



Supplementary Figure 1. Diversity and richness of the ACVD gut microbiome.(a) Gene richness of the ACVD patients (n= 218, red) compared to the control groups (n=187, n= 200, n= 100, cyan). p-values from Wilcoxon rank-sum test are shown. (b) α-diversity (Shannon index) of the ACVD patients (n= 218, red) and control groups (n=187, cyan). Wilcoxon rank-sum test.



## Supplementary Figure 2. Functions encoded by ACVD-associated species.

(a) ACVD microbiome containing TMA-Iyases. PanPhIAn was used to determine the presence or absence of genes in each sample that belong to bacterial species identified as differentially enriched MLGs (Fig. 2, Supplementary Data 3). The heatmap was colored according to the number of genes that showed a significant difference in occurrence between ACVD cases (n=218) and controls (n=187) (Fisher test, q-value < 0.05). (b) Virulence factors in the ACVD microbiome according to the VFDB database. PanPhIAn as in panel **a**. Virulence factors that were found in less than 7 species are not shown. Colored according to the square root of the number of genes that showed a significant difference in occurrence between ACVD cases (n=218) and controls (n=187) (Fisher test, q-value <0.05). (c) KO modules characteristic of ACVD or related clinical indices. All modules were regressed against the index using group LASSO. The heatmap was colored according to coefficients from bootstrapping cross-validation group LASSO, after min-max transformation.



## Supplementary Figure 3. MLGs influenced by drugs or clinical indices.

Associations in ACVD patients identified by MaAsLin. Green edges, positive associations; red edges, negative associations. Red circles, ACVD-enriched; cyan circles, control-enriched; grey circles, no significant difference. q-value < 0.05 between 187 healthy controls and 218 ACVD cases, FDR controlled Wilcoxon rank-sum test.



#### Supplementary Figure 4. Homocysteine metabolism and virulence factors.

(a) Pathways for homocysteine and folate metabolism. (b) Relative abundances of the KOs involved in homocysteine metabolism. The KOs were colored according to significant differences between the ACVD samples (n= 218) and control samples (n=187), i.e. red or cyan, p-value < 0.01; light red or green, p-value < 0.05; black, p-value  $\ge$  0.05, Wilcoxon rank-sum test. (c) Number of virulence factors in the cohorts. Counted in each sample according to VFDB, p-values from Wilcoxon rank-sum tests. Among these, RA was the only cohort from northern China, and obesity was the only young adult cohort.



**Supplementary Figure 5. Presence of ACVD marker MLGs in other disease cohorts.** Red, case-enriched; cyan, control-enriched; yellow, no significant difference, Wilcoxon rank-sum test, q-value < 0.05.



# Supplementary Figure 6. Bacteriophages in the gut microbiome of ACVD and other diseases.

Differentially enriched phages in the disease cohorts. Red, case-enriched; green, control-enriched. +, q-value < 0.05; \*, q-value < 0.01, FDR controlled Wilcoxon rank-sum test.



Supplementary Figure 7. Phage genes in the ACVD microbiome.

PanPhIAn was used to determine the presence or absence of genes in each sample that belong to bacterial species identified as differentially enriched MLGs (**Fig. 2**, **Supplementary Data 3**). Colored according to the number of genes that showed a significant difference in occurrence between ACVD cases (n=218) and controls (n=187). Fisher test, q-value<0.05.



Supplementary Figure 8. Correlation between phages and bacteria in the ACVD microbiome.

Spearman's correlation was performed between the relative abundances of phages and MLGs. Blue, negative correlation; red, positive correlation. The heatmap was hierarchically clustered on both axes. Red, case-enriched; green, contro-enriched; grey, no significant difference, p-value >= 0.05, Wilcoxon rank-sum test.



# Supplementary Figure 9. Gut microbiome-based identification of Cardiometabolic diseases.

(a) MLGs important for identifying individuals with and without CMDs (n = 582 cases, 541 controls, without the RA cohort). The data were down-sampled to the same sample size for each CMD. The MLGs were ordered according to their importance for the two-way random forest classifier. X-axis represents random forest importance. Red, ACVD-enriched; cyan, control-enriched; black, no significant difference, Wilcoxon rank-sum test, q-value  $\geq 0.05$ . (b) KO modules important for identifying individuals with and without CMDs. Coefficients from bootstrapping cross-validation group LASSO are plotted. Modules with larger absolute values of the coefficients appear before those with smaller absolute values of the coefficients. (c) MLGs important for identifying each CMD (n = 582 cases, 541 controls, without the RA cohort). Colored according to the MLGs' random forest importance after min-max transformation.

| Non adjustment                                    |     |           |         |         |       |         |  |  |  |  |  |
|---------------------------------------------------|-----|-----------|---------|---------|-------|---------|--|--|--|--|--|
|                                                   | Df  | SumsOfSqs | MeanSqs | F.Model | R2    | P value |  |  |  |  |  |
| CHD                                               | 1   | 2.902     | 2.902   | 20.182  | 0.048 | 0.000   |  |  |  |  |  |
| Residuals                                         | 403 | 57.944    | 0.144   |         | 0.952 |         |  |  |  |  |  |
| Total                                             | 404 | 60.845    |         |         | 1.000 |         |  |  |  |  |  |
| Adjust drug effect permanova                      |     |           |         |         |       |         |  |  |  |  |  |
| Drug<br>(Drug ID_number of samples with the drug) | Df  | SumsOfSqs | MeanSqs | F.Model | R2    | P value |  |  |  |  |  |
| Clopidogrel.Hydrogen.Sulphate.Tablets_117         | 1   | 0.836     | 0.836   | 6.277   | 0.017 | 0.000   |  |  |  |  |  |
| Aspirin_33                                        | 1   | 0.209     | 0.209   | 1.573   | 0.004 | 0.137   |  |  |  |  |  |
| Atorvastatin_25                                   | 1   | 0.355     | 0.355   | 2.667   | 0.007 | 0.021   |  |  |  |  |  |
| Esomeprazole_9                                    | 1   | 0.050     | 0.050   | 0.379   | 0.001 | 0.926   |  |  |  |  |  |
| Isosorbide.Mononitrate_11                         | 1   | 0.167     | 0.167   | 1.257   | 0.003 | 0.246   |  |  |  |  |  |
| Perindopril_15                                    | 1   | 0.150     | 0.150   | 1.128   | 0.003 | 0.311   |  |  |  |  |  |
| Bisoprolol_9                                      | 1   | 0.122     | 0.122   | 0.918   | 0.003 | 0.449   |  |  |  |  |  |
| Metoprolol_19                                     | 1   | 0.354     | 0.354   | 2.658   | 0.007 | 0.022   |  |  |  |  |  |
| Isosorbide.dinitrate_10                           | 1   | 0.215     | 0.215   | 1.613   | 0.004 | 0.129   |  |  |  |  |  |
| Acarbose_7                                        | 1   | 0.324     | 0.324   | 2.434   | 0.007 | 0.034   |  |  |  |  |  |
| Captopril.Tablets_6                               | 1   | 0.239     | 0.239   | 1.796   | 0.005 | 0.096   |  |  |  |  |  |
| Estazolam_6                                       | 1   | 0.275     | 0.275   | 2.066   | 0.006 | 0.062   |  |  |  |  |  |
| Nitroglycerin.Tablets_8                           | 1   | 0.206     | 0.206   | 1.551   | 0.004 | 0.144   |  |  |  |  |  |
| Potassium_chloride_32                             | 1   | 0.428     | 0.428   | 3.213   | 0.009 | 0.009   |  |  |  |  |  |
| Acvd                                              | 1   | 1.532     | 1.532   | 11.511  | 0.031 | 0.000   |  |  |  |  |  |
| Residuals                                         | 325 | 43.263    | 0.133   |         | 0.888 |         |  |  |  |  |  |
| Total                                             | 340 | 48.726    |         |         | 1.000 |         |  |  |  |  |  |

Supplementary Table 1. PERMANOVA for the influence of ACVD on gut microbial gene abundance, without (upper) and with (lower) adjustment for medication. Bray-Curtis distance, 99999 permutations.

**Supplementary Table 2. Influence of drugs on the gut microbiome.** PERMANOVA was performed for each drug in relation to the relative abundances of gut microbial genes in each sample. Bray-Curtis distance, 999 permutations. The categories of the drugs are: A: Drugs for acid related disorders; D: Drugs used in diabetes; H: Drugs used in high blood pressure; L: Drugs for lipid modifying; P: Drugs used in Psycholeptics; S: Supplements; T: Antithrombotics drugs; V: Vasodilators used in cardiac diseases.

| Drug ID_Samples<br>number with the drug | Df | Sums<br>Of Sqs | MeanSqs | F.Model | R2     | P<br>value | Samples<br>number with<br>the drug | Drug<br>classfication |
|-----------------------------------------|----|----------------|---------|---------|--------|------------|------------------------------------|-----------------------|
| Clopidogrel Hydrogen<br>Sulphate_117    | 1  | 0.0002         | 0.0002  | 1.1966  | 0.0078 | 0.1240     | 117                                | Т                     |
| Aspirin_33                              | 1  | 0.0002         | 0.0002  | 0.9434  | 0.0062 | 0.6050     | 33                                 | Т                     |
| Atorvastatin_25                         | 1  | 0.0002         | 0.0002  | 1.2903  | 0.0084 | 0.0670     | 25                                 | L                     |
| Esomeprazole_9                          | 1  | 0.0001         | 0.0001  | 0.8310  | 0.0054 | 0.8420     | 9                                  | А                     |
| Isosorbide<br>Mononitrate_11            | 1  | 0.0002         | 0.0002  | 1.1197  | 0.0073 | 0.2170     | 11                                 | V                     |
| Potassium Citrate_14                    | 1  | 0.0002         | 0.0002  | 1.0647  | 0.0070 | 0.3110     | 14                                 | S                     |
| Perindopril_15                          | 1  | 0.0002         | 0.0002  | 1.1407  | 0.0074 | 0.1600     | 15                                 | Н                     |
| Heparin Sodium_10                       | 1  | 0.0001         | 0.0001  | 0.8936  | 0.0058 | 0.7250     | 10                                 | Т                     |
| Bisoprolol_9                            | 1  | 0.0001         | 0.0001  | 0.8893  | 0.0058 | 0.7460     | 9                                  | Н                     |
| Fondaparinux                            | 1  | 0.0002         | 0.0002  | 1.4631  | 0.0095 | 0.0170     | 10                                 | Т                     |

| Sodium_10               |   |        |        |        |        |        |    |   |
|-------------------------|---|--------|--------|--------|--------|--------|----|---|
| Metoprolol_19           | 1 | 0.0002 | 0.0002 | 1.3699 | 0.0089 | 0.0400 | 19 | Н |
| Insulin aspart_6        | 1 | 0.0001 | 0.0001 | 0.8790 | 0.0057 | 0.7640 | 6  | D |
| Isosorbide dinitrate_10 | 1 | 0.0002 | 0.0002 | 1.1369 | 0.0074 | 0.1750 | 10 | V |
| Acarbose_7              | 1 | 0.0002 | 0.0002 | 1.3913 | 0.0091 | 0.0330 | 7  | D |
| Captopril_6             | 1 | 0.0002 | 0.0002 | 0.9346 | 0.0061 | 0.5940 | 6  | Н |
| Estazolam_6             | 1 | 0.0002 | 0.0002 | 1.0186 | 0.0067 | 0.3980 | 6  | Р |
| Nitroglycerin_8         | 1 | 0.0002 | 0.0002 | 1.1029 | 0.0072 | 0.2570 | 8  | V |
| Potassium Chloride_32   | 1 | 0.0002 | 0.0002 | 1.1942 | 0.0078 | 0.1290 | 32 | S |

Supplementary Table 3. Distinguishing CMDs using MLGs. Prediction error according to the RFCV model in Fig. 3a.

|                | Predict<br>Control | Predict<br>Acvd | Predict<br>Cirrhosis | Predict<br>T2D | Predict<br>Obesity | Error |
|----------------|--------------------|-----------------|----------------------|----------------|--------------------|-------|
| True Control   | 352                | 62              | 25                   | 74             | 38                 | 0.361 |
| True Acvd      | 34                 | 156             | 12                   | 11             | 5                  | 0.284 |
| True Cirrhosis | 17                 | 2               | 98                   | 3              | 0                  | 0.183 |
| True T2D       | 38                 | 9               | 7                    | 114            | 3                  | 0.333 |
| True Obesity   | 17                 | 10              | 1                    | 4              | 40                 | 0.444 |