Table 1b. Conference papers about early diagnosis. | Ref | Tech. | Sensors
Place | Rec.
Freq | Experimental Design | Subjects | Feature extracted | Analysis / Classifiers | Classifier Performance or Findings | |--------------------------|-------|------------------|--------------|---------------------|-----------------------|---|---------------------------------|--| | Brodie
et al.
2014 | ACC | Head,
pelvis | 128 Hz | 19 m walkway | 10 PwPD (mild), 10 HC | Jerk, harmonic stability, oscillation range | ANOVA; PCA; Pearson correlation | PwPD presented faster AP head movements (p=0.02) and slower walking speed (p=0.02) than HC | Table 2b. Conference papers about tremor analysis. | Ref | Tech. | Sensors
Place | Rec Freq | Experimental Design | Subjects | Feature extracted | Analysis /
Classifiers | Classifier Performance or Findings | |---|-------------------|------------------------------------|----------|---|---|--|--|---| | Ghassemi et al.
2016 | ACC, EMG | ACC:
hands.
EMG:
forearms | 1000 Hz | Resting task; Postural task;
Postural task with 1 kg
attached to forearm (each
30 s) | 13 PwPD (tremor
dominant form), 11
ET | mean, SD, skewness,
kurtosis, entropy, energy,
RMS, mean absolute value | DWT method PCA,
SVM | Acc.: 79% for RT; 75% for PT; 83% for PT with weight | | Surangsrirat et al. 2016 | ACC,
GYRO | Wrist and
Forefinger
tip | 125 Hz | Resting task; Kinetic task
(finger-to-nose movement)
(each 10 s) | 32 PD tremor, 20
ET | Temporal fluctuation of tremor signal | SVM 10-fold cross
validation | 100% sens., 100% spec.; 100% acc. for PD/ET classification | | Niazmand et al.
2011 | Smarth clothes | ACC in
MiMed
pullover | 20 Hz | Resting task; Postural task
(each 15 s) | 10 PwPD, 2 HC | Relative ACC: range and freq | Thresholds on freq;
TP, TN, FP, FN | 71% sens., 100% spec. for RT; 89% sens., 97% spec. for PT | | Bazgir et al.
2015 | Smart phone | custom
made glove
case | 100 Hz | Resting task (1 min);
Postural task | Train set: 43 PwPD;
Test set: 9 PwPD | Freq (PSD, F50, SF50, F0) | ANN | 89.6% sens., 90.6% spec., 91% acc. for UPDRS correlation. | | Alhamid,
Alamri, and El
Saddik 2010 | ACC | Hand | 100 Hz | Reaching task: handle a
cup while moving the hand
between two positions | 19 volunteers
with/without tremor
(included PwPD) | PSD | ACC data
Periodiagram | Tremor can be detected with the average curve of periodiagram ACC data | | Thanawattano et al. 2015 | ACC,
GYRO | Index
fingertip | 125 Hz | Resting task; Kinetic task:
finger-to-nose movement
(each 10 s) | 32 PwPD, 20 ET | Temporal fluctuation,
fluctuation ratio of resting to
kinetic task | Threshold algorithm | 100% acc. | | Rigas et al.
2016 | Microsoft
Band | Wrist | 62.5 Hz | Resting task; Postural task; ADL | 11 PwPD | Energy, energy ratios,
principal components, tremor
amplitude, tremor freq | C4.5 DT, 10-fold
cross-validation;
Pearson coefficient | 94% acc. for tremor detection; 85% acc. for RT/PT discrimination. r=0.95 for UPDRS correlation to tremor amplitude. r=0.97 for UPDRS correlation to tremor constancy. | | Zhou et al.
2016 | ACC,
GYRO | Wrist and
Finger | 100 Hz | Resting task; Postural task
and distracting questions
(each 60 s) | 18 PwPD for RT, 13
PwPD for PT | RMS of: linear ACC, angular velocity and displacement; power distribution | N/A | The PD tremor consist of multiple harmonics which are not sinusoidal | | Pierleoni et al.
2014 | ACC,
GYRO | Wrist | 128 Hz | Resting task; Postural task;
Kinetic task (finger-to-
nose movement) and
distracting questions if
tremor did not occur (each
60 s) | 30 PwPD for
UPDRS correlation;
12 PwPD for tremor
classification | PSD, F0, F50, SF50 | PSD and corrective
H factor | 100% sens.,100% spec. for UPDRS correlation;
100% sens., 100% spec. for tremor classification | | Hossen 2012 | ACC, EMG | Not
reported | 800 Hz | Not specified | Train set: 19 PwPD,
21 ET; Test set: 20
PwPD, 20 ET | Power spectral analysis | Feed forward ANN | 90% sens., 85% spec., 87.5% acc. for PD/ET classification | | Cavallo et al.
2013 | ACC,
GYRO | Wrist and
Fingertips | 100 Hz | Resting task; Postural task (each 10 s) | 10 PwPD, 5 HC | PSD | PCA; Pearson coefficient | PCA visually well discriminate PwPD/HC;
0.77 <r<0.88 and<br="" between="" features="" selected="">UPDRS score</r<0.88> | | Fukumoto 2014 | ACC | Arm | Not
reported | Not specified | 6 PwPD (L-dopa
treatment), 6HC; 10
PwPD (biofeedback) | Tremor freq, tremor power | N/A | Decrease of tremor power (p<0.05) and increase
of tremor freq (p<0.05) due to biofeedback and
L-dopa treatment | |------------------------|-------------------------------------|--|-----------------|--|---|---|-----|---| | Roy et al. 2011 | ACC, EMG | Distal
portion of
each limb | Not
reported | 4 h continuously recorded
during unscripted and
unconstrained activities in
a 100 m ² lab that simulated
a studio apartment | Train set: 11 PwPD;
Test set: 4 HC, 8
PwPD | Low pass energy, High pass
energy, Lag and Height of
first peak in autocorrelation
of ACC corrected signal | DNN | >90% sens., >90% spec. for moderate and severe levels of tremor and dyskinesia | | Ruonala et al.
2014 | EMG
Biomonitor
ME6000,
ACC | EMG:
biceps
brachii
(BB)
muscle of
both hands;
ACC:
forearm | 1000 Hz | 7–8 repetitions of biceps
flexion/extension with
elbow staying sitting,
repeated with different
DBS settings with
randomized order | 13 PwPD with DBS | Correlation dimension,
Recurrence rate, Wavelet
maximum | N/A | No substantial change in tremor or rigidity in patients within the measurement. Some patients did not react to DBS adjustment. Tremor and rigidity generally stronger on the right hand side. The most significant increase relative to optimal setup was observed when the stimulator was turned off | Table 3b. Conference papers about gait and TUG analysis. | Ref | Tech. | Sensors
Place | Rec.
Freq | Experimental Design | Subjects | Feature extracted | Analysis /
Classifiers | Classifier Performance or Findings | |--------------------------------------|------------------------|---|-----------------|--|---|---|--|---| | Oung et al. 2015 | ACC,
GYRO | Wrists,
lower limbs | 100 Hz | Walking >10 m, turn around and return; arising from a chair; supination/pronation hand movement; hand flexion/extension; hand movement; finger tapping (FT); leg movement; toe tapping | 15 PwPD, 15
HC | Time domain: mean, variance, SD, integrated FOG, mean absolute value, simple square interval, RMS, v-order 2 and 3, waveform length, average amplitude change, difference absolute SD value, max fractal length. Freq domain: FI, entropy, total power, mean power, mean freq, median freq, peak freq, variance, SD, freq ratio, power spectrum ratio, 1 st , 2 nd and 3 rd spectral moments (for each axis) | 10-fold cross
validation for
SVM with
RBF kernel
and
Probabilistic
Neural
Network
(PNN) with
0.2, 0.06,
0.005 spread
factor (η) | For time domain features: 82.84% acc., 83.6% sens., 82.4% spec., 83.23% ROC for SVM; 83.89% acc., 84.76% sens., 83.83% spec., 84.36% ROC for PNN (η=0.2); 83.84% acc., 83.76% sens., 83.17% spec., 83.46% ROC for PNN (η=0.06); 83.59% acc., 84.4% sens., 83.23% spec., 83.82% ROC for PNN (η=0.005). For freq domain features: 88.8% acc., 88.7% sens., 88.15% spec., 88.48% ROC for SVM; 88.44% acc., 87.64% sens., 87.75% spec., 87.7% ROC for PNN (η=0.2); 88.61% acc., 88.67% sens., 88.52% spec., 88.68 ROC for PNN (η=0.06); 87.03% acc., 86.38% sens., 86.5% spec., 86.45% ROC for PNN (η=0.005). | | Jarchi et
al. 2015 | ACC | ear-worn
Activity
Recognition
sensor | Not
reported | 16 repeated trials of 7 m walkway | 10 PwPD
with DBS | step freq | RMS | RMS=0.0306 | | Fatmehsari
and
Bahrami
2010 | ACC, DBS
system | Thighs,
shanks | Not
reported | Walking | 9 DBS ON
and 9 DBS
OFF PwPD,
10 HC | approximate entropy, Hurst
exponent and Higuchi Fractal
Dimension for evaluating
irregularity, predictability and
complexity of the gait | Leave one out
cross
validation,
kNN | 100% acc. using four gyroscope for HC/PwPD DBS OFF discrimination. 89.47% acc. using four gyroscope for HC/PwPD DBS ON discrimination | | Arora et
al. 2014 | Smartphone
with ACC | Not
specified | Not
reported | Walking 20 steps forward, turn around and return back (1 month controlled study) | 10 PwPD, 10
HC | Mean, SD, 25th and 75th percentile, IQR, median, mode, data range, skewness, kurtosis, mean squared energy, entropy, cross correlation ACCx-ACCy, mutual information ACCx-ACCy, cross-entropy ACCx-ACCy, extent in randomness in body motion, instantaneous changes in energy, autoregression coefficent at lag 1, zero-crossing rate, dominant freq, radial distance, polar and azimuth angle | RF, Random
Classifier,
Conditional
Random
Classifier | For PD/HC classification: 98.5% sens., 97.6% spec., 98.0% acc. for RF; 50.0% sens., 50.2% spec., 50.1% acc. for Random Classifier; 67.7% sens., 32.6% spec., 49.9% acc. for Conditional Random Classifier | | Barth et al.
2013 | GYRO | Foot | 50 Hz | Template data: 10 m walking. Test data: 30 min of gait recording. Test data, daily activity: walking patterns (regular straight, stairs, 8 shaped circles) and daily life activities (sitting, lying, preparing a sandwich, washing dishes, sweeping). | Template
data: 25 HC;
Test data: 10
HC, 10
PwPD; Test
daily
activity: 4 | Step recognition using DWT | Not reported | Steps correctly recognized: 97.7% HC, 75.5% PwPD, 86.7% daily activity | | Reinfelder
et al. 2015 | ACC,
GYRO | Feet | 102.4
Hz | TUG (3 m) | 16 PwPD | statistical features (e.g. RMS,
kurtosis, skewness, mean, mean
Euclidean norm, SD, variance, CV,
min and max, zero crossing rate,
range, integral, normalized jerk
score, jerk score and entropy), | NaiveBayes,
kNN, SVM
with RBF
kernel, RF | 56.87% NaïveBayes, 75.41% kNN, 81.8% SVM, 75.03% RF. The total time of the TUG test increased with the severity of the disease according to the UPDRS and HY stages. | | | | | | | | signal energy feature (e.g. PSD,
energy ratio and energy in freq
band), gait features (e.g. stride time,
angle between two consecutive
strides) | | | |--|-------------------------------------|------------------------|-----------------|---|--|---|--|--| | Al-Jawad
et al. 2012 | ACC,
GYRO | Lower back | 100 Hz | TUG (3 m) | 20 PwPD (10
early and 10
late), 10 HC | angular velocity, angle, LDA of the
stacked cross correlation between
angular rate in pitch axis and the AP
ACC with the cross correlation
between the vertical (VT) and ML
ACC (DTW-based method) | LDA;
Wilcoxon rank
sum test;
DTW-based
algorithm | Differences in: Si2St between HC/earlyPD (p=0.03); first TUG turn between HC/latePD (p=0.0001), HC/earlyPD (p=0.02), earlyPD/late PD (0.007); second TUG turn between HC/latePD (p=0.0001), earlyPD/late PD (p=0.018); overall course between HC/latePD (p=0.0033), earlyPD/late PD (p=0.023). 3D DTW performed better than 1D | | Caldara et al. 2014 | ACC,
GYRO,
Visual
feedback | Each limb
and chest | 50 Hz | Extended TUG test (10 m) | 13 PwPD, 4
HC | posture, gait direction, turning,
exercise duration, intermediate time
by spine, oscillation, tremors,
asymmetries by forearms, gait
quality, FOG, bradykinesia from
legs | N/A | The system is able to monitor a considerable amount of parameters as asymmetries during gait, posture, tremors and total and intermediate times of the exercise execution. | | Barth et al.
2011 | ACC,
GYRO | Foot | 100 Hz | 10 m walking; circling the foot (20 s); heel toe tapping (20 s) | 14 early and
13 mid
PwPD, 16
HC | Step duration, rise/fall gradient of
swing phase, SD of min, max-min
difference, variance, integral,
dominant freq, energy ratio, energy
in band 0.5-3 Hz and in band 3-8 Hz | Boosting with
Decision
Stump, LDA,
SVM | 88% sens., 86% spec. for early diagnosis (early PwPD/HC). 100% sens., 100% spec. for therapy monitoring (mid PwPD/HC, early PwPD/mid PwPD) | | Salarian et
al. 2009 | GYRO | Shanks,
sternum | 200 Hz | 3 turning trials. Walking on a
straight, 7 m long, clearly marked
pathway. Subjects walked at their
normal speed, turn around right
after passing the tape at the end of
the pathway and return back | 14 PwPD
(de-novo), 12
HC | Peak angular velocity, duration,
steps, average step time, maximum
step time, step before turn, number
of double steps | Wilcoxon test;
ICC;
Coefficient of
determination
(R ²) | R ² =0.9989. Significant differences between PwPD/HC in duration of turns, number of double-steps and duration of last step before turn. PwPD were slower and had more double-steps. ICC>0.85 for duration of turns, peak angular velocity of trunk and the duration of the last step before turn | | Tien,
Glaser,
and
Aminoff
2010 | ACC,
GYRO | Foot | Not
reported | Walking task along a
predetermined path along a hallway | 21 significant
gait
disturbance
PwPD, 24 no
significant
gait
disturbance
PwPD, 24
HC | 67 features including: ROM, max
angles of dorsiflexion and plantar
flexion, SD of plantar flexion, roll,
pitch and yaw angles, cadence | PCA; SVM
(RBF kernel,
10-fold cross
validation) | Prediction performance metrics for cases of equal or varying misclassification costs: 93.9% sens., 95.8% spec., 4.2% false positive rate, 97.7% prec Prediction performance for multi-class classification task (class recall/class prec.): PwPD with gait disturbance 52.4/84.6%, PwPD without gait disturbance 66.7/64.0%, HC 91.7/71% | | Cabestany
et al. 2013 | ACC,
GYRO | Waist | 80 Hz | Short controlled tests (e.g. walking
through a door, making turns) and
free activity monitoring | 90 PwPD | gait speed, step/stride length, FOG,
dyskinesia | PCA; SVM | Numerical results not reported | | Cancela et al. 2011 | ACC,
GYRO | Each limb
and belt | 62.5 Hz | Move freely and perform daily activities in ON/OFF state | 10 PwPD | gait speed, step/stride length, step
freq, entropy, arm swing | N/A | Step freq, stride length, entropy and arm swing presented a significant variation between ON/OFF in all the patients. No direct correlation between variation in the magnitudes and in UPDRS | **Table 4b.** Conference papers about FOG analysis. | Ref | Tech. | Sensors
Place | Rec.
Freq | Experimental Design | Subjects | Feature extracted | Analysis / Classifiers | Classifier Performance or Findings | |---------------------------------|---|-----------------------------------|--------------|--|---|--|---|---| | Cole, Roy,
and Nawab
2011 | ACC, EMG | Forearm,
shank | 1000
Hz | Unscripted and unconstrained ADL. Train: 6 min recording including 20 FOG episodes. Test: 2 h recording including 87 FOG episodes | Train set: 6
PwPD; Test
set: 4 PwPD, 2
HC | Data from ACC and
EMG, FOG episodes
duration | DNN | 82.9% sens., 97.3% spec. for FOG events detection | | Bächlin et al.
2009 | ACC, earphones | Thigh,
shank,
trunk | 64
Hz | i) walking back / forth in a straight line, including several 180° turns; ii) random walking in a reception hall space, including a series of initiated stops and > 6 several 360° turns. iii) walking simulating ADL (entering / leaving rooms, walking to the lab kitchen, getting something to drink, returning to the starting room with the cup of water). (5-10 min for task, twice: with/without external cues) | 10 PwPD with
FOG (8 with
FOG during the
study) (8 PwPD
were in OFF
state, 2 PwPD
were in ON
state) | FI, PSD | N/A (Comparison to video analysis) | 73.1% sens., 81.6% spec. for the online FOG detection | | Handojoseno
et al. 2012 | | | | | | Wavelet energy (WE), relative WE $(\alpha, \beta, \gamma, \delta, \theta)$, total wavelet entropy (WEE) | Wilcoxon Sum Rank
Test. Back
Propagation NN | 72.0% sens., 77.2% spec., 75% acc. for normal/onset classification. 71.2% sens., 77.2% spec., 73.9% acc. for normal/FOG classification. p<0.05 in almost all features between normal/onset, normal/FOG, onset/FOG | | Handojoseno
et al. 2013 | 4 channel
wireless
EEG
system | Head | 500
Hz | Structured series of video-recorded TUG tasks The features were measured during normal walking, FOG onset, FOG | 10 PwPD with significant FOG | total wavelet cross
spectrum (WCS) of
EEG α, β, γ, δ, θ,
centroid freq WCS.
Mean, SD, kurtosis,
max, min, skewness | Wilcoxon Sum Rank
Test. MLPNN, kNN (5
to 40 nearest
neighbors) | Altered pattern of synchronisation in the θ sub-band during transition from walking to FOG and during FOG. Up to 87% sens., 73% acc. for FOG detection | | Handojoseno
et al. 2014 | _ | | | | | Directed transfer
function (DTF),
direct DTF (dDTF),
partial directed
coherence (PDC),
squared generalized
PDC (sGPDC) | Wilcoxon Sum Rank
Test; MLPNN | Abnormal EEG hyperconnectivity in the frontal region during FOG episodes. FOG detection: mean 69.5% sens., 70.5% spec., 70.0% acc. using DTF, dDTF, PDC, sGPDC; 82.2% sens., 77.3% spec., 78.0% acc. using sGPDC | | Mazilu et al.
2014 | ACC,
GYRO,
GaitAssist
system /
smartphone | Ankles | 32
Hz | 24h recording data | 18 PwPD | Freq features: total
power, locomotion
band power, freezing
band power, FI | C4.5 DT | 94.94% hit rate and 94% spec. | | Mazilu and
Hardegger
2012 | ACC,
GYRO,
Smart
phone | Thigh,
shank,
lower
back | 64
Hz | i) walking back / forth in a straight line, including several 180° turns; ii) random walking in a reception hall space, including a series of initiated stops and > 6 several 360° turns. iii) walking simulating ADL (entering / leaving rooms, walking to the lab kitchen, getting something to drink, returning to the starting room with the cup of water). (10-15 min, twice) | 10 PwPD
regularly
experienced
FOG | Mean, SD, variance,
entropy, energy, FI,
power | Naïve Bayes,
MLPNN, AdaBoost
C4.5, Bagging C4.5,
C4.5 and RF with 10-
fold cross validation | 99.69% sens., 99.96% spec. for FOG events detection from C4.5. Mean latency of 0.34 s. | **Table 5b.** Conference papers about postural instability. | Ref | Tech. | Sensors
Place. | Rec.
Freq | Experimental Design | Subjects | Feature extracted | Analysis /
Classifiers | Classifier Performance or Findings | |-----------------------------|--------------|---------------------|-----------------|---|--|--|---|--| | Masu et al. 2016 | ACC | C7, L4
vertebras | Not
reported | Standing (30 s) | 19 mild and 24
severe PwPD, 17
young and 17
elderly HC | 150 features about postural angles included range, average, variance and skewness | Steel- Dwass and
Kruskal-Wallis
tests; SVM with
cross-validation | Acc.: 81.0% Severe PD/Mild PD; 90.0%
Severe PD/Elderly HC; 77.8% Mild
PD/Elderly HC; 92.9% Severe PD/Young
HC; 89.5% Mild PD/Young HC; 80.6%
Elderly HC/Young HC | | Pasluosta
et al.
2015 | ACC,
GYRO | Feet | 102.4
Hz | i) 4x10 m-walk at a self-selected comfortable speed; ii) 2x10 m-walk Stop and Go (SG) at a self-selected comfortable speed, 3 times stop and resume the walking; iii) Heel-to-Toe tapping alternately on the floor (20 s each foot) while sitting in a chair; iv) Circling (CL) foot movements above the floor while sitting (20 s each foot) | 139 PwPD: 47
bradykinetic, 31
tremor-dominant
(TD), 61 both
symptoms | Mean and variability of: stride time, swing time, stance time, stride length. Number of strides, angle heel-strike, angle toe-off, max toe clearance, cadence, estimated distance, gait velocity, entropy, mean value, max and min values, RMS, kurtosis, skewness, dominant freq, power in range [0.5-3]Hz, power in range [3-8]Hz, energy ratio, signal energy | SVM (RBF
kernel, 5 fold
cross validation) | 0.75 acc. for complete dataset. 0.79 acc. for
PwPD with both symptoms using only CL
data. 0.75 acc. for bradykinetic PwPD using
only CL data. 0.70 acc. for tremor PwPD
using only SG data | **Table 6b.** Conference papers about upper limbs motion analysis. | Ref. | Tech. | Sensors
Place. | Rec.
Freq | Experimental Design | Subjects | Feature extracted | Analysis / Classifiers | Classifier Performance or Findings | |-----------------------------------|--|---------------------------------|-----------------|--|-------------------|---|---|--| | Eskofier
et al.
2016 | ACC | Forearm | 50 Hz | Finger-to-nose, pronosupination (twice, 15 s) | 10 PwPD | Energy, max, min, mean,
variance, skewness, kurtosis,
spectral analysis | AdaBoost.M1, PART, kNN,
SVM (leave-one-out cross
validation), deep learning | Acc. 86.3% AdaBoost.M1, 81.7% PART,
67.1% kNN, 85.6% SVM, 90.9% Deep
Learning for bradykinesia assessment | | Jia et al.
2014 | ACC, wrist-
watches
(pressure
sensor,
ACC) | Wrists | 20 Hz | FT, hands opening/closing, pronosupination | 12 PwPD,
12 HC | Range, SD, entropy, time and max freq | N/A (Histograms) | 83.3% sens., 75% spec. for SD for PD/HC classification | | Hoffman
and
McNames
2011 | ACC,
GYRO | Index
finger | 128 Hz | FT as pad-pad and tip-knuckle, pronosupination (each 15 s) | 11 PwPD,
35 HC | Angular velocities | Adaptive filtering
algorithms: Ordinary Least
Squares (LS), Least Mean
Square (LMS), Recursive LS
(RLS), Kalman Filter (KF) | AUC 0.781, p=0.026 for KF in pad-pad
FT; AUC 0.828, p=0.009 for LMS in tip-
knuckle FT; AUC 0.869, p=0.036 for
RLS in pronosupination | | Fukawa
et al.
2007 | ACC, 2 touch | Index
finger
and | 0.1 ms | FT (60 s) | 17 PwPD,
44 HC | SD of FT intervals, average of
the max velocity of the single FT,
average of the max amplitude
during the single FT, average of
contact force of a single FT | ANN | UPDRS FT score could be estimated with
the proposed ANN. Results reported only
in box-plots | | Okuno et
al. 2007 | sensors | thumb | | | 16 PwPD,
27 HC | Average FT contact force | N/A | The contact force decreased with increasing the score of UPDRS FT test. Results reported only in box-plot | | Djurić-
Jovičić et
al. 2014 | GYRO | Fingertip
of index
finger | Not
reported | FT (15 s) | 10 PwPD,
10 HC | Cross-sectional areas (CWT analysis) | t-Test, Mann-Wilcoxon test,
quadratic and nearest mean
scaled classifiers | 94.4% acc. for quadratic classifier for PD/HC classification | | Barth et al. 2012 | ACC,
Biometric
Smart Pen | Hand | 1000 Hz | On paper: drawing 12 circles at the same place; tracing 4 preprinted spirals; tracing 4 preprinted meanders. In the air: drawing 12 circles around a virtual point; performing pronosupination movements (20 s); performing FT on the pen (20 s) | 18 PwPD,
17 HC | Mean, variance, regression line gradient, SD, range, autocorrelation max, integral, RMS, dominant freq, energy ratio, energy in freq band, regression line of windowed energy in freq band, fall gradient of stance phase | AdaBoost, 30 iterations, CFS
linear forward feature
selection | 89% classification rate, 94% sens., 83% spec. for PwPD/HC classification | **Table 7b.** Conference papers about rigidity, arms swing and leg agility analysis. | Ref. | Symptom | Tech | Sensors
Place. | Rec.
Freq | Experimental
Design | Subjects | Feature extracted | Analysis /
Classifiers | Classifier Performance or Findings | |----------------------------|---------|--------------|-------------------|--------------|---------------------------------|--|--|---|--| | Giuberti
et al.
2014 | LA | ACC,
GYRO | Thighs | 102.4
Hz | 10 repetitions
of LA per leg | 1 st study: 1
PwPD and 1
HC. 2 nd
study: 24
PwPD | angular amplitude of thigh inclination, angular speed
of execution, pause of execution, regularity between
consecutive repetitions, relative difference of the
angular amplitude and of the angular speed between
left and right legs, repetition freq, power spectrum | PCA; NCC, kNN
and SVM both on
original data and
PCA data | Correlation between heels' optical data and thighs' inertial data (r>0.98). Relative difference between RLA and LLA around 4% for HC and 6% for PwPD. Best classifier: kNN, k=3 which maximize the AUC of the CDFs and minimize the error between actual UPDRS score and estimated UPDRS score | **Table 8b.** Conference papers about motor fluctuations analysis. | Ref. | Tech. | Sensor
Place. | Rec.
Freq | Experimental Design | Subjects | Feature extracted | Analysis /
Classifiers | Classifier Performance or Findings | |---|-----------------------------------|---|---------------------|--|--|--|---|---| | Samà et al.
2012 | ACC,
GYRO | Lower back | 200 Hz | Training protocol: walking three times in a straight line of ~5 m in lab. Testing protocol: walking in a straight line, walking over an inclined plane, carrying a heavy object, setting a table and going upstairs and downstairs, walking outside for at least 15 min. | Train set:
10 PwPD;
Test set: 10
PwPD | Spectral analysis | Thresholds;
SVM (10-
fold cross
validation,
RBF kernel);
AUC | 89% sens., 78% spec. for dyskinesia detection; 90% sens., 84% spec. and 94% acc. for gait detection; 0.83 <auc<0.85 0.91<auc<0.94="" 5="" averaging="" detection="" detection;="" for="" off="" on="" states="" strides<="" td=""></auc<0.85> | | Ruonala et
al. 2015 | Biomo
nitor
ME600
0, ACC | Chest | 1000
Hz | Three 5 min ECG measurements: before Ldopa administration (MEDoff), 30 min after the administration (MED30), 60 min after the administration (MED60) | 11 PwPD | Time-domain: Mean RR, SDNN, RMSSD, pNN50, HRV triangular index and triangular interpolation of N-to-N interval histogram. Freqdomain: Welchs periodogram, LF and HF band powers, LF/HF power ratio, total spectral power. Others: Poincaré plot indexes for short-term variability (SD1) and overall variability (SD2) | Median, IQR,
Wilcoxon
signed rank
test | significant decrease in RMSSD, SD1
and HF power between
MEDoff/MED30 | | Hssayeni,
Burack,
and
Ghoraani
2016 | ACC,
GYRO | Trunk,
wrist, ankle
(side more
affected) | Not
reporte
d | drinking from a cup, walking, unpacking groceries, sitting still with arms resting in the lap, cutting food, dressing, and hair brushing (30-60 s each) | 12 PwPD | signal power, jerk, entropy, peak-to-
peak, correlation coefficient | K-means | 70.57% sens., 86.93% spec. and 75.96% acc. for ON/OFF states detection | | Pastorino
et al. 2011 | ACC,
GYRO | Each limb
and belt | 62.5
Hz | Training: walking, lying on bed, sitting on a chair, drinking a glass of water, opening / closing a door. Testing: unsupervised environment during a week. 8h per day | Train set:
20 PwPD;
Test set: 6
PwPD | Range and RMS | SVM; ICC | 74.4±14.9% acc. to UPDRS correlation for bradykinesia. 0.90 ICC | | Rahimi et
al. 2011 | ACC,
GYRO | Each limb,
trunk,
pelvis, head | 100 Hz | 1 st protocol: walking and turning, sitting and rising
from a chair, figure 8 turns, and reaching tasks. 2 nd
protocol: free daily activity (1 h) | 11 PwPD | Inter-trial variability, inter-subject variability, inter-task variability | PCA | Very large variability among PwPD | | Tsipouras
et al. 2011 | ACC,
GYRO | Wrists,
legs, waist,
chest | 62.5
Hz | To act freely, speak and make voluntary movements (subject seated) | 24 PwPD
(10 LID), 5
HC | Mean, SD, mean entropy, signal
energy in different bands, spectral
entropy, spectral SD from each axis of
each sensor | ANN leave-
one-patient-
out cross
validation | 83.3% acc. from wrists; 85.3% acc. from legs; 84.3% acc. from chest; 84.2% acc. from waist. For LID severity assessment | Table 9b. Conference papers about home and long-term monitoring. | Ref. | Tech. | Sensors
Place. | Rec.
Freq | Experimental Design | Subjects | Feature extracted | Analysis / Classifiers | Classifier Performance or
Findings | |-----------------------|----------------------------|--|-----------------|--|------------------------------|--|---|---| | Cancela et al. 2010 | ACC | Each limb,
trunk and
waist | Not
reported | Daily basic activities: walking, lying, sitting, drinking a glass of water, opening/closing a door | 20
PwPD | RMS, range, sample entropy,
approximate entropy, cross-
correlation | kNN, ParzencParzen, ParzendcParzen density based, DT, Bpxnc Train NN, SVM | 70%-86% acc. for bradykinesia severity | | Khan et
al. 2014 | ACC,
BioMotion
Suite | Waist | 32 Hz | 1 hour monitoring performing daily activities | 12
PwPD
(mid
/late) | The moving average of the SD in
the accelerometer; an assessment of
the first peak in the signal's power
spectrum; wavelet decomposition
of the signal | Multi-class SVM with RBF kernel | 72% overall acc. to detect
normal, tremor (hand or leg)
and dyskinesia (majority of
the errors due to falsely
detecting tremor) | | Lambrecht et al. 2014 | ACC,
GYRO | Hand,
distal
forearm,
proximal
forearm,
arm | 100 Hz | ADLs: answering a phone, buttoning a coat, brushing teeth, combing hair, cutting a steak, dialing a phone number, eating, opening/closing a door or a container, reading a book, signing a form, drinking. Functional tasks: wrist flexion, elbow flexion, wrist circumduction, pronation/supination, resting task | 13
PwPD
and ET | Sum of: max values (x,y,z), RMS (x,y,z), RMS square, variance (x,y,z), eigenvalues of covariance matrix, PC coefficients | Ranking | 50% acc. for resting task;
91.77% acc. for all the other
tasks with 4 IMU. 98.3% acc.
for all the other tasks with 3
IMU (proximal forearm
excluded) |