

The loss of P2X7 receptor expression leads to increase intestinal glucose transit and hepatic steatosis

Guillaume Arguin[¶], Jean-François Bourzac[¶], Morgane Placet, Caroline M. Molle, Michel Paquette, Jean-François Beaudoin, Jacques A. Rousseau, Roger Lecomte, Mélanie Plourde, and Fernand-Pierre Gendron

[¶]Both authors have contributed equally to this work.

Supplemental Fig. 1. The increase weight observed for $P2rx7^{-/-}$ mice was not the result of increase food uptake or a reduction of animal movement or energy expenditure. The Promethion high-definition room calorimetric system was used to automatically monitored (A) food uptake, (B) animal movement and (C) total energy expenditure (EE). Four $P2rx7^{+/+}$ and four $P2rx7^{-/-}$ mice were used for this study. Results are presented as the mean \pm SEM over a 5-day period for food uptake and movement and over a 3-day period for EE, where D = day time (6h - 20h) and N = night time (20h - 6h). No significant difference could be measured between both animal groups.

Supplemental Fig. 2. Increase magnification of Oil red O-stained hepatic tissue sections of 21-day old mice showing cytoplasmic lipid deposistion. A) Oil red O-staining at 40x for $P2rx7^{+/+}$ mouse and (B) Higher zoom of the zone delineate by the black box in panal A showing weak lipid staining in hepatocyte cytoplasm. C) Lipid staining with Oil red O at 40x magnification for $P2x7^{-/-}$ animals, with a higher magnification of the delineated zone (black box) shown in panel D. Scale bars = $100 \mu m$.