OsGIF1 Positively Regulates the Sizes of Stems, Leaves and Grains in Rice

Zhongshan He^{1,2}#, Jing Zeng^{1,2}#, Yun Ren^{1,2}, Dan Chen^{1,2}, Wenjie Li^{1,2}, Fengyan Gao^{1,2}, Ye Cao^{1,2}, Tao Luo^{1,2}, Guoqiang Yuan^{1,2}, Xianghong Wu^{1,2}, Yueyang Liang^{1,2}, Qiming Deng^{1,2}, Shiquan Wang^{1,2}, Aiping Zheng^{1,2}, Jun Zhu^{1,2}, Huainian Liu^{1,2}, Lingxia Wang^{1,2}, Ping Li^{1,2,3*}, Shuangcheng Li^{1,2*}

These two authors contribute equally to this work

* Corresponding author: Ping Li (liping6575@163.com) and Shuangcheng Li (lisc926105@163.com)

¹ State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China;

² Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang 611130, Sichuan, China;

³ State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China.

1 Supplementary Figures and Tables

1.1 Supplementary Figures

OSGIF-1	MÇQQHLMQMNQGMMGGYASPTTVTTDLIQQYLDENKQLIL	40
T407-19	MÇQQHLMQMNQGMMGGYASPTTVTTDLIQQYLDENKQLIL	40
T408-14	MQQQHLMQMNQGMMGGYASPTTVTTDLIQQYLDENKQLIL	40
T409-2	MQQQHLMQMNQGMMGGYASPTTVTTDLIQQYLDENKQLIL	40
T408-6	MQQQHLMQMNQGMMGGYASPTTVTTDLIQQYLDENKQLIL	40
T409-17	MQQQHLMQMNQGMMGGYASPTTVTTDLIQQYLDENKQLIL	40
T406-8	MQQQHLMQMNQGMMGGYASPTTVTTDLIQQYLDENKQLIL	40
Consensus	mqqqhlmqmnqgmmggyaspttvttdliqqyldenkqlil	
OSGIF-1	AILDNQNNGKVEECARNQAKLQHNLMYLAAIADSQPPQTA	80
T407-19	AILDNQNNGKVEECARNQAKLQHNLMYLAAIADSQPPQTA	80
T408-14	AILDNQNNGKVEECARNQAKLQHNLMYLAAIADSQPPQTA	80
T409-2	AILDNQNNGKVEECARNQAKLQHNLMYLAAIADSQPPQTA	80
T408-6	AILDNQNNGKVEECARNQAKLQHNLMYLAAIADSQPPQTA	80
T409-17	AILDNQNNGKVEECARNQAKLQHNLMYLAAIADSQPPQTA	80
T406-8	AILDNQNNGKVEECARNQAKLQHNLMYLAAIADSQPPQTA	80
Consensus	aildngnngkveecarngaklghnlmylaaiadsgppgta	
OSGIF-1	AMSQYPSNLMMQSGAP PQQSAQMMAPQSLMAARSSMMY	120
T407-19	AMSCYPSNLMMOS. ARY POOSACMMAPOSLMAARSSMMY	119
T408-14	AM SCYPSNLMMOS. ARYMPOOSACMMAPOSLMAARSSMMY	119
T409-2	AMSCYPSNL PHEPOCSACMMI COSLMAARSSMMY	114
T408-6	AMSCYPSNLMM	101
T409-17	AMSQYPSNLMMQSGCFWWAAAVGADDGAAVADGGEVFDDV	120
T406-8	AM F F V SVE F D D A V R G E V H A A A V G A D D G A V A D G G E V F D D V	120
Consensus	am	
OSGIF-1	AQPALSPLQQQQQQAAAAHGQLGMGSGGTTSGFSILHGE	160
T407-19	AQPALSPLQQQQQQAAAAHGQL <mark>GMG</mark> S <mark>GG</mark> TTSGFSILHGE	159
T408-14	AQPALSPLQQQQQQAAAAHGQL <mark>G</mark> MGS <mark>GG</mark> TTSGFSILHGE	159
T409-2	AQPALSPLQQQQQQAAAAHGQL <mark>G</mark> M <mark>G</mark> S <mark>GG</mark> TTSGFSILHGE	154
T408-6		101
T409-17	RAAGAVAAPAAAAAAGGGGGARAAGHGLGGHHQRVQHPPRR	160
T406-8	RAAGAVAAPAAAAAAGGGGGARAAGHGLGGHHQRVQHPPRR	160
Consensus		
OSGIF-1	ASMGGGGGGGGGGGGGGSMMNAGVFSDFGRGGGGGGGKEGSTSL	200
T407-19	ASM <mark>G</mark> GGGGGGGGGGGGSMMNAGVFSDFGRGGGGGGKEGSTSL	199
T408-14	ASM <mark>G</mark> GGGGGGGGGGGGSMMNAGVFSDFGRGGGGGGKEGSTSL	199
T409-2	ASM <mark>G</mark> GGGGGGGGGGGGSMMNAGVFSDFGRGGGGGGKEGSTSL	194
T408-6	····	101
T409-17	GQHGRRRRRRWRR	173
T406-8	GQHGRRRRRRWRR	173
Consensus		
OSGIF-1	SVDVRGANSGAQSGDGEYLKGTEEEGS	227
1407-19	SVDVRGANSGAQSGDGEYLKGTEEEGS	226
T408-14	SVDVRGANSGAQSGDGEYLKGTEEEGS	226
T409-2	SVDVRGANSGAQSGDGEYLKGTEEEGS	221
1408-6	•••••	101
1409-17		173
1406-8		173
consensus		

Supplementary Figure 1. Putative amino acid sequence alignments across all mutants.

A red arrow head indicates the target mutation, and a black arrow head indicates premature stop codon caused by the target mutation. Different background colors indicate different identities of multiple sequence alignments.

Supplementary Figure 2. Grain and floral organ observations in KO mutants.

(A) grain; (B) spikelet; (C) floral structure. Scale bar, 5mm.

T382 1-1

Nipp

T409-17

Supplementary Figure 3. SEM analysis of the outer glumes in KO and overexpression plants.

(A-C), SEM analysis of the outer glumes in KO and overexpression plants; Scale bar, 200 μ m; (D), cell length of the outer glume; (E), cell width of the outer glume. Scale bar, 200 μ m. Values are all shown as mean \pm s.e.m (n=3). Asterisks indicate significant differences between the WT and overexpression/KO plants as determined by Student's *t*-test: ns, not significant; **, p \leq 0.01; *, p \leq 0.05.

Supplementary Figure 4. SEM analysis of the outer surfaces of leaves and stems of KO and overexpression plants.

(A) SEM analysis of the outer surfaces of leaves. (B) SEM analysis of the outer surfaces of stems. Dotted boxes in red indicate the longitudinal array of dumbbell silicon cells, and dotted boxs in white indicate longitudinal array of stoma guard cells. Red arrow heads indicate dumbbell silicon cells, and white arrow heads indicate stoma guard cells. Scale bars, 10 µm.

1.2 Supplementary Tables Supplementary Table 1. Primers used in this study

Primer name	Sequence (5'-3')	Purpose
GIF1C-F	GCCGGATCCATGCAGCAGCAACACCTG	GIF1-cDNA,Transgenic construct
GIF1C-R	GGACTAGTGCTGCCTTCCTCCGGTG	GIF1-cDNA, Transgenic construct
PGIF1-GUS-F	ACGCGTCGACGAGAGGAGTCCGACCTCAAT	Promoter analysis, Transgenic construct
PGIF1-GUS-R	ACGCGTCGACTCCAATCAAAAACCTTTATAC	Promoter analysis, Transgenic construct
GIF1-GFP-F	GCCGGATCCATGCAGCAGCAACACCTG	GFP, Subcellular localization
GIF1-GFP-R	GGACTAGTGCTGCCTTCCTCCGGTG	GFP, Subcellular localization
qGIF1-F	TGCTTCCCCTACCACCGTC	q-RT-PCR
qGIF1-R	CGAGCGCACTCTTCCACCT	q-RT-PCR
Actin-F	CTTCATAGGAATGGAAGCTGCGGGT	Internal reference
Actin-R	CGACCACCTTGATCTTCATGCTGCTA	Internal reference

Supplementary Table 2. Information of four putative off-target sites

putative sites	TIGR loci	Phsical positions	sequence	Mutations detected
OFF TARGET-1	LOC_Os03g55100	Chr3:3134512931345150	GATGATGAAGGCCGGGACGAGG	none
OFF TARGET-2	LOC_Os03g05806	Chr3:29017832901802	CGCCCCGGACTTCAACATCA	none
OFF TARGET-3	LOC_Os04g03890	Chr4:17800861780107	CCCCGCCCCGAACGGCATCATC	none
OFF TARGET-4	LOC_Os07g30210	Chr7:1784771617847737	GAAGATGAAGACCGGGGGGGAGG	none