initially controlled by

gap inputs, before being taken over the pair-rule network later on. These simulations involve

some extra components. Simulation 6 has an additional gap input, G3, which regulates runt,

while simulation 7 has an analogous gap input, G4, which regulates ftz and odd. Both G3 and

G4 are present in simulation 8. All three simulations additionally have a temporal signal, “G”

which controls whether runt and/or ftz/odd are controlled by the gap inputs G3/G4, or

alternatively by pair-rule inputs as normal. Details of any new control logic and initial

conditions are listed below. Anything not explicitly detailed is the same as simulation 2.

Control logic:

Simulations 6-8:

g: g  OFF

Simulations 6 and 8:

g3: if (G3=ON) then g3  OFF; else g3  ON

runt: if (G=ON):

 if (G3=ON) then runt  OFF; else runt  ON

 if (G=OFF):

 if (Hairy=ON or Odd=ON) then runt  OFF, else runt  ON

Simulations 7 and 8:

g4: if (G4=ON) then g4  OFF; else g4  ON

ftz: if (G=ON):

 if (G4=ON) then ftz  OFF; else ftz  ON

 if (G=OFF):

 if (Hairy=ON or Eve=ON) then ftz  OFF, else ftz  ON

odd: if (G=ON):

 if (G4=ON) then odd  OFF; else odd  ON

 if (G=OFF):

 if (Hairy=ON or Eve=ON) then odd  OFF, else odd  ON

Time delays:

 Sim 6 Sim 7 Sim 8

G decay delay 12 6 6

G3 synthesis delay 18 - 18

G4 synthesis delay - 18 18

G3 decay delay 30 - 30

G3 decay delay - 30 30

Note: the G decay delay effectively specifies how long runt and/or ftz/odd are controlled by

gap inputs rather than the pair-rule network.

Initial conditions:

Common to simulations 6-8:

 C1 C2 C3 C4 C5 C6 C7 C8

G value 1 1 1 1 1 1 1 1

Specific to simulations 6 and 8:

 C1 C2 C3 C4 C5 C6 C7 C8

g3 value 0 0 0 0 1 1 1 0

g3 age 0 0 0 0 0 6 12 0

G3 value 1 1 1 1 0 0 0 1

G3 age 6 12 18 24 0 0 0 0

Specific to simulations 7 and 8:

 C1 C2 C3 C4 C5 C6 C7 C8

g4 value 1 0 0 0 0 0 1 1

g4 age 12 0 0 0 0 0 0 6

G4 value 0 1 1 1 1 1 0 0

G4 age 0 0 6 12 18 24 0 0

Whole system simulations (Movies 9-11)

Control logic:

The structure of the pair-rule network as a whole is based largely on evidence from [13], and

summarised in Fig 1A of the main text. The topology of the network is context dependent,

with many genetic interactions affected by the transcriptional cofactor, Opa. Since Opa

protein appears in the Drosophila embryo only at the end of cellularisation [14], segment

patterning is sequentially directed by “early” and “late” incarnations of the overall network.

I therefore make the control logic of each segmentation gene in the network conditional on

the presence or absence of Opa. If Opa is off, the control logic is a formulation of the early

network, while if Opa is on, the control logic is a formulation of the late network. The specific

regulatory rules for each pair-rule gene (plus en) are described below, supplemented with

explanatory notes where appropriate.

hairy: if (Opa=OFF):

 if (G1=ON) then hairy  OFF; else hairy  ON

 if (Opa=ON):

 hairy  OFF

Notes: While Opa is off, the regulation of hairy is the same as in Simulations 1-8. As soon as

Opa turns on, hairy expression turns off. Hairy protein plays no role in the late pair-rule

network and is independent of pair-rule gene expression throughout the whole patterning

process.

eve: if (Opa=OFF):

 if (G2=ON) then eve  OFF; else eve  ON

 if Opa=ON:

if (Runt=ON or Odd=ON or En=ON or (Slp=ON and Eve=OFF)) then eve 

OFF; else eve  ON

Notes: While Opa is off, the regulation of eve is the same as in Simulations 1-8. As soon as Opa

turns on, eve expression is instead patterned by various repressors (Runt, Odd, Slp, En). The

qualification in the model that Slp represses eve only if Eve is not already turned on is required

in order to resolve overlaps between eve and slp expression that form in the simulations just

before the switch to the late network occurs. Specifying that Eve expression “wins” this contest

ensures that the anterior boundaries of the Eve stripes define the parasegment boundaries, as

occurs in the embryo [15]. However, the overlap situation is not a scenario that occurs in real

embryos: the eve boundaries stabilise at roughly the same time slp turns on (rather than

afterwards), and therefore the eve and slp domains are mutually exclusive throughout the

segmentation process. A more realistic model that avoided this issue would need to include

more sophisticated temporal control of eve and slp regulation, and/or time-dependent gap

domain dynamics. Note that for simulation 11, which models an eve mutant embryo, the

control logic of eve is replaced by unconditional repression (eve  OFF).

runt: if (Opa=OFF):

 if (Hairy=ON or Odd=ON) then runt  OFF; else runt  ON

 if (Opa=ON):

if ((Eve=ON and Runt=OFF) or (Odd=ON and Runt=OFF) or En=ON) then

runt  OFF; else runt  ON

Notes: While Opa is off, the regulation of runt is the same as in Simulations 1-8. As soon as

Opa turns on, runt expression is instead patterned by various repressors (Eve, Odd, En).

However, I have specified that if Runt is coexpressed with either Eve or Odd, the Runt

expression will “win” and runt transcription will not turn off. This is because Eve/Runt and

Runt/Odd overlaps are both present during cellularisation (at the anteriors and the posteriors

of the Runt stripes, respectively), and both resolve in favour of runt expression during

gastrulation [13,16]. In contrast, En expression has the potential to supplant Runt expression,

as occurs at the posterior borders of the runt primary stripes. Note that the inferred control

logic is a phenomenological description of regulation within the embryo, and does not

necessarily imply Runt autoregulation at a mechanistic level. Note also that the Opa-

dependent control logic specified above reflects the late regulation of the runt “seven stripe

element”, and I have not explicitly modelled the expression arising from the “six stripe

element” [13,17].

ftz: if (Opa=OFF):

 if (Hairy=ON or Eve=ON or Slp=ON) then ftz  OFF; else ftz  ON

 if (Opa=ON):

 if (Eve=ON or Slp=ON or Ftz=OFF) then ftz  OFF; else ftz  ON

Notes: While Opa is off, the regulation of ftz is the same as for Simulations 1-8, except with

the addition of repression from Slp. (Note that this last interaction is not diagrammed in Fig

1A, since Slp protein is synthesised too late to have any practical effect on ftz expression while

the early network is in operation.) When Opa turns on, ftz expression remains repressed by

Eve and Slp, but is no longer regulated by Hairy. Instead, it requires autoactivation. Having

this autoregulation in the model permits the anterior border of the Ftz domain to remain

stable and define the even-numbered parasegment boundaries, as occurs in the embryo [15].

However, note that while direct Ftz autoactivation is well-documented [18,19], it remains to be

tested whether Ftz activity is absolutely required for late Ftz expression.

odd: if (Opa=OFF):

 if (Hairy=ON or Eve=ON or Slp=ON) then odd  OFF; else odd  ON

 if (Opa=ON):

if (Runt=ON or Slp =ON or En=ON or (Prd=ON and Odd=OFF)) then odd 

OFF; else odd  ON

************* Odd repressed by Slp in Opa positive

************* Add Cad to conditions

Notes: While Opa is off, the regulation of odd is the same as for Simulations 1-8, except with

the addition of repression from Slp. (Note that this last interaction is not diagrammed in Fig

1A, since Slp protein is synthesised too late to have any practical effect on odd expression while

the early network is in operation.) When Opa turns on, odd expression is no longer regulated

by Hairy or Eve, and instead becomes repressed by Runt, En, and Prd. It remains repressed by

Slp. I have specified that the repression by Prd only occurs if Odd expression is not already

turned on – this reflects the observation that Prd activity patterns the nascent odd secondary

stripes [20], but has no apparent effect on the odd primary stripes. This phenomenon – which

does not necessarily imply Odd autoregulation at the mechanistic level – should be further

investigated to test the inferred control logic.

prd: if (Opa=OFF):

 if (Cad=ON or Eve=ON) then prd  OFF; else prd  ON

 if (Opa=ON):

 if (Prd=ON and Odd=OFF) then prd  ON; else prd  OFF

Notes: While Opa is off, prd is repressed by Eve (which patterns where it is expressed) and by

Cad (which patterns when it is expressed). When Opa turns on, prd is no longer repressed by

Eve, and instead repressed by Odd. It also requires autoactivation. The autoregulation is

required in the model in order to maintain a stable posterior boundary within the odd-

numbered parasegments. Note that while early repression by Eve and late repression from

Odd are both strongly supported by experimental evidence, not much more is known about

prd regulation. The control logic above is therefore largely speculative, and indeed does not

perform particularly well in the simulations (see S3 Fig). The regulation of prd therefore

warrants further investigation.

slp: if (Opa=OFF):

if (Cad=ON or Eve=ON or Runt=ON or Prd=OFF) then slp  OFF; else slp 

ON

 if (Opa=ON):

if (Eve=ON or En=ON or ((Ftz=ON or Odd=ON) and Slp=OFF)) then slp 

OFF; else slp  ON

Notes: While Opa is off, slp is repressed by Eve, Runt, and Cad, and requires activation by Prd.

Slp expression is thus spatially patterned by Eve and Runt, and temporally patterned by Cad

and Prd. The requirement for activation by Prd means that slp expression follows prd

expression after a short time lag, in agreement with real expression in the embryo. This

stipulation in the model is not entirely ad hoc: slp expression is reduced in prd mutant

embryos (data not shown), indicating that prd does contribute to slp activation. However, slp

expression is not abolished in these embryos, indicating that other, as yet unidentified,

temporal signals must also be involved in the process. When Opa turns on, slp is patterned by

repression from Eve, En, Ftz, and Odd. The qualification that Ftz and Odd only repress slp if

Slp expression is absent reflects the observation that expression overlaps between Slp and

Ftz/Odd at the posteriors of the Ftz/Odd primary stripes are always resolved in favour of Slp

(see Fig 7E in the main text). Again, note that this phenomenological description does not

necessarily imply Slp autoregulation at the mechanistic level.

en: if (Opa=OFF):

 en  OFF

 if (Opa=ON):

if (Ftz=ON and Odd=OFF and Slp=OFF) or (Prd=ON and Odd=OFF and

Slp=OFF and Runt=OFF)) then en  ON; else en  OFF

Notes: While Opa is off, en expression is repressed. When Opa turns on, en is spatially

patterned by both activators and repressors. en requires activation from either Prd or Ftz, and

is always repressed by Odd and Slp. The odd-numbered en stripes (those activated by Prd) are

additionally repressed by Runt. In contrast, the even-numbered en stripes (those activated by

Ftz) are insensitive to Runt activity.

The remaining components of the model (Cad, Opa, G1/G2) provide broad or abstracted

inputs into the periodically expressed components described above. Cad and Opa are extrinsic

inputs that are “off” by default or “on” by default, respectively. G1 and G2 are abstracted,

autoregulatory gap inputs, whose expression (and function) is restricted to early stages of

patterning (i.e. when Opa is off). Note that G1 and G2 have different control logic in

Simulation 9 (modelling static gap inputs) versus Simulations 10 and 11 (modelling dynamic

gap inputs).

cad cad  OFF

opa: opa  ON

g1 (Sim 9): if (Opa=OFF):

 if (G1=ON) then g1  ON; else g1  OFF

 if (Opa=ON):

 g1  OFF

g1 (Sims 10,11): if (Opa=OFF):

 if (G1=ON) then g1  OFF; else g1  ON

 if (Opa=ON):

 g1  OFF

g2 (Sim 9): if (Opa=OFF):

 if (G2=ON) then g2  ON; else g2  OFF

 if (Opa=ON):

 g2  OFF

g2 (Sims 10,11): if (Opa=OFF):

 if (G2=ON) then g2  OFF; else g2  ON

 if (Opa=ON):

 g2  OFF

Time delays:

 Sims 9-11

Cad decay delay 24

Opa synthesis delay 36

G1/G2 synthesis delay 18

G1/G2 decay delay 30

All other delays 6

Initial conditions:

Simulation 9:

 C1 C2 C3 C4 C5 C6 C7 C8

Cad value 1 1 1 1 1 1 1 1

G1 value 0 0 0 1 1 1 1 1

G2 value 1 1 0 0 0 1 1 1

Simulations 10 and 11:

 C1 C2 C3 C4 C5 C6 C7 C8

Cad value 1 1 1 1 1 1 1 1

g1 value 1 1 1 0 0 0 0 0

g1 age 0 6 12 0 0 0 0 0

G1 value 0 0 0 1 1 1 1 1

G1 age 0 0 0 0 6 12 18 24

g2 value 0 0 1 1 1 0 0 0

g2 age 0 0 0 6 12 0 0 0

G2 value 1 1 0 0 0 1 1 1

G2 age 18 24 0 0 0 0 6 12

Modified network simulations (Movies 12-13)

These two simulations alter the control logic of hairy and eve and remove the gap inputs from

the network. In addition, the control logic of opa is altered so as to be regulated by Cad. The

time delays associated with Hairy, Cad, and Opa are also adjusted.

Under these modified conditions, the only initial conditions that need be specified are those

of Hairy and Cad. They are assigned very different starting patterns in the two simulations,

however the two simulations eventually generate the same final output pattern.

Control logic:

hairy: if (Opa=OFF):

 if (Hairy=ON) then hairy  OFF; else hairy  ON

 if (Opa=ON):

 hairy  OFF

eve: if (Opa=OFF):

 if (Runt=ON or Odd=ON) then eve  OFF; else eve  ON

 if (Opa=ON):

if (Runt=ON or Odd=ON or En=ON or (Slp=ON and Eve=OFF)) then eve 

OFF; else eve  ON

opa: if (Signal X=ON) then opa  OFF; else opa  ON

Time delays:

 synthesis decay

Hairy 30 18

Cad 6 42 (sim. 12) or 144 (sim. 13)

Opa 18 6

Note that the decay delay for Cad is greatly increased for Simulation 13.

Initial conditions:

Simulation 12:

 C1 C2 C3 C4 C5 C6 C7 C8

Cad value 1 1 1 1 1 1 1 1

hairy value 1 1 1 1 1 0 0 0

hairy age 0 6 12 18 24 0 0 0

Hairy value 0 0 0 0 0 1 1 1

Hairy age 0 0 0 0 0 0 6 12

Simulation 13:

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Hairy value 1 1 1 1 1 1 1 1 1 1

Cad value 1 1 1 1 1 1 1 1 1 1

Cad age 114 108 102 96 90 84 78 72 66 60

 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

Hairy value 1 1 1 1 1 1 1 1 1 1

Cad value 1 1 1 1 1 1 1 1 1 1

Cad age 54 48 42 36 30 24 18 12 6 0

REFERENCES

1. Kauffman SA. Homeostasis and Differentiation in Random Genetic Control Networks.
Nature. 1969;224:177–8.

2. Thomas R. Boolean formalization of genetic control circuits. J Theor Biol. 1973;42:563–
85.

3. De Jong H. Modeling and Simulation of Genetic Regulatory Systems : A Literature
Review. 2006;

4. Peter IS, Faure E, Davidson EH. Predictive computation of genomic logic processing
functions in embryonic development. Proc Natl Acad Sci U S A. 2012;109:16434–42.

5. Mbodj A, Junion G, Brun C, Furlong EEM, Thieffry D. Logical modelling of Drosophila
signalling pathways. Mol Biosyst. 2013;9:2248–58.

6. Thomas R. Regulatory Networks Seen as Asynchronous Automata : A Logical
Description. J Theor Biol. 1991;1–23.

7. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Efficient
Numerical Computation. Comput Sci Eng. 2011;13:22–30.

8. Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007;9:90–5.

9. Davis I, Ish-Horowicz D. Apical localization of pair-rule transcripts requires 3’
sequences and limits protein diffusion in the Drosophila blastoderm embryo. Cell.
1991;67:927–40.

10. Edgar BA, Odell GM, Schubiger G. Cytoarchitecture and the patterning of fushi tarazu
expression in the Drosophila blastoderm. Genes Dev. 1987;1:1226–37.

11. Edgar BA, Weir MP, Schubiger G, Kornberg T. Repression and turnover pattern fushi
tarazu RNA in the early Drosophila embryo. Cell. 1986;47:747–54.

12. Nasiadka A, Krause HM. Kinetic analysis of segmentation gene interactions in
Drosophila embryos. Development. 1999;126:1515–26.

13. Clark E, Akam M. Odd-paired controls frequency doubling in Drosophila segmentation
by altering the pair-rule gene regulatory network. Elife. 2016;5:e18215.

14. Benedyk MJ, Mullen JR, DiNardo S. Odd-paired: A zinc finger pair-rule protein required
for the timely activation of engrailed and wingless in Drosophila embryos. Genes Dev.
1994;8:105–17.

15. Lawrence PA, Johnston P. Pattern formation in the Drosophila embryo: allocation of
cells to parasegments by even-skipped and fushi tarazu. Development. 1989;105:761–7.

16. Pisarev A, Poustelnikova E, Samsonova M, Reinitz J. FlyEx, the quantitative atlas on
segmentation gene expression at cellular resolution. Nucleic Acids Res. 2009;37:560–6.

17. Klingler M, Soong J, Butler B, Gergen JP. Disperse versus compact elements for the
regulation of runt stripes in Drosophila. Dev Biol. 1996;177:73–84.

18. Hiromi Y, Gehring WJ. Regulation and Function of the Drosophila Segmentation Gene
fushi tarazu. Cell. 1987;50:963–74.

19. Schier A, Gehring W. Direct homeodomain–DNA interaction in the autoregulation of
the fushi tarazu gene. Nature. 1992;356:804–7.

20. Mullen JR, DiNardo S. Establishing parasegments in Drosophila embryos: roles of the
odd-skipped and naked genes. Dev Biol. 1995;169:295–308.

