
Learning about Learning: Mining Human Brain Sub-Network
Biomarkers from fMRI Data (Supporting Information)

Global Learning Rate States

The network state mining methodology we adopt works with categorical labels of the
global states, i.e. it is formalized as an instance of classification as opposed to one of
regression. While estimating continuous global scores (regression) might be of interest
as well, here we focus on identifying biomarkers that differentiate between sessions in
which subjects progressively increase the speed of completion of the visual cues (high
learning rate sessions) from those in which no acceleration is observed (low learning
rate sessions). We adopt the slope of the movement time over trials practiced as a
measure of the learning rate. Movement time is the time between the first and last
button press of the 12-note sequence. A larger slope indicates that the subject is
learning well, while a smaller slope indicates that the subject is not learning as well [1].

The slopes for the 18 subjects are listed in Table 1. The coloring of scores in the
table are based on a threshold of −0.06 (which we discuss in more detail in the next
paragraph) used to convert the continuous slopes into the categorical low versus high
learning rate states. Slopes smaller than the chosen threshold correspond to high
learning rate (blue) and slopes larger than the threshold correspond to low learning
rate (yellow). In the first session, 13 of the subjects are learning the motor task as
their rates are below the threshold, while 5 of the subjects are not learning as fast. We
focus on the fast early changes in the learning process as posited in the theoretical
framework of Doyon et al. [2]. Thus the 13 subjects that were labeled as being in a
high learning state in the first session were discarded from the second and third
session data sets. In the third session, 1 subject transitions from a low to a high
learning rate state while the remaining 4 low learning rate subjects remain in the low
learning rate state. The confidence intervals of the slope included 0 for subject 16 in
Session 2 and subject 1 in Session 3; hence, these sessions were excluded as no
significant learning occurred. Note that our estimate of learning rate is independent of
how fast the the subject performs at the beginning of the session, a feature which is
often largely driven by biomechanics rather than the ability to learn. Instead, we focus
on the improvement of individual performance over time, which is attributed to
early-stage motor skill learning [2].

Table 1. Slopes of movement time versus trials practiced for each subject and each
experimental session. High-learning rate sessions are colored blue and low learning
rate sessions are colored yellow. All but five subjects exhibit a high learning rate in
the first session. One of those five subjects transitions into a high learning rate in
their third session. Slopes for two of the sessions (Subject 1 Session 3 and Subject 16
Session 2) were negative and thus indicated worsening of performance (colored gray).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Session 1 -.12 -.10 -.05 -.09 -.09 -.07 -.04 -.13 -.07 -.07 -.07 -.13 -.04 -.08 -.10 0 -.04 -.11

Session 2 -.01 -.03 -.01 -.03 -.06 -.04 -.03 -.05 -.02 -.04 -.05 -.03 -.04 -.04 -.02 NA -.04 -.03

Session 3 NA -.03 0 -.1 -.07 -.05 -.07 -.08 -.02 -.01 -.02 -.03 -.04 -.03 -.01 -.05 -.03 -.03

We selected a threshold of −0.06 on the learning rate to delineate high versus low
learning rate states. To choose this threshold, we used a clustering approach with
perturbations and we estimated the optimal threshold between states based on the
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Fig 1. Distribution of the learning rate in sessions of interest (a) and middle
clustering point distribution (b) when clustering the values 100 times applying a
perturbation noise of 3 standard deviations of the original values.

stability of multiple clustering solutions. To begin, we randomly perturbed the
measured learning rates from all valid sessions by adding Gaussian noise with a
magnitude of 3 standard deviations of the original learning rates to each parameter
value. We created 100 perturbed instances of the measured learning rates and
clustered them using k-means clustering (at k = 2). We compared the different
clustering solutions using the Jaccard index as a measure of similarity. A clustering is
considered “stable” if it is approximately maintained across multiple perturbations.
We observed that the vast majority of clustering pairs had a Jaccard index of 1
(perfect similarity) and −0.06 is the middle point separating the points in the obtained
clusterings. We show the distribution of the original learning rate values in Fig. 1(a)
and the distribution of the middle point between two perturbed clusters in Fig. 1(b).
Both figures single out −0.06 as an optimal threshold.

Using the selected threshold and discarding sessions preceded by high learning rate
sessions of the same subject, we obtained 14 high learning rate session-specific
networks and 13 low learning rate session-specific networks (color-coded with blue and
yellow respectively in Tab. 1). We applied our discriminative biomarker approach
considering all 27 networks simultaneously together with their global learning state
labels.

Multiple thresholds, and thus, multiple classes corresponding to levels of learning
rate, can be selected similarly using clustering. Such modeling of more than two
classes is possible within our SNL learning framework as we discussed earlier. Note
that the two meta-networks described earlier, will still be suitable in this case since
their topology is determined by network samples having the same or different global
state values and not on their specific class labels. The number of dimensions for the
subspace in which SNL projects the original data will also have to be adjusted to be
one less than the number of classes. Moreover, as there will be a natural order of the
classes (e.g., gradients of learning rate), the penalty for rendering different-class
instance pairs close should be scaled according to the distance between their classes in
that natural order. The limited number of subjects and training sessions in our data,
however, drove the decision to work with two classes for this specific evaluation task.
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Discriminative subspace mining: parameters and

comparative analysis

As a baseline, we compared the testing accuracy of SNL with that of an SVM classifier
that works with the same instances, but which is oblivious to the network structure.
All 6216 features were given to the SVM while performing cross validation. We also
used the linear-SVM as the classifier for SNL but it performed on the subspace
spanned by the subnetworks selected by the SNL. The original data set of 27 samples
was randomly divided into 9 folds and in the cross validation (CV) model, we used
each of the 8 folds as a training data set while the left-out fold was used as an
independent test set. This 9-fold cross-validation was further performed 5 times with
different random data splitting and we report the averaged prediction accuracy from
45 testing folds. While the conventional SVM technique achieved 76% testing accuracy
using all features, SNL achieved 81% using only the top 50 selected features.

Conserved connected discriminative subgraphs

The result of SNL’s discriminative subspace learning was a set of 45 edge subsets, one
from each training version. Each of those selected edge subsets did not necessarily
form a single connected component. There were a total of 456 connected components
in the 45 selected edges sets. The maximum number of occurrences for any subgraph
of the selected edges was 45 and hence when we mined the space of subgraphs for
conserved ones, we needed to define a support threshold, i.e. a number of occurrences
out of the 45 possible.

Table 2. Number of candidate frequent subgraphs for decreasing frequency threshold.

Frequency #Candidates

25 152
20 1387
15 7844
10 100566

In this analysis, we began with a very high threshold and lowered it to obtain a
larger number of candidate biomarkers to be further tested for significance. Table 2
lists the number of frequent subgraphs in the set produced by SNL for decreasing
frequency. For conservative (high) thresholds, we obtained a small number of
candidates but importantly, we could easily miss candidates of lower frequency, whose
accuracy may not have been significant. As we lowered the threshold, the number of
candidates increased drastically, since the space of subgraphs increased exponentially.
In this process of varying thresholds, we observed that the set of subgraphs with
significant predictive accuracy (q-value ≤ 0.015) initially grew and for thresholds lower
than 15 occurrences out of 45, we do not obtain new significant subgraphs. The reason
for this phenomenon is that at lower thresholds we had many subgraphs of high
overlap that satisfied the threshold, but whose individual accuracy was not significant.

Background models and subgraph statistical

significance

Given a subgraph characterised by a subset of functional edges in the brain network,
we quantified its discriminative power by the accuracy of classifying all training
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Fig 2. Correlation between biomarker edge coherence and the learning rate. Edge
thickness encodes the magnitude of correlation while blue and red colors respectively
show the positive and negative correlations.
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Fig 3. Correlation between each of selected edges’ coherence and the learning rate.
Green and orange encode positive and negative correlations respectively.

instances using only the subset of features corresponding to included edges. We used
an SVM classifier with polynomial kernel for this analysis. Our goal was to select only
connected subgraphs, whose accuracy was significant. Hence, we needed a background
model for the accuracy levels we could expect at random for connected subgraphs.
Since a closed form solution to this problem is not available, we resorted to
sampling-based estimation of the background model. Note that allowing more features
naturally results in higher accuracy, hence we defined background models for
subgraphs of specific sizes. We sampled 1000 subgraphs of a fixed size k using a
random walk based sampling that ensured that every connected subgraph had an
equal chance of being included in our sample by following the techniques in [3]. We
then computed the accuracy for every subgraph in the sample by building SVM
classifiers. We quantified the p-value of our conserved subgraph’s accuracies (obtained
by frequent subgraph mining) in the background models corresponding to their
individual sizes. To correct for false discovery rate (FDR), we then computed q-values
based on the obtained p-values, following the protocol from [4]. The final set of
significant subgraphs with q-value ≤ 0.015 is described in the following section.
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Correlation of biomarker edge coherence and

learning rate

In this section we provide additional visualization of the correlation of biomarker
edges strengths with learning rate Fig. 2. Thickness of individual edges is proportional
to the absolute value of the correlation with learning rate, while colors denote the
correlation sign: red for negative and blue for positive. The same information is also
quantitatively visualized in Fig. 3.

Full set of discovered biomarkers

The full set of biomarkers falling in the two biomarker regions discussed in the
experimental section are presented in Table 3. Their individual accuracy (ACC) varies
between 74% and 85% and it is significant: q-value ≤ 0.015. Most biomarkers have no
loops, only the last two feature loops involving the right and left occipital poles, and
left intracalcarine and supercalcarine cortices. The sizes of the biomarkers in terms of
number of edges |E| and number of nodes |V | vary between 1 and 5 and between 1
and 6 respectively.

Table 3. Significant Biomarkers.

Subgraph ACC |E| |V | FDR

L Planum temporale

R Superior temporal  gyrus posterior

0.78 1 2 0.000

L Parietal  operculum cortex

L Planum temporale

R Superior temporal  gyrus posterior

0.74 2 3 0.009

L Parietal  operculum cortex

L Planum temporale

R Planum temporale

0.74 2 3 0.009

L Occipital fusiform gyrus

L Occipital pole

L Supercalcarine cortex

0.78 2 3 0.007

L Planum temporale

R Superior temporal  gyrus posterior

R Planum temporale

0.74 2 3 0.009
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Table 3. Significant Biomarkers.

Subgraph ACC |E| |V | FDR

L Planum temporale

R Planum temporale

R Parietal  operculum cortex

0.78 2 3 0.007

L Occipital fusiform gyrus

L Occipital pole

L Supercalcarine cortex

R Lingual gyrus

0.81 3 4 0.013

L Occipital fusiform gyrus

L Occipital pole

L Supercalcarine cortex

R Occipital pole

0.81 3 4 0.013

L Lingual gyrus

L Occipital pole

L Occipital fusiform gyrus L Supercalcarine cortex

R Occipital pole

0.81 4 5 0.006

L Occipital fusiform gyrus

L Occipital pole

L Supercalcarine cortex

R Intracalcarine cortex

L Intracalcarine cortex

0.81 4 5 0.006

L Occipital fusiform gyrus

L Occipital pole

L Supercalcarine cortex

R Intracalcarine cortex R Occipital pole

0.81 4 5 0.006

L Occipital fusiform gyrus

L Occipital pole

R Intracalcarine cortex

L Supercalcarine cortex

R Occipital pole 0.85 4 5 0.000

L Occipital fusiform gyrus

L Occipital pole

L Supercalcarine cortex

R Lingual gyrus

L Lingual gyrus

0.81 4 5 0.006

L Occipital fusiform gyrus

L Occipital pole

L Supercalcarine cortex

R Occipital pole

R Intracalcarine cortex

0.81 4 5 0.006

L Occipital fusiform gyrus

L Occipital pole

R Intracalcarine cortex

L Supercalcarine cortex

R Occipital pole

0.89 4 5 0.000
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Table 3. Significant Biomarkers.

Subgraph ACC |E| |V | FDR

L Occipital fusiform gyrus

L Occipital pole

R Intracalcarine cortex

R Occipital pole

L Supercalcarine cortex

0.89 4 5 0.000

L Supercalcarine cortex

R Intracalcarine cortex R Occipital pole

L Occipital pole R Occipital fusiform gyrus

0.81 4 5 0.006

L Lingual gyrus

L Occipital pole

R Intracalcarine cortex

L Occipital fusiform gyrus L Supercalcarine cortex

R Occipital pole 0.85 5 6 0.006

L Lingual gyrus

L Occipital pole

R Intracalcarine cortex

L Occipital fusiform gyrus

R Occipital pole

L Supercalcarine cortex

0.85 5 6 0.006

L Occipital fusiform gyrus

L Occipital pole

R Intracalcarine cortex

L Supercalcarine cortex

R Occipital pole 0.85 5 5 0.006

L Occipital fusiform gyrus

L Occipital pole

R Intracalcarine cortex

L Supercalcarine cortex

R Occipital pole

0.85 5 5 0.006

List of brain region name abbreviations

The list of all brain regions and their abbreviations used in figures throughout the
manuscript is presented in Table 4.

Table 4. Brain region abbreviations.

Abbreviation Full Name

1L Frontal pole
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Table 4. Brain region abbreviations.

Abbreviation Full Name

2L Insular cortex

3L Superior frontal gyrus

4L Middle frontal gyrus

5L Inferior frontal gyrus, pars triangularis

6L Inferior frontal gyrus, pars opercularis

7L Precentral gyrus

8L Temporal pole

9L Superior temporal gyrus, anterior

10L Superior temporal gyrus, posterior

11L Middle temporal gyrus, anterior

12L Middle temporal gyrus, posterior

13L Middle temporal gyrus, temporooccipital

14L Inferior temporal gyrus, anterior

15L Inferior temporal gyrus, posterior

16L Inferior temporal gyrus, temporooccipital

17L Postcentral gyrus

18L Superior parietal lobule

19L Supramarginal gyrus, anterior

20L Supramarginal gyrus, posterior

21L Angular gyrus

22L Lateral occipital cortex, superior

23L Lateral occipital cortex, inferior

24L Intracalcarine cortex

25L Frontal medial cortex

26L Supplemental motor area

27L Subcallosal cortex

28L Paracingulate gyrus

29L Cingulate gyrus, anterior

30L Cingulate gyrus, posterior

31L Precuneus cortex

32L Cuneus cortex

33L Orbital frontal cortex

34L Parahippocampal gyrus, anterior

35L Parahippocampal gyrus, posterior

36L Lingual gyrus

37L Temporal fusiform cortex, anterior

38L Temporal fusiform cortex, posterior

39L Temporal occipital fusiform cortex

40L Occipital fusiform gyrus

41L Frontal operculum cortex

42L Central opercular cortex

43L Parietal operculum cortex

44L Planum polare

45L Heschl’s gyrus

46L Planum temporale

47L Supercalcarine cortex
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Table 4. Brain region abbreviations.

Abbreviation Full Name

48L Occipital pole

49R Frontal pole

50R Insular cortex

51R Superior frontal gyrus

52R Middle frontal gyrus

53R Inferior frontal gyrus, pars triangularis

54R Inferior frontal gyrus, pars opercularis

55R Precentral gyrus

56R Temporal pole

57R Superior temporal gyrus, anterior

58R Superior temporal gyrus, posterior

59R Middle temporal gyrus, anterior

60R Middle temporal gyrus, posterior

61R Middle temporal gyrus, temporooccipital

62R Inferior temporal gyrus, anterior

63R Inferior temporal gyrus, posterior

64R Inferior temporal gyrus, temporooccipital

65R Postcentral gyrus

66R Superior parietal lobule

67R Supramarginal gyrus, anterior

68R Supramarginal gyrus, posterior

69R Angular gyrus

70R Lateral occipital cortex, superior

71R Lateral occipital cortex, inferior

72R Intracalcarine cortex

73R Frontal medial cortex

74R Supplemental motor area

75R Subcallosal cortex

76R Paracingulate gyrus

77R Cingulate gyrus, anterior

78R Cingulate gyrus, posterior

79R Precuneus cortex

80R Cuneus cortex

81R Orbital frontal cortex

82R Parahippocampal gyrus, anterior

83R Parahippocampal gyrus, posterior

84R Lingual gyrus

85R Temporal fusiform cortex, anterior

86R Temporal fusiform cortex, posterior

87R Temporal occipital fusiform cortex

88R Occipital fusiform gyrus

89R Fronal operculum cortex

90R Central opercular cortex

91R Parietal operculum cortex

92R Planum polare

93R Heschl’s gyrus
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Table 4. Brain region abbreviations.

Abbreviation Full Name

94R Planum temporale

95R Supercalcarine cortex

96R Occipital pole

97L Caudate

98L Putamen

99L Globus pallidus

100L Thalamus

101L Nucleus Accumbens

102L Parahippocampal gyrus (superior to ROIs 34,35)

103L Hippocampus

104L Brainstem

105R Caudate

106R Putamen

107R Globus pallidus

108R Thalamus

109R Nucleus Accumbens

110R Parahippocampal gyrus (superior to ROIs 34,35)

111R Hippocampus

112R Brainstem
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