
Supplementary Figure 1: Map of data sources used in this study (not all simultaneously). Typical monthly 
coverage from GOSAT retrievals (purple), CARIBIC flight path (light blue), Darjeeling India (dark blue), 
Cape Rama India (yellow), Sinhagad India (orange).  

Supplementary Figure 2: Amplitude of the summer peak in Tg yr-1, defined as the average of June-
September emissions minus the average of April and October emissions. Red line corresponds to the the Yan 
et al., (2009)1, rice climatology used in the prior and blue line corresponds to the top down with 5th-95th 
percentile uncertainties. 



Supplementary Figure 3: Top-down estimated scaling factors of the prior for each season (unitless). Scaling 
factors were estimated for approximately 40 spatial basis functions within this domain for each month; the 
prior map was scaled up or down by this factor for each basis function. 

Supplementary Figure 4: Difference between top-down and prior emissions for each season in g m-2 s-1. 
Seasons have been defined by the India Meteorological Department classifications: Winter (Jan-Feb), Pre-
monsoon (Mar-May), Monsoon (June-Sep), Winter (Oct-Dec). Scaling factors to the prior flux map for each 
month were estimated for approximately 40 spatial basis functions within this domain; the prior map was 
scaled up or down by this factor for each basis function. Maps of scaling factors for each season are shown 
in Supplementary Figure 3. 
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Supplementary Figure 5: Top-down emissions for each season in g m-2 s-1. Scaling factors to the prior flux 
map for each month were estimated for approximately 40 spatial basis functions within this domain; the prior 
map was scaled up or down by this factor for each basis function. Maps of scaling factors for each season are 
shown in Supplementary Figure 3. 

	
	
	
	
	

	
Supplementary Figure 6: Average ‘top-down’ seasonal emissions uncertainty reduction (unitless), defined as 
the difference between the posterior uncertainty and the prior uncertainty (sampled through hyper-parameter 
PDFs).  Uncertainties were calculated as the ratio of the 5th-95th percentile range to the mean emissions.  
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Supplementary Figure 7: Average GOSAT XCH4

 mole fractions (ppb) over 2012 for each season. Due to 
increasing mole fractions over time and slightly different sampling each year, only 2012 is shown for clarity, 
rather than an average over 2010-2015. 
 
 
 
 
 
 

	
Supplementary Figure 8: Percentage difference between three chemical transport models/inversion methods 
for XCO2, which was used to derive proxy XCH4. Metric is defined as the maximum difference between 
ensemble members and the median model divided by the median model. Due to increasing mole fractions 
over time and slightly different sampling each year, only 2012 is shown for clarity, rather than an average 
over 2010-2015. 
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Supplementary Figure 9: Comparison between MACC-II model CO2 and CO2 observations (ppb) from (top) 
Cape Rama, India (CRI) and (bottom) CARIBIC. Note: CARIBIC model CO2 (red squares) has been offset 
slightly in time for clarity.  
 

 
	
	
	

	
Supplementary Figure 10: Example of a NAME footprint (surface sensitivity) map for a single 0.5 degree 
averaged GOSAT measurement (log[(nmol mol-1)/(mol m-2 s-1)]). Note the logarithmic scale. 
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Supplementary Figure 11: MOZART curtains (CH4 mole fraction in ppb) around the NAME LPDM domain. 
Curtains are extracted at 1.9ox2.5o and monthly resolution. Figure represents one snapshot in time. 

	
 
 
 
 
 
 

	
Supplementary Figure 12: Histogram of the number of regions sampled in the MCMC for a typical month. 
Regions represent the flux field decomposition (i.e. basis functions) used in the inversion. The number and 
spatial distribution of these regions vary at each iteration. The mean number of regions estimated is 
approximately 40. 
 
 
 
 
 
 
 



	

 

Supplementary Figure 13: GOSAT observation and model comparison (ppb) for 2010. Prior (red) and 
posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  Observations 
are shown in green with blue shading indicating the 5-95th percentile range of the model-measurement error 
derived in the inversion. Mole fractions represent the term 𝑿𝑪𝑯𝟒,𝒑𝒆𝒓𝒕

𝒎𝒐𝒅𝒆𝒍 in equation (7) 

 
 



 
 

Supplementary Figure 14: GOSAT observation and model comparison (ppb) for 2011. Prior (red) and 
posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  Observations 
are shown in green with blue shading indicating the 5-95th percentile range of the model-measurement error 
derived in the inversion. Mole fractions represent the term 𝑿𝑪𝑯𝟒,𝒑𝒆𝒓𝒕

𝒎𝒐𝒅𝒆𝒍 in equation (6). 



 
 

Supplementary Figure 15: GOSAT observation and model comparison (ppb) for 2012. Prior (red) and 
posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  Observations 
are shown in green with blue shading indicating the 5-95th percentile range of the model-measurement error 
derived in the inversion. Mole fractions represent the term 𝑿𝑪𝑯𝟒,𝒑𝒆𝒓𝒕

𝒎𝒐𝒅𝒆𝒍 in equation (6). 



 
 

Supplementary Figure 16: GOSAT observation and model comparison (ppb) for 2013. Prior (red) and 
posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  Observations 
are shown in green with blue shading indicating the 5-95th percentile range of the model-measurement error 
derived in the inversion. Mole fractions represent the term 𝑿𝑪𝑯𝟒,𝒑𝒆𝒓𝒕

𝒎𝒐𝒅𝒆𝒍 in equation (6). 



 
 

Supplementary Figure 17: GOSAT observation and model comparison (ppb) for 2014. Prior (red) and 
posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  Observations 
are shown in green with blue shading indicating the 5-95th percentile range of the model-measurement error 
derived in the inversion. Mole fractions represent the term 𝑿𝑪𝑯𝟒,𝒑𝒆𝒓𝒕

𝒎𝒐𝒅𝒆𝒍 in equation (6). 



 
 

Supplementary Figure 18: GOSAT observation and model comparison (ppb) for 2015. Prior (red) and 
posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  Observations 
are shown in green with blue shading indicating the 5-95th percentile range of the model-measurement error 
derived in the inversion. Mole fractions represent the term 𝑿𝑪𝑯𝟒,𝒑𝒆𝒓𝒕

𝒎𝒐𝒅𝒆𝒍 in equation (6). 

 

 
Supplementary Figure 19: CARIBIC observation and model comparison (ppb) for 2012. Prior (red) and 
posterior (blue) mole fractions. Observations are shown in green with blue shading indicating the 5-95th 
percentile range of the model-measurement error derived in the inversion. CARIBIC largely only samples 
boundary conditions since measurement occurs at ~30k feet and therefore these are also reflected in red/blue. 



 
 

Supplementary Figure 20: CARIBIC observation and model comparison (ppb) for 2013. Prior (red) and 
posterior (blue) mole fractions. Observations are shown in green with blue shading indicating the 5-95th 
percentile range of the model-measurement error derived in the inversion. CARIBIC largely only samples 
boundary conditions since measurement occurs at ~30k feet and therefore these are also reflected in red/blue. 

	
	
	
	
	

 
 

Supplementary Figure 21: CARIBIC observation and model comparison (ppb) for 2014. Prior (red) and 
posterior (blue) mole fractions. Observations are shown in green with blue shading indicating the 5-95th 
percentile range of the model-measurement error derived in the inversion. CARIBIC largely only samples 
boundary conditions since measurement occurs at ~30k feet and therefore these are also reflected in red/blue. 



 
 

Supplementary Figure 22: Darjeeling (DJI) observation and model comparison (ppb) for 2012. Prior (red) 
and posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  
Observations are shown in green with blue shading indicating the 5-95th percentile range of the model-
measurement error derived in the inversion. 

	
	
	
	
	

 
 

Supplementary Figure 23: Darjeeling (DJI) observation and model comparison (ppb) for 2013. Prior (red) 
and posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  
Observations are shown in green with blue shading indicating the 5-95th percentile range of the model-
measurement error derived in the inversion. 

 



 
 

Supplementary Figure 24: Cape Rama (CRI) observation and model comparison (ppb) for 2010. Prior (red) 
and posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  
Observations are shown in green with blue shading indicating the 5-95th percentile range of the model-
measurement error derived in the inversion. 

 



 
 

Supplementary Figure 25: Cape Rama (CRI) observation and model comparison (ppb) for 2011. Prior (red) 
and posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  
Observations are shown in green with blue shading indicating the 5-95th percentile range of the model-
measurement error derived in the inversion. 

 



 
 

Supplementary Figure 26: Cape Rama (CRI) observation and model comparison (ppb) for 2012. Prior (red) 
and posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  
Observations are shown in green with blue shading indicating the 5-95th percentile range of the model-
measurement error derived in the inversion. 

 



 
 

Supplementary Figure 27: Sinhagad (SNG) observation and model comparison (ppb) for 2011. Prior (red) 
and posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  
Observations are shown in green with blue shading indicating the 5-95th percentile range of the model-
measurement error derived in the inversion. 

 



 
 

Supplementary Figure 28: Sinhagad (SNG) observation and model comparison (ppb) for 2012. Prior (red) 
and posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  
Observations are shown in green with blue shading indicating the 5-95th percentile range of the model-
measurement error derived in the inversion. 



 
 

Supplementary Figure 29: Sinhagad (SNG) observation and model comparison (ppb) for 2013. Prior (red) 
and posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  
Observations are shown in green with blue shading indicating the 5-95th percentile range of the model-
measurement error derived in the inversion. 



 
 

Supplementary Figure 30: Sinhagad (SNG) observation and model comparison (ppb) for 2014. Prior (red) 
and posterior (blue) mole fractions and prior (orange) and posterior (black) boundary conditions.  
Observations are shown in green with blue shading indicating the 5-95th percentile range of the model-
measurement error derived in the inversion. 

 
 
 
 



	
Supplementary Figure 31: Indian CH4 emissions in Tg yr-1 derived (blue line) using a prior with an annual 
value for rice emissions (orange line). Blue shading indicates the 5th-95th percentile range of the posterior 
solution. Light pink bars indicates the period of the summer monsoon. The results from the main text are in 
green. 

 

 

  

	
Supplementary Figure 32: Indian CH4 emissions in Tg yr-1 derived with perturbed values of XCH4. 
Perturbations were based on high (blue line) and low (orange line) model XCO2 values from MACC-II, 
CarbonTracker and GEOS-Chem, which were then used to derive the proxy XCH4. Blue and orange shading 
indicate the 5th-95th percentile range of the posterior solutions of the two perturbed scenarios. The results 
from the main text are in green. 
 



	
Supplementary Figure 33: Indian CH4 emissions in Tg yr-1 derived with GOSAT soundings randomly 
resampled (blue line). In each month, 200 samples were randomly chosen. Blue shading indicates the 5th-95th 
percentile range of the posterior solution. The results from the main text are in green. 

 
 

 
	

	
	

Supplementary Figure 34: Indian CH4 emissions in Tg yr-1 derived using using GOSAT observations only 
(blue line). Blue shading indicates the 5th-95th percentile range of the posterior solution of the GOSAT only 
scenario. The results from the main text are in green. 
 
 
 



	
 
 
Supplementary Figure 35: Indian CH4 emissions in Tg yr-1 derived with the stratosphere in the MOZART 
model increased by 5% (blue line). Blue shading indicates the 5th-95th percentile range of the posterior 
solution. The results from the main text are in green. 

 
  



Supplementary Note 1: 
 
GOSAT: 
Dry air column-averaged CH4 mole fractions, XCH4, have been measured since 2009 in the short-
wave infrared (SWIR) using the TANSO-FTS instrument on the GOSAT (Greenhouse gases 
Observing Satellite) satellite2. GOSAT measurements are valuable for flux quantification because 
the satellite has a repeat cycle of 3 days and has sensitivity to the near-surface. Soundings are 
typically separated by approximately ~100 km with diameter ~10 km. Therefore, the satellite can 
provide spatial and temporal coverage for regions of the world that are not well-covered by surface 
monitoring.  
 
In this study, we used XCH4 data from the University of Leicester version 6 proxy retrieval 
(http://www.leos.le.ac.uk/GHG/data/)3,4 from 2010-2015. We used only those data that have been 
filtered for clouds and passed the quality flag and these data were averaged into 0.5° bins. 
Retrievals occurring over significant topography (defined as over 1000 metres above sea level) 
were removed from the analysis to minimize any artefacts that may arise in the retrieval algorithm 
due to the compressed column as well as due to errors in the transport model over these regions. 
Ocean glint-mode observations also were not used to avoid any systematic errors that may exist 
between the two modes of operation. Supplementary Figure 7 shows time-averaged XCH4 
concentrations during each season over India. Seasons have been defined by the Indian 
Meteorological Department classifications: Winter (Jan-Feb), Pre-Monsoon (March-May), 
Monsoon/Summer (June-Sept), Post-Monsoon (Oct-Dec). Methane concentrations are highest in the 
Indo-Gangetic Plains (IGP) of northern India during the summer monsoon, when emissions from 
rice cultivation maximize, and lowest during the pre-monsoon. During winter and the pre-monsoon, 
concentrations are relatively uniform over the country. The seasonal changes in concentrations are 
due to both changes in regional emissions as well as changes in transport. Winds exhibit seasonal 
reversals due to the monsoon circulation. 
 
While two methods are available (full-physics and proxy), the proxy retrieval was chosen for South 
Asia because we expect there to be impact from atmospheric scattering due to clouds and aerosols. 
XCH4 was derived by multiplying the measured XCH4/XCO2 ratio from a non-scattering 
atmosphere by a model XCO2 field (equation 1). Because XCO2 varies much less in the atmosphere 
than does XCH4, it is assumed that the errors in XCO2 are of much smaller magnitude than the 
errors due to incompletely quantified atmospheric scattering in the full-physics retrieval. This is 
particularly important for regions of high aerosol loading and/or cloud cover.5 
 
 
 𝑋𝐶𝐻1

23456 = 	
𝑋𝐶𝐻1
𝑋𝐶𝑂:

×𝑋𝐶𝑂:<4=>? 
(1) 

 
The main limitation of the proxy method is that it relies on accuracy of the model XCO2 field, 
which has assimilated surface CO2 observations using a chemical transport model. Proxy XCH4 has 
been used in a variety of global and regional studies6–12 and has been validated against surface, 
aircraft and TCCON measurements3,4,13,14. 
 
Firstly, we investigated the range of XCO2 between the three models, which are found in version 6 
of the GOSAT product. Supplementary Figure 8 shows the percentage range of these models 
relative to the median model (which varies for each retrieval). The smallest and largest differences, 
as a percentage, occur in winter and summer, respectively. The maximum difference, which affects 
a small subset of retrievals, is on the order of 1%. To assess the sensitivity of national emissions to 
the range of XCO2 fields, we have repeated our inversions by scaling each XCH4 retrieval up and 
down by the percentage difference in Supplementary Figure 8 and these results are discussed 
further in Supplementary Note 3 



 
We have also compared MACC-II model output15 against CO2 mole fractions measured at Cape 
Rama, India (CRI) and on the CARIBIC aircraft  (Supplementary Figure 9).  It is important to 
note that because CO2 measurements are sparse in India and this analysis is limited to two datasets, 
this comparison is presented to show the potential impact of this error, rather than to account for it. 
Because the inversion results will only be sensitive to spatial gradients in the CO2 model error 
(uniform differences would be absorbed into boundary conditions and offset terms), there is 
insufficient information to know what effect this error would have on the inversion results. The 
main difference between CRI data and model CO2 occurs during the post-monsoon and winter. 
While the model simulates the minimum of the seasonal cycle in November, this is not evident in 
the CRI data. At these times, the model is as much as 8% lower than the observed value.  All other 
times of year appear consistent between model and observations. This discrepancy could be due to 
the resolution of the model or due to the prior flux field used. The CARIBIC data shows that the 
model could be biased slightly low (<0.1%) but this is less pronounced than the CRI comparison. 
Because the aircraft samples in the upper troposphere, spatial gradients are much smaller than at the 
surface and therefore, it is expected that the differences between the model and observations will 
not be as large. This data comparison suggests that results from October-January should be 
interpreted with greater caution. However, it should be noted that the effect on the column will be 
much less extreme than what is shown at the surface. Our results during October-January do not 
show any extreme changes relative to other times of the year. 
 
Previous studies have also found systematic errors between GOSAT retrievals and ground-based 
FTIR measurements from TCCON (Total Carbon Column Observing Network) but TCCON data is 
not available in South Asia3,16. Systematic errors between GOSAT and TCCON have typically been 
less than 5 ppb. In addition, studies have found biases between GOSAT and model derived column 
mole fractions7, which could additionally be due to systematic errors in the chemical transport 
model. These errors have exhibited a latitudinal dependence on the order of 20 ppb, peaking in the 
tropics. Many inverse studies account for a systematic error in the inversion between satellite and 
calibrated data, which we also incorporate into our inverse method. 
 
Surface stations: 
We used data from three surface stations (Darjeeling, India, DJI; Cape Rama, India, CRI; Sinhagad, 
India, SNG).  DJI (88.25°E,27.03°N, 2200 m.a.s.l.) is located in the Himalayas in the eastern part of 
India. DJI was an in situ station with high-frequency CH4 observations on a gas chromatography-
flame ionization detector (GC-FID) between 2012-201317. Measurements were calibrated on the 
Tohoku University calibration scale but converted to the NOAA-2004 scale using an inter-
calibration factor of 1.000318. For this study, measurements were averaged into 3-hour periods and 
only used for the period May-September when the meteorology of the region is conducive for 
sampling large-scale regional emissions rather than more localized sources17. CRI is located on the 
western coast in Goa (73.83°E, 15.08°N, 60 m.a.s.l), where weekly flask measurements were made 
until 2013. Measurements were made on a GC-FID and calibrated on the NOAA-2004 scale19. SNG 
is located near Pune in the western Ghats region of India (73.75°E, 18.35°N, 1600 m.a.s.l). Flasks 
were measured weekly through 2014 on a GC-FID and calibrated on the NOAA-2004 scale20.  
 
CARIBIC: 
We used data from the CARIBIC passenger aircraft program, including 24 winter (Jan-Mar, Nov-
Dec) flights over South Asia (http://www.caribic-atmospheric.com). Summer flights over South 
Asia were discontinued after 2008 but have been used to estimate monsoon-related biogenic 
production of CH4 from South Asia21. These flights took place either from Frankfurt, Germany to 
Chennai, India or Frankfurt to Bangkok, Thailand. Methane mole fractions were measured in flight 
using a Los Gatos Research Fast Greenhouse Gas Analyzer at 1 Hz frequency.  The precision with 
10s averaging is approximately 1 ppb22 and measurements were calibrated using whole air samples 



on the NOAA-2004 calibration scale23. To minimize the effect of contaminated samples from 
airports, air was only sampled at altitudes with pressure below 650 hPa. For this study, 
measurements were averaged into 1 minute periods. 
 
 
Supplementary Note 2: 
 
Model uncertainties derived through the hierarchical inversion method were derived for each 5-day 
period per surface site or per 5-degree latitude bin for satellite/aircraft observations. Average model 
uncertainties on GOSAT retrievals were found to be 14.0 ppb, with the largest uncertainties in July 
- September (mean model error of 20.4 ppb) and the lowest in January-April (mean of 9.0 ppb). 
These uncertainties are reflected in the national emissions presented in (manuscript Fig. 1A) which 
shows the smallest and largest uncertainties at these times. There are two possible reasons for the 
larger errors during the summer: firstly, emissions and therefore concentrations above background 
are higher so absolute uncertainties are also larger and secondly, the summer period coincides with 
the Indian summer monsoon, a period of intense and deep convection, which is likely to not be as 
well-represented in the model. Offsets between satellite and calibrated data were also derived along 
with an analysis of the systematic errors associated with incorrect specification of the CO2 model 
used to derive the proxy XCH4 data used in this study. 
 
Offsets between GOSAT and surface/aircraft observations were also estimated in the inversion, 
assuming that the surface/aircraft data were `unbiased' through anchoring to a calibration scale. We 
estimated one offset value for the domain per month but this could be extended to represent a 
physical process such as bias in the XCO2 field. On average, summertime offsets (defined as ygosat, 

obs - ygosat, mod) were +38.6 ppb (largely based on GOSAT and DJI data). Wintertime offsets, in 
contrast (largely based on GOSAT and CARIBIC), were -8.1 ppb. The offset that is estimated is a 
combination of offset due to the observations themselves as well as any offset due to the model and 
both of these are expected to vary seasonally. The model component also includes any error in the 
assumption of the prior model mole fractions being correct above maxlev. We have found that 
changes in the representation of the mole fractions above the maximum level in NAME (i.e. 
assuming either prior model mole fractions or assuming a constant mole fraction between maxlev-
20) had little effect on the emissions that were derived and were largely absorbed into the offset 
term. The changes to the offset term in these two scenarios suggests that a significant component of 
the offset term could be due to the representation of the upper atmosphere in the model. 
Supplementary Note 3 discusses the effect of using GOSAT data alone versus the full set of 
observations and the effect of changes to the model stratosphere.  
 
Supplementary Note 3: 
 
Five sensitivity studies were performed to assess the effect on the top-down results of (1) the prior 
emissions; (2) XCO2 model error; (3) GOSAT tracks; (4) differences between using the full set of 
surface, aircraft, and satellite data and satellite data alone; (5) errors in the model stratosphere.  
 

(1) A sensitivity study was performed to assess the influence that the prior seasonal cycle had 
on the estimated emissions. For the prior of this sensitivity study, we used EDGAR 
v4.2FT2010 (including rice), GFED v3.1 and natural sources and did not use the seasonally 
varying rice prior used in the main results. Though the prior did not contain a summertime 
monsoon signature, the same summertime maximum emerged, showing that the results are 
largely data-driven and not heavily influenced by the prior (Supplementary Figure 31). 
Emissions derived with this prior largely fall within the uncertainties of the top-down 
emissions presented in the main results. 

 



(2) We assessed the effect of errors in the model XCO2 used to derive the proxy XCH4 on 
derived emissions. Supplementary Figure 32 shows national emissions derived using 
perturbed values of XCH4 based on differences between three CO2 models and inversion 
frameworks. Each retrieval was perturbed high or low based on the model CO2 range for 
that retrieval. In this way, differences in the spatial distribution of the model errors 
(Supplementary Figure 8) were accounted for. While the median emissions of the base 
case occasionally lie outside of the uncertainties in the perturbed cases, the uncertainties 
overlap. These findings suggest that the variability between the three CO2 models does play 
a role in the emissions derived for the region, however, it should be noted, that all three 
models are based on a similar set of underlying CO2 data, which are from global networks 
and not from South Asia. Furthermore, it is not expected that all retrievals would necessarily 
be biased consistently in the same direction, so these results reflect the extreme. Larger 
biases could result from inaccuracies in model CO2 compared to observed CO2, as discussed 
above. These findings suggest that the uncertainties quantified using this methodology 
should be extended to account for systematic errors to more completely capture all sources 
of error. 

 
(3) We assessed the effect of randomly resampling 200 measurements from the GOSAT 

observations each month. This was done to determine whether the spatial tracks of the 
GOSAT soundings could impart any systematic bias into the results. Supplementary 
Figure 33 shows that the emissions derived with the random resampling are consistent with 
the results provided in the main text. This provides evidence that the spatial tracks of 
GOSAT are not introducing artefacts into the results. 
 

(4) We assessed the effect of using the full set of satellite, aircraft and surface data (with offsets 
estimated and accounted for) versus using GOSAT data alone. This was performed for the 
year 2012 when all data was available. This was done is determine whether results are 
influenced by the varying amounts of data available for different time periods. 
Supplementary Figure 34 shows little difference in national emissions derived using 
satellite data alone and emissions derived using all available data over 2012 when all sites 
were operational. The difference between the two is insignificant, suggesting that the effect 
of offsets have been accounted for in the derived boundary conditions because they are 
generally spatially uniform across India. 

 
(5) We assessed the effect of errors in the model’s simulation of the stratosphere based on 

findings from Saad et al., 201626. This study found that errors in the model simulation of 
stratospheric CH4 could lead to biases in XCH4, which could result in errors in derived 
surface fluxes. To assess the impact of this error, we perturbed the prior boundary 
conditions by 5% (approximately 100 ppb at the upper levels, as shown by Figure 5 in Saad 
et al., 201626). Supplementary Figure 35 shows that the differences in derived fluxes lie 
within the uncertainties presented in our base case. We propose that these small differences 
are because this is a regional inversion and any errors in stratosphere-troposphere exchange 
will be corrected each month from observations in that month. Any errors in the model 
boundary conditions, which were used as a prior in the inversion, will be minimized as 
offsets and gradients to the prior field are estimated in the inversion. 
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