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Supplementary Note 1: Phylogeny and taxonomy 

A time-calibrated informal species-level amniote supertree, including 1046 taxa, was 

constructed by hand based on the most up-to-date phylogenetic analyses available for Permian-

Triassic amniotes. The interrelationships shown in the supertree reflect congruence between 

overlapping topologies of the source phylogenetic analyses; polytomies were generated when 

source phylogenies showed incongruent relationships (cf. the semi-strict supertree method 

automatized by the program TNT; 1). This tree is given as Supplementary Data 1. This supertree 

includes 891 species within the interval from the Lopingian to the end of the Early Jurassic. As 

terrestrial biogeographic patterns were of interest, marine taxa were omitted; however, 

amphibious non-crocopod archosauromorphs and volant pterosaurs known from marine strata 

were included in the analysis.  

To avoid artificially truncating branch lengths, and so the phylogenetic distances between taxa, 

155 stratigraphically older taxa were also included in order to date deeper nodes. This topology 

was used to produce 100 time-calibrated trees, in which polytomies were randomly resolved, 

utilizing the ‘timePaleoPhy’ function of the paleotree package 2 in R 3. Trees were dated 

according to first occurrence dates with a minimum branch-length of 1 Myr. The phylogenetic 

biogeographic analyses were performed across all of these trees, in order to account for 

phylogenetic uncertainty. 

The informal supertree was constructed from pre-existing phylogenies, as described below. 

Parareptilia  

Overall parareptile phylogeny primarily follows 4–11 with “nycteroleter” relationships 

following 12–14. Pareiasaur taxonomy and relationships primarily follow 15, with additional 

input from 8,13,14. The two unnamed pareiasaur species known from the d’Ikakern Formation, 

Argana Basin, of Morocco are placed following 16. Sauropareia and Colletta are placed as 
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successive outgroups of the Procolophonidae following 17. Procolophonid relationships then 

follow 4,7,8,18–20, although conflicts between analyses and incomplete taxon sampling required 

the collapse of many nodes. Additional input on procolophonid taxonomy was taken from 21,22. 

Libognathus was considered to lie proximate to Leptopleuron and Hypsognathus following the 

comparisons of 23,24. Haligonia exhibits a greatly expanded maxillary tooth otherwise only 

known from Phonodus 25; consequently it was treated as the sister-taxon to Phonodus here 

based on the comparisons of 25. Orenburgia and Procolina were placed in a polytomy with the 

other “kapoids” Anomoiodon and Kapes following the comparisons of 26. 

Eureptilia  

Overall eureptile topology follows 27,28. Captorhinid relationships follow 29. Gecatogomphius 

was considered a moradosaurine after 30. Early diapsid phylogeny then follows 27,28. 

Drepanosaurids were positioned as the sister group to coelurosauravids after 31; internal 

relationships of the clade follow 32,33. Palaeagama was placed following 34 and Saurosteon 

after 35. 

Lepidosauromorpha – Paliguana is positioned basal to [Kuehneosauridae + Lepidosauria] after 

36. Kuehneosaurid relationships follow 26,37. Stem-lepidosaur relationships follow 26,35,36,38,39. 

Tikiguana is probably Cenozoic in age 40 and most purported stem-squamates from this interval 

are either very poorly phylogenetically constrained, or probable procolophonians 21,36,41. This 

leaves Paikasaurus and Bharatagama as the only named squamates recognized from the 

interval of interest 36,38,42. 

Rhynchocephalian topology follows 38,43–47, although topological conflict and incomplete 

taxonomic sampling limited phylogenetic resolution. Sigmala was considered a sphenodontid 

due to its similarity to taxa such as Pelecymala 48. “Clevosaur” taxonomy and relationships 

follow 49, although taxonomic uncertainty, the inclusion of poorly-known but 
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biogeographically important specimens (e.g. the Dockum clevosaur 50) and the non-monophyly 

of “Clevosaurus” resulted in most of these occurrences being accommodated in a large 

polytomy. Other, highly uncertain, occurrences of clevosaur-grade sphenodontians e.g. 51,52 

were not included.  

Archosauromorpha – Interrelations of basal archosauromorph clades follow 28,53,54, although 

uncertainty in the position of Prolacertoides limits resolution in this region. Tanystropheid 

phylogeny follows 55, with additional taxa added to this scaffold after 56. Allokotosaurian 

internal relationships are after 53,57; rhynchosaurian topology primarily follows 53,58 with 

additional information from 59–61. Non-archosaur archosauriform relationships then also follow 

53, with additional reference to 62 and Osmolskina positioned as a euparkeriid after 63. 

Proterosuchid taxonomy and referral of specimens follows 53,64.  

Pseudosuchia – Phytosauria is included within Pseudosuchia after 53. Phytosaur taxonomy 

primarily follows the results of the species/specimen-level analyses of 50,65 and the summary 

of 66. Rutiodon spp. other than R. carolinensis are not considered valid 66; the wastebin nature 

of the taxon also means that R. sp. records could not be accommodated. Pseudopalatus, 

Arribasuchus, and Redondasaurus were considered junior synonyms of Machaeroprosopus 

after 67. Phytosaur phylogeny primarily follows 68,69 with Pravusuchus considered the sister-

taxon to Pseudopalatinae after 65. “Paleorhinus” parvus is positioned as an Angistorhinus-grade 

phytosaur following the comparisons of 69. The holotype of “Angistorhinopsis” has been 

generally compared to Nicrosaurus e.g 70 and is hence placed close to Nicrosaurus as a possible 

synonym. 

Ornithosuchidae is placed after 53,71; relationships within the clade then follow 72. The position 

of the Erpetosuchidae was highly labile in the results of 73, primarily due to the taxa 

Gracilisuchus and Turfanosuchus, which have since been reappraised 71. Consequently, 
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erpetosuchids are here placed according to their position upon removal of these taxa in 73, as 

sister to [Revueltosaurus+Aetosauria]. Aetosaur taxonomy follows 74–76 and phylogeny 

primarily 76 with additional input from 77. The problematic taxa Acompsosaurus and 

Ebrachosaurus were excluded. 

Gracilisuchid phylogeny follows 71. Poposaurid phylogeny then follows 78. “Prestosuchid” and 

rauisuchian topology follows 78–81 with Youngosuchus placed after 53. However, conflict 

between competing topologies and differences in taxon sampling mean that resolution is this 

region of the tree is compromised, with “prestosuchids” forming a large polytomy. Dagasuchus 

and Decuriasuchus are included in this polytomy based upon the comparisons of 82,83. 

Crocodylomorph taxonomy follows the summary of 84 and relationships follow 78,85–88, 

although incomplete taxon coverage and topological conflict means that the resolution of 

“sphenosuchian” taxa is poor. Although the material originally described as 

“Dianchungosaurus” is chimeric, it does demonstrate some mesoeucrocodilian 

synapomorphies 89 and so is retained accordingly here. 

Avemetatarsalia – Avemetatarsalian relationships primarily follow 78, with additional 

information from 79,90–92; uncertainty in the position of Scleromochlus means that it was placed 

in a polytomy with Pterosauria and more derived taxa. Taxonomy of basal forms follows 93, 

with the “Eagle Basin lagerpetid” assigned to Dromomeron romeri after 94. Pterosaur taxonomy 

and phylogeny follows 95 and comparisons in 96. Faxinalipterus is considered Archosauria 

indet. following 97 and so was excluded from consideration. 

The “Eagle Basin silesaurid” is retained as a separate OTU following 94. The Otis Chalk and 

Petrified Forest silesaurids each also preserve putative apomorphies 98 and so are also retained. 

Pseudolagosuchus was considered a junior synonym of Lewisuchus after 92,98,99 and 

Agnosphitys was included as a silesaurid after 93. Silesaurid phylogeny follows 92,99–101, 
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although accommodation of poorly-known taxa and specimens means that resolution within 

this clade is poor. 

Nyasasaurus was placed in a polytomy with Ornithischia and Saurischia in order to 

accommodate the uncertainty in its phylogenetic position 81. Ornithischian relationships then 

follow 102–104 with heterodontosaurid taxonomy and phylogeny after 102,103,105,106, although 

accommodation of poorly-known specimens and taxa results in very limited resolution within 

this clade. Dubious Triassic and Early Jurassic ornithischians based on fragmentary or dental 

remains have been omitted 107,108. Although the thyreophorans Tatisaurus and Bienosaurus are 

of dubious validity 109 they can be distinguished from Scelidosaurus 109 and so are provisionally 

retained here as informal taxa.  

Theropod relationships follow 110–113. Coelophysoid relationships follow 114, although the 

complicated taxonomic history of Coelophysis and proximate taxa 115 means that Coelophysis 

bauri, Coeolophysis (= Megapnosaurus) rhodesiensis, and Campsosaurus have been collapsed 

into a polytomy. Additional theropod taxa were placed on the basis of phylogenetic results or 

comparisons from individual studies (Gojirasaurus 116, Lophostropheus 117, Dracovenator 118, 

dilophosaurid remains from the Dharmaram Formation 119, and an unnamed neotheropod from 

Poland 120). Eshanosaurus is tentatively considered to represent the oldest coelurosaur after 121. 

Sauropodomorph relationships follow 122–136. Asylosaurus was positioned in a polytomy with 

Thecodontosaurus and Pantydraco based upon the comparisons of 137. Euskelosaurus was 

considered invalid after 138,139, with most material reassigned to Plateosauravus following 138–

143. Plateosaurus longiceps is treated as a junior synonym of P. erlenbergiensis 144; P. gracilis 

is tentatively treated as a valid taxon following 145. Purported Plateosaurus sp. records from 

the UK cannot be reliably diagnosed above the level of Saurischia 146. 
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Doubts about the validity of “Gyposaurus sinensis” means that most specimens formerly 

referred to this taxon were omitted from analysis. However, the two specimens for which the 

taxon were originally named are potentially valid and have been resolved in a basal position 

proximate to Sarahsaurus 147. Lufengosaurus magnus was considered a likely junior synonym 

of L. huenei and Yunnanosaurus robustus a junior synonym of Y. huangi 141. 

The holotype of “Gryponyx africanus” was considered potentially valid and placed in the 

position resolved by 136. Xixiposaurus was positioned proximate to Mussaurus following the 

results of 148. Coloradisaurus was also positioned close to these taxa in 148. However, this is 

due to features which have since been demonstrated to be erroneous 124,125 and Coloradisaurus 

is instead considered a massospondylid after 124–126,131,133. Chinshakiangosaurus was positioned 

on the basis of 149.  

Synapsida 

“Pelycosaur” phylogeny follows 150. Raranimus is considered the sister taxon to all other 

therapsids after 151. Biarmousuchian relationships follow 152,153; Biarmosuchoides is tentatively 

positioned as a basal biarmousuchian, in a polytomy with Biarmosuchus and more derived taxa 

based on the comparisons of 154. Ivantosaurus and Eotitanosuchus are considered junior 

synonyms of Biarmosuchus tener following 155. Anteosaur taxonomy follows 156 and 

tapinocephalid taxonomy 157,158. Dinocephalian phylogeny follows 159, although lack of recent 

interest in tapinocephalid interrelationships means that resolution within this clade is poor. The 

affinities of Niaftasuchus and Phtinosuchus within therapsids are unknown 156; consequently, 

they were not included.  

Anomodont phylogeny follows 160,161 with emydopoid topology following 162. Additional 

general input on taxonomy comes from 163,164. Endothiodon taxonomy follows 165 in the 

absence of formal revision, as in 164. Relationships within the genus follow 166, with E. tolani 
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placed as the sister taxon to all other species on the basis of the comparisons of 167. 

Chelydontops is considered a junior synonym of Brachyprosopus after 161 and Diictodon 

tienshanensis a junior synonym of D. feliceps after 168. Abajudon was excluded as its affinities 

are poorly constrained 169. Kingoria was considered synonymous with Dicynodontoides after 

170. Taxonomy of Dicynodon spp. and taxa formerly considered to belong to this genus follow 

160,162,171; the polyphyletic nature of the classical “Dicynodon” means that occurrences only 

identified to the level of D. sp. were omitted. “Aulacephalodon peavoti” has been referred to 

multiple species and genera, and in addition the holotype is currently lost 172. Consequentially, 

it was also omitted from the dataset. 

Lystrosaurus spp. taxonomy follows 164,173, with OUMNH TSK 2 removed from the genus after 

171. The affinities of “Kannemeyeria latirostris” are contested 174: given that it provides 

redundant biogeographic information with respect to K. lophorhinus it was omitted from 

analysis. Rechnisaurus was considered endemic to India, with African occurrences instead 

referred to Kannemeyeria after 164,175. Placerias gigas was considered synonymous with P. 

hesternus 176. The phylogenetic position of Elephantosaurus is uncertain 160 and it provides 

redundant biogeographic information with regards to better-constrained kannemeyeriiform 

taxa. As a result, it was omitted here. Sungeodon was placed after 177.  

A humerus from the Upper Muschelkalk originally compared to Placerias 178 has since been 

compared to multiple other kannemeyeriiform taxa 179,180. Unfortunately, the specimen is now 

destroyed, making assessment of it even more problematical. Given these difficulties, it was 

omitted from analysis. 

Taxonomy and phylogeny of basal gorgonopsids follow 181 and those of rubidgeines follow 182. 

The holotype of “Gorgonops whaitsi” is both problematic and apparently lost 181. 

Consequently, it was excluded. Arctognathus curvimola was considered the only species of 
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Arctognathus following 183. Arctops is tentatively placed in a position close to Smilesaurus 

based on the comparisons of 182. 

Viatkogorgon, Suchogorgon, and Pravoslavlevia are problematic, having never been included 

in a numerical phylogenetic analysis. Kamagorgon and Dinosaurus are also poorly 

phylogenetically constrained, having been compared variously with gorgonopsians 184, 

Phtinosuchus and dinocephalians 185. Consequently, all of these taxa were omitted.  

Therocephalian relationships primarily follow 186,187. Taxonomy generally follows 163 with 

updates from subsequent phylogenetic analyses and descriptions 187–193. The traditional 

“Scalposauridae” is polyphyletic 189: as a result, scaloposaurid taxa which have yet to be 

included in quantitative phylogenetic analyses cannot be placed with any precision and so were 

excluded. Megawhaitsia is placed as a whaitsid after 194.  

Non-mammaliaform cynodont topology primarily follows 195, with additional referral to 14,196–

200 for traversodontids and 201–203 for prozostrodontians. Cynodont taxa known only from dental 

remains e.g. 204,205 have proven to be phylogenetically problematic 205 and so were omitted 

from analysis here. Cyrbasiodon is considered a junior synonym of Procynosuchus after 206. 

Procynosuchus rubidgei is considered synonymous with P. delharpae after 163. Trirachodon 

species taxonomy follows 163,207. Bolotriodon was positioned after 208; Cromptodon was placed 

proximate to Bolotriodon and Galesauridae based upon the comparisons of 209. 

Titanogomphodon is considered a diademodontid following 210.  

“Pachygenelus milleri” is undiagnostic above the level of ?Eucynodontia indet. 50 and so was 

excluded, as was the problematic “madysaurid” Madysaurus. Probelesodon and Belesodon 

were treated as junior synonyms of Chinquodon after 211. Abelobasileus was placed following 

212 and Dinnebitrodon was considered to be a tritylodont after 213. “Dromatheriids” are poorly 

known, and their phylogenetic position remains uncertain 214,215, preventing their inclusion. 
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The same is true for most “therioherpetids”, which have not been included in quantitative 

phylogenetic analyses. The exceptions to this are Therioherpeton and Riograndia, which have 

generally not been found to form a monophyletic group 195. Other “therioherpetids” hence 

could not be accommodated. Oligokyphus spp. referral follows 216. Protheriodon, 

Panchetocynodon, and Minicynodon are positioned based on the results and comparisons of 

209. 

The interrelationships of basal mammaliaform clades follow 199,217–222. Hadrocodium was 

positioned after 223 and Trishulotherium after 224. Dyskritodon is considered a triconodontid 225 

and Brachyzostrodon a megazostrodontid with the informal species of 226 provisionally 

included. The content of the Morganucodontidae follows 227,228 and that of Haramiyidae 

follows 199,229. Indobaatar is considered to represent the earliest multituberculate after 230. 

Mammaliaform tooth taxa (e.g. “symmetrodonts”) are generally phylogenetically and 

taxonomically problematic, and so were mostly excluded, as with non-mammaliaform 

cynodonts. 

Supplementary Note 2: Taxon occurrences and ages 

Occurrence data for these taxa was taken primarily from the Paleobiology Database 231, with 

the addition of some occurrences from the literature (see Supplementary Data 2). Taxa were 

dated at stage level. They were then placed in the following time bins for analysis: Lopingian, 

Early Triassic (Induan and Olenekian), Anisian, Ladinian, early Late Triassic, late Late 

Triassic, early Early Jurassic (Hettangian, Sinemurian), and late Early Triassic (Pliensbachian, 

Toarcian).  

The Late Triassic was not split into its constituent stages due to the disproportionately long 

Norian e.g. 232–235. Similarly, recent re-dating of the Los Colorados Formation as being early–

middle Norian in age 235 prevents separation of time bins according to the Ischigualastian and 
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Coloradian land vertebrate ages. Instead, Late Triassic occurrences were divided into two time 

bins: Carnian–early Norian (Lacian) and middle/late Norian (Alaunian)–Rhaetian, with the 

separation between these bins dated at approximately 219–213 Ma 232. Geological units were 

assigned to each of these time bins as summarized in Supplementary Tables 1 and 2. However, 

difficulties in the dating of individual geological units and/or uncertainty in dating the base of 

the Alaunian 232 meant that occurrences from the Sonsela Member of the Chinle Formation, 

the Trujillo Formation, the Lockatong and lower Passaic (Neshanician) formations from the 

Newark Basin, the Leedstown Formation from the Taylorville Basin, Late Triassic occurrences 

from the Fundy Basin, the Bigoudine Formation, the Riograndia Assemblage Zone of the Santa 

Maria Supersequence, the La Esquina fauna of the Los Colorados Formation, the Upper Maleri 

Formation, the fissure-fill deposits of the southwestern UK, and most Middle Stubensandstein 

occurrences could not be satisfactorily restricted to a single time bin. To reflect this uncertainty, 

these occurrences were included in both Late Triassic time bins for analysis. 
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Area early Late Triassic Referral 

Western 
USA 

Chinle Group: Mesa Redondo Member, 
Bluewater Creek Formation, Blue Mesa 
Member. 
 
Dockum Group: Colorado City Formation, 
Tecovas Formation and correlates of these 
units. 

Otischalkian and Adamanian Land Vertebrate Faunas 236 were 
considered to be Carnian and early Norian in age, respectively, after 233. 
This corresponds with radiometric dating of the overlying Sonsela 
Formation of the Chinle Group 237. 

Eastern 
USA 

Newark Supergroup: Stockton Formation, 
Conewagian Formation, New Oxford 
Formation, Cumnock Formation. 
 
Taylorsville Basin: Newfound Formation, 
Port Royal Formation. 

The chronostratigraphic framework of the Newark Supergroup and its 
correlates used herein follows that of 234. 

Morroco Irohalene Formation 
The Irohalene Formation is dated late Carnian-early Norian on the basis 
of biostratigraphy 238 and palynological dating of the overlying Bigoudine 
Formation 239,240. 

UK Lossiemouth Sandstone 
The Lossiemouth Sandstone is considered to be late Carnian in age on 
the basis of biostratigraphy 91. 

Continental 
Europe 

Germanic Basin: Stuttgart Formation, 
Weser Formation, Arnstadt Formation, 
Lower Stubensandstein of the Lowenstein 
Formation and their correlates.  
 
Poland: the Krasiejow fauna. 

The Lacian is considered to be early Norian in age, following 232,241–244. 
The Krasiejow fauna is dated after 245–247. 

Brazil 
Santa Maria Supersequence: Santa Cruz 
Sequence, Candelaria Sequence. 

Stratigraphy and dating of the Santa Maria Supersequence follows 248, 
with these sequences being considered to range from late Ladinian to 
early Norian. 

Argentina 
Ischigualasto Formation, Cacheuta 
Formation, the La Chilca Fauna of the Los 
Colorados Formation. 

Stratigraphy follows 249, biostratigraphy 100,127 and chronostratography 
235. The Cacheuta Formation is dated based on correlation with the 
Ischigualasto Formation 240,250. The La Chilca fauna is correlated with the 
Candelaria Sequence based on the presence of Jachaleria 240. 

India Lower Maleri Formation 
The Lower Maleri fauna allows correlation with the Scaphonyx-
Exaeretodon-Herrerasaurus and Hyperodapedon Assemblage Zones, and 
so is late Carnian to early Norian in age 132. 

 

Supplementary Table 1: Referral of stratigraphic units to the early Late Triassic time bin as used in this analysis. 

For units referred to the late Late Triassic time bin see Supplementary Table 2; for those which could not be 

delimited to either Late Triassic time bin, and so were included in both, see Supplementary Note 2. 
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Area late Late Triassic Referral 

Western 
USA 

Chinle Group: upper Petrified Forest/Painted Desert 
Member, Owl Rock Member, Rock Point Member. 
 
Dockum Group: Redonda Formation, Sloan Canyon 
Formation, Upper Trassever Formation, and 
correlates of these units. 

The Apachean Land Vertebrate Fauna 236 was considered to be 
late Norian-Rhaetian in age, after 233. 

Eastern 
USA 

Newark Supergroup: Upper Paissic Formation 
(Cliftonian).  
 
New Haven Formation. 

Newark Supergroup chronostratigraphy follows 234. The age of 
the New Haven Formation is based on the radiometric dates of 
251. 

Greenland Fleming Ford Formation 
The Fleming Ford Formation is considered Rhaetian based on 
correlation with the Newark-APTS 2010 234 and the 
Steinbergkogel 252. 

Continental 
Europe 

Germanic Basin: Upper Stubensandstein of the 
Lowenstein Formation, Trossingen Formation 
(Knollenmergel), Exter Formation, and their 
correlates. 
 
Italy: Zorzino Limestone, Dolomia di Forni 
Formation. 

The Sevatian 1 is considered to be late Norian in age, and 
Sevatian 2 Rhaetian in age following 232,241–244. The Italian 
limestone successions are dated on the basis of palynofloras 
and conodont ages 253–255. 

Argentina Quebrada del Barro Formation  256. 

South 
Africa 

Lower Elliot Formation 257. 

India Dharmaram Formation 
The absence of rhynchosaurs and therapsids in this fauna imply 
a late Norian-Rhaetian age 132. 

 

Supplementary Table 2: Referral of stratigraphic units to the late Late Triassic time bin as used in this analysis. 

For units referred to the early Late Triassic time bin see Supplementary Table 1; for those which could not be 

delimited to either Late Triassic time bin, and so were included in both, see Supplementary Note 2. 
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Supplementary Note 3: Geographic regions 

Geographic areas for use in studies of palaeobiogeography are usually defined on the basis of 

modern continental configurations e.g. 258–261. However, this is potentially problematic when 

dealing with occurrences on a supercontinent where, for example, eastern North American and 

northwestern African localities were much closer to each other than to localities in 

southwestern North America or southern Africa, respectively. Instead, the geographic areas to 

be treated as nodes in the network analyses were defined on the basis of multivariate k-means 

clustering of palaeocoordinate data. 

Palaeolongitudes and palaeolatitudes for 2144 Lopingian-Toarcian terrestrial tetrapod 

occurrences were taken from the Paleobiology Database, and binned at epoch level, so as to 

mitigate the effects of continental drift on results (see Supplementary Data 2). K-means 

clustering was then performed on these epoch-level datasets within R 3, varying k from 5-15. 

Ten-thousand replicates were performed for each of these analyses, with ten random starts. The 

performance of each was measured as the proportion of the total variance explained by the 

resolved clusters (the ratio of the between clusters sum of squares: total sum of squares). The 

best performing iteration for each value of k was retained for further comparison. 

Comparison between results of different values of k was principally performed on the basis of 

the proportion of variance explained by each, with those scoring <98% omitted from 

consideration. These results are given in Supplementary Table 3, with full results of the cluster 

analyses given as Supplementary Data 3. Further comparison between results for different 

values of k was performed on the following criteria: the consistency of the clusters through the 

time interval of interest and their consistency with previously recognized biogeographic 

provinces e.g. 240,260,262. Results for fifteen clusters were unstable between different time bins, 

resulting in the designation of ten clusters to use in the network biogeography analyses, as 
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given in Fig. 1b. These then formed the basis of the bipartite taxon-locality presence/absence 

matrices for each time bin, given in Supplementary Data 4. 

 Number of clusters (k) 

 5 6 7 8 9 10 11 12 13 14 15 

late Permian 
97.3 97 97.3 97.4 98.1 98.7 98.8 98.8 98.9 99 99.1 

Early Triassic 
93.7 96.5 97.5 98 97.8 98.6 98.8 99.2 99.4 99.5 99.5 

Middle Triassic 
93 95.8 96.9 97.3 98.1 98.2 98.9 98.8 99.3 99.3 99.4 

Late Triassic 
91.8 93.6 94.8 95.6 96.9 98 97.6 97.9 97.7 97.9 98.7 

Early Jurassic 
97.6 98.5 99.2 99.5 99.5 99.6 99.6 99.6 99.7 99.8 99.8 

 

Supplementary Table 3: Performance values (measured as the % total variance explained by the observed 

clusters) of the best performing clustering analyses for each value of k in each time bin. Those exceeding the 98% 

threshold applied within are shaded. 

Supplementary Note 4: Sampling 

Global sampling during this interval is uneven: in particular, there is a dearth of occurrences 

from low-latitude Gondwana during the late Permian, Ladinian, latest Triassic, and Early 

Jurassic (Supplementary Fig. 1).  During the Early Triassic, at least, this paucity may have been 

genuine 264, but may be masking biogeographical heterogeneity in other bins 265. Still, the 

inclusion of phylogenetic information, and use of relatively broad regions, makes the analyses 

reported herein less vulnerable to sampling heterogeneity than similar previous studies.  
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Supplementary Figure 1: Plot of the number of late Permian-Early Jurassic species sampled in this analysis 

against palaeolatitude. 

Global pBC shows no significant correlation with either the number of taxa or the number of 

regions (and so, localities) sampled in each time bin (Supplementary Figs 2, 3a, b). In contrast, 

a significant negative correlation is observed between global pBC and the length of bins as 

used in the main results (Supplementary Fig. 3c). This suggests that the low values of pBC 

observed in the Late Triassic and Early Jurassic may be a consequence of the relative length of 

these bins.  

To investigate this further, the analysis was repeated with shorter-scale time bins within this 

interval: Carnian-early Norian, late Norian, Rhaetian, Hettangian, Sinemurian, Pliensbachian, 

and Toarcian (unfortunately difficulty separating late Carnian and early Norian occurrences 

prevented subdivision of the early Late Triassic). The same trends are resolved using these 

shorter time bins: low pBC during the Late Triassic, followed by a significant increase across 

the Triassic-Jurassic boundary after which values decline strongly in the Pliensbachian-

Toarcian (Supplementary Fig. 4). Under this treatment, the relationship between pBC and bin 

length is no longer significant (Supplementary Fig. 3d): the late Norian and Rhaetian represent 

two of the shortest time bins, yet still exhibit pBC values of close to zero. Overall results 
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therefore appear robust to binning treatment and are not driven by bin length. As a result, the 

analyses herein are considered to capture valid biological signal, especially in Laurasia and 

temperate Gondwana. 

 

Supplementary Figure 2: Results for phylogenetic biogeographic connectedness (pBC, in blue, 95% confidence 

intervals calculated from jackknifing with 10,000 replicates), non-phylogenetic biogeographic connectedness 

(BC, in red, 95% confidence intervals calculated from jackknifing with 10,000 replicates) for the Lopingian 

through to the end of the Early Jurassic, plotted against the number of species and number of regions in each time 

bin. 

However, the poor and uneven sampling of low-latitude Gondwanan localities means that 

results for the southern hemisphere should still be interpreted more cautiously. This is 

particularly true in the late Late Triassic time bin, which contains only 29 Gondwanan species, 

of which over 48% are known from a single area. Consequently, the potential decoupling of 

local pBC signals within Gondwana from global patterns identified in this time bin requires 

corroboration from future sampling of additional Gondwanan localities. 
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Supplementary Figure 3: Sampling of taxon occurrence data. a) Linear regression of phylogenetic biogeographic 

connectedness versus the number of species included in each time bin, showing a non-significant relationship (p 

= 0.2855, adjusted r2 = 0.05076). b) Linear regression of phylogenetic biogeographic connectedness versus the 

number of regions in each time bin, showing a non-significant relationship (p = 0.4924, adjusted r2 = -0.07128). 

c) Linear regression of phylogenetic biogeographic connectedness versus the length of each time bin, showing a 

significant relationship (p = 0.0060103, adjusted r2 = 0.6971). d) Linear regression of pBC against time bin length 

when subdividing the Late Triassic and Early Jurassic into shorter time bines (see Supplementary Note 4, 

Supplementary Fig. 5), showing a non-significant relationship (p = 0.2648, adjusted r2 = 0.03979). 
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Supplementary Figure 4: Phylogenetic biogeographic connectedness results for the Late Triassic-Early Jurassic 

interval, employing finer time bins for the late Late Triassic and Early Jurassic. Ninety-five percent confidence 

intervals, calculated from jackknifing with 10,000 replicates, are given. Hett. = Hettangian. 

Supplementary Note 5: Clade age sensitivity analysis 

Analysis of taxonomic subsets demonstrated that the significant pBC increases observed across 

both the Permian-Triassic and Triassic-Jurassic boundaries were primarily driven by the 

radiation of novel taxa. An alternative possibility, however, is that this increase in pBC is an 

artefact related to a lower average clade age within these time bins. To investigate this 

possibility, the analysis was repeated for the entire time interval including only those clades 

which diverged within 2Ma above or below the lower boundary of each time bin. 

Unfortunately, resulting very low sample sizes in the Ladinian and latest Triassic necessitated 

the use of epoch-level bins for this analysis. 

The results of this analysis recapitulate the overall signal seen from analysis of the complete 

dataset (Supplementary Fig. 5). Significant increases in pBC are still observed across both mass 

extinction boundaries, and there is no significant difference between pBC values derived from 

this subset or the total dataset in Triassic time bins. This indicates that the primary 

biogeographic signals observed during this interval – a decline in cosmopolitanism through the 

sampled interval, punctuated by increases across both the Permian-Triassic and Triassic-

Jurassic boundaries – is not merely an artefact resulting from the average clade age within each 

time bin. 
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In the Lopingian time bin the pBC of these youngest clades was significantly greater than from 

all clades, a pattern otherwise only seen in the post-extinction time bins. The Lopingian is 

predated the poorly-understood end Guadalupian event, which may represent another mass 

extinction266. This offset may reflect similar biogeographic patterns accompanying turnover at 

this time: further analysis of a larger late Palaeozoic interval will be required to test this further.

Supplementary Figure 5: Phylogenetic biogeographic connectedness results through the Lopingian-Early 

Jurassic, comparing results from the whole dataset (in blue) with those from a subset including only clades 

diverging within 2Ma either side of the lower boundary of each bin (in red). Ninety-five percent confidence 

intervals, calculated from jackknifing with 10,000 replicates, are given.  

Supplementary Note 6: Phylogenetic distances in each time bin 

It should be noted that a given value of pBC does not represent a unique solution, as the same 

value could be theoretically generated by a few links between closely-related taxa or more links 

between more moderately related taxa.  

To ensure that observed pBC results are not being driven purely by differences in the average 

branch lengths between taxa sampled in each time bin, pairwise distances, based on branch 

lengths, between all tips were calculated across all input trees for each time bin, following the 

truncation of maximum branch lengths to the µ-value (see Supplementary Note 7). Results 
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indicate no significant differences between time bins (Supplementary Fig. 6), confirming that 

pBC results are not redundant with respect to average relatedness of sampled taxa. 

 

Supplementary Figure 6: Descriptive statistics of pairwise distances between all tips as measured across all 100 

input trees for each time bin after truncation by a µ value of 15Ma, scaled against the maximum distance between 

two tips in each bin. Solid lines refer to median values, box margins to the interquartile range, and whiskers to the 

maximum and minimum observed values in each bin. Tr. = Triassic, Jur. = Jurassic. 

Supplementary Note 7: Phylogenetic network biogeography µ sensitivity analyses  

Analysis of a simulated null (stochastically generated) dataset indicated a systematic bias 

towards increasing phylogenetic biogeographic connectedness (pBC) through time. This is due 

to the increasing distance from a persistent root to the tips through time, which results in 

phylogenetic branch lengths between nearest relative terminal taxa becoming proportionately 

shorter. This was mitigated through the introduction of a constant, μ, which collapses all 

branches below a fixed “depth” such that root age is equal to μ million years from the tips.  
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The introduction of this constant also alleviates problems of temporal superimposition of 

biogeographic signals which may otherwise occur. It means that pBC results reported for each 

time bin reflect patterns generated by biogeographic processes in the preceding μ million years, 

preventing these recent biogeographic signals of interested from being swamped by those from 

deeper time intervals. 

Sensitivity analyses varying the value of μ from 1–25 were performed on the Lopingian-

Toarcian taxon-region matrices (Supplementary Fig. 7). The results were used to choose a μ 

value of 15 for further analysis, for which final results are presented in the main text. Note that 

changes in the value of μ make no difference to the relative pBC seen in consecutive time bins, 

and so the increases observed across both the Permian-Triassic and Triassic-Jurassic mass 

extinction boundaries are not sensitive to different values of μ. A decrease from high values of 

pBC in the Middle Triassic to very low values in the Late Triassic is also robust to the value of 

μ chosen.  

 

Supplementary Figure 7: Results of sensitivity analyses on varying the value of μ from 5-25 in the calculation 

of phylogenetic biogeographic connectedness (pBC). 
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Once the value of µ had been chosen for further analysis, pBC was computed for each time 

bin. Confidence intervals for each bin were then calculated through jackknifing of occurrence 

records, with 10,000 replicates. This method has been made available as the “BC” function 

within the R package dispeRse (263, github.com/laurasoul/dispeRse). Additional options 

include bootstrapping and jackknifing of occurrence records, permutation of random trees, and 

measuring phylogenetic proximity by counting nodes as opposed to measuring branch lengths. 

An example script for pBC analyses is given in Supplementary Data 5, and a more 

comprehensive script covering the analyses performed in this study as Supporting Data 6. 
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