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I. Additional Figures

Step 1
Choose network structure of the oscillator to be perturbed Ly
Lxz
Lzx  Lyx
Step 2
Define a parameter set for the oscillator Ky yos =0.02,k =Lk, ,..=02k, =1,qg=2
k,=0.0Lk, =00l p=2,k, =1k, =1
Step 3
Transform 1st-order ODEs to 2"9-order ODEs
fal T - . -
- dX ax
dt kn_bami + ksr XZ-— (kdv_ basal + km: X y) XX ? —kdtbml - kdx Xy —de XX k:Y ;
dy k., x x . - yl|av k% pxx’ k xpxx™ 0 av
— | = - X . . — | = - — - _—
it e o7 Differentiate | i1 o +1) @ @
dz koxx d_Z k xgxx k_ xgxx"" 0 r %
- o _ « = 2 - 2 “a dt
Lar]l Liew 7 ] Lar LIl v @ JjLar
Jacobian matrix
Step 4 - -
Set up perturbation conditions ek xy 0.98x (k, xx) k.
o o Perturbed
Type of interaction Lyx (link from Y to X) k, xpxx 3 k,xpxx “k 0 Jacobian matrix
Strength 2% o+l S '
r S 21
Z‘><q><)(' _ nquxﬂ 0 —k”?
x+1 (x* +1)° i
Step 5-1 Step 5-2 Step 5-3

Integrate 15t-order ODEs until
limit cycle oscillation appears

Integrate 2nd-order ODEs using
perturbed Jacobian matrix

Integrate 2"-order ODEs using
unperturbed Jacobian matrix

0 _i_l_l_l_l_|
0 300 600 900 1200 1500

Step 6

Time

amplitude of oscillation owing to
interaction perturbation

Determine change of frequency and

Frequency

Hi 4 o P1
3] 3 e P2
S © P3
E 2 H 2 2
> 41 g
1] 1
T $ T T T T v Time
01500 1754/ Mme 1750 2050 2350 2650 2950 3250
A ' iF2i 107
3 ey FiA2:174
¢ L
82 \A'
2
g
£
o4 : : \
0 1 3



Additional Figure Al. Step-by-step procedures for the interaction perturbation method to
analyze an activator-amplified NFO. The steps in Figure Al are an example of the steps in Figure 1.
Step 1. An activator-amplified NFO is chosen for interaction perturbation; Step 2. A parameter set is
defined so that a limit cycle oscillation can be generated; Step 3. The first-order ODEs are transformed
into the equivalent second-order ODEs by differentiation. The second-order ODEs are represented by
the matrix product of the Jacobian matrix and first-order ODEs. Here, the Jacobian matrix shows its
complete algebraic form. The element of the Jacobian matrix at the intersection of the i row and j®
column denotes the interaction from node j to node i. For example, the expression, -kdxxx, corresponds
to the first row and the second column element of the Jacobian matrix. Therefore, it denotes the
interaction from Y to X); Step 4. The interaction from Y to X is weakened by 2% during one period of
oscillation. The weakening factor of 0.98 is applied to the expression, -kdxxx, for this perturbation;
Step 5-1. The first-order ODEs are numerically integrated until a limit cycle oscillation is generated.

The time course of the variable X is plotted. The point P1 ((X(¢=¢,),Y(¢t=¢,),Z(t=t,)) =(4,0,0))

indicates the initial values for this integration; Step 5-2. A point is taken along a limit cycle (i.e., P2),
and then the second-order ODEs are integrated using the perturbed Jacobian matrix during one period
of oscillation. The point P2 is

dx dy dzZ
(X (8 = tsgg ) V(0 = g0 Z(1 = g ), — (1 = ), —-( = s ), ——( = 509)) = (0.1995, 0.0582, 0.0366,

0.0051, -0.0002, 0.0007). Note that the values (i.e., X, Y, Z) as well as the time derivatives (i.e., dXdt,
dYdt, dZdt) of the state variables are required for integration of the second-order ODEs; Step 5-3. After
the perturbation (at point P3), the second-order ODEs are integrated using unperturbed Jacobian matrix.

: . 724 dY dz
The point P3 is (X (t=t,)),Y(t =t,5).Z(t = tmo),z(t =175 )’E(t = tnso),z(t =1,,5)) = (0.5066,

0.1111, 0,1777, 0.0506, 0.0009, 0.0266). Although the second-order ODEs are integrated using the



parameter sets which are the same as those for the integration of the first-order ODEs, the different
trajectories are obtained because of the different subsets of the initial conditions (i.e., in the case of the
first order ODEs: X, Y, Z; in the case of the second order ODEs: X, Y, Z, dXdt, dYdt, dZdt); Step 6.
The changes in the frequency and amplitude produced by the interaction perturbation are calculated.

Here, the frequency is increased and the amplitude is decreased.
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Additional Figure A2. Density plots of the simple NFO. Both frequency and amplitude are hardly

modulated regardless of the type of perturbed link.
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Additional Figure A3. Density plots of the activator-amplified NFO. Changes in frequency were

larger than changes in amplitude. Perturbation of Lxx and Lxy mainly resulted in changes in frequency.
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Additional Figure A4. Density plots of the inhibitor-amplified NFO. Changes in frequency were

larger than changes in amplitude. Perturbation of Lxx and Lxy mainly resulted in changes in frequency.
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Additional Figure AS. Density plots of the type 1 incoherently-amplified NFO. Changes in
amplitude were larger than changes in frequency. Perturbation of Lxx and Lxz mainly resulted in

changes in amplitude.
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Additional Figure A6. Density plots of the type 2 incoherently-amplified NFO. Changes in
amplitude were larger than changes in frequency. Perturbation of Lxx and Lxz mainly resulted in
changes in amplitude.
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Figure A7. Density plots

amplitude were larger than changes in

resulted in changes in amplitude.

of

frequency. Perturbation of Lyy, Lyz, Lzy and Lzz mainly

the type 3 incoherently-amplified NFO. Changes in



I1. Additional Tables

Additional Table A1l. Regulatory patterns of the frequency and amplitude according to the types

of interactions.

Network structure | Strength of | type of | Pattern R? | Pattern F* | Pattern A®

of oscillators perturbation | interaction

Simple NFO 1% weakening | Lxx 08.88% 0.01% 1.11%
Lxz 95.299%, 0.82% 3.89%
Lyx 98.78% 0.05% 1.17%
Lyy 99.58% 0% 0.42%
Lzy 79.88% 1.1% 19.02%
Lzz 82.78% 1.14% 16.08%

2% weakening | Lxx 98.02% 0.03% 1.95%
Lxz 92.98% 1.04% 5.98%
Lyx 97.52% 0.13% 2.35%
Lyy 99.38% 0% 0.62%
Lzy 72.92%, 0.82% 26.26%
Lzz 76.82% 0.8% 22.38%
4% weakening | Lxx 96.79% 0.1% 3.11%

Lxz 90.84% 1.28% 7.88%
Lyx 95.24% 0.43% 4.33%
Lyy 98.88% 0.03% 1.09%
Lzy 66.28% 0.65% 33.08%
Lzz 70.85% 0.63% 28.52%
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8% weakening | Lxx 94.78% 0.26% 4.97%
Lxz 88.53% 1.62% 9.85%

Lyx 91.59% 1.03% 7.39%

Lyy 98.02% 0.12% 1.86%

Lzy 61.3% 0.54% 38.16%

Lzz 65.49% 0.53% 33.98%
Activator-amplified 1% weakening | Lxx 2.85% 74.02% 23.13%
NFO Lxy 0.52% 90.06% 9.42%
Lxz 71.8% 23.64% 4.55%

Lyx 91.59% 7.49% 0.91%

Lyy 97.95% 1.85% 0.2%

Lzx 71.92% 23.43% 4.65%

Lzz 76.71% 17.86% 5.43%

2% weakening | Lxx 2.05% 72.59% 25.36%
Lxy 0.53% 89.78% 9.68%

Lxz 68.85% 26.05% 5.1%

Lyx 88.72% 9.8% 1.48%

Lyy 96.4% 3.23% 0.38%

Lzx 68.87% 26% 5.12%

Lzz 76.19% 18.17% 5.64%

4% weakening | Lxx 1.81% 71.77% 26.42%
Lxy 0.37% 90% 9.63%

Lxz 65.44% 28.76% 5.81%

Lyx 85.11% 12.84% 2.05%
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Lyy

93.97% 5.44% 0.58%

Lzx 65.52% 28.75% 5.72%

Lzz 75.1% 19.39% 5.51%

8%weakening | Lxx 1.79% 70.99% 27.22%
Lxy 0.32% 90.16% 9.51%

Lxz 61.06% 32.5% 6.43%

Lyx 81.36% 15.02% 3.62%

Lyy 89.71% 9.36% 0.93%

Lzx 61.24% 32.33% 6.43%

Lzz 72.26% 22.15% 5.6%
Inhibitor-amplified | 1% weakening | Lxx 0.05% 99.93% 0.02%
NFO Lxy 0.06% 99.89% 0.06%
Lyx 99.04% 0.38% 0.58%

Lyy 48.58% 7.7% 43.71%

Lyz 55.61% 8.9% 35.5%

Lzy 0.48% 61.64% 37.88%

Lzz 1.08% 67.64% 31.28%

2% weakening | Lxx 0.04% 99.87% 0.09%
Lxy 0.78% 99.17% 0.05%

Lyx 98.08% 0.43% 1.49%

Lyy 30.13% 14.02% 55.85%

Lyz 28.49% 22.05% 49.46%

Lzy 1.12% 62.66% 36.22%

Lzz 1.91% 70.42% 27.66%
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4% weakening | Lxx 0.02% 99.86% 0.12%
Lxy 1.15% 98.81% 0.04%

Lyx 96.77% 0.7% 2.53%
Lyy 27.55% 14.03% 58.42%
Lyz 19.8% 30.38% 49.82%
Lzy 1.23% 63.85% 34.92%
Lzz 1.96% 71.44% 26.59%

8% weakening | Lxx 0.01% 99.84% 0.15%
Lxy 1.21% 98.76% 0.03%

Lyx 93.7% 1.9% 4.4%
Lyy 27.54% 14.05% 58.41%
Lyz 15.46% 38.17% 46.38%
Lzy 1.08% 64.68% 34.24%
Lzz 1.95% 70.71% 27.34%
Type 1 incoherently- | 1% weakening | Lxx 0.46% 0% 99.54%
amplified NFO Lxy 64.27% 0.56% 35.17%
Lxz 1.02% 5.99% 92.99%
Lyx 71.22% 0.1% 28.68%
Lyy 71.12% 0.15% 28.73%
Lzy 94.44% 3.01% 2.56%

Lzz 100% 0% 0%
2% weakening | Lxx 0.98% 0% 99.02%
Lxy 56.76% 1.08% 42.16%
Lxz 1.04% 15.02% 83.94%
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Lyx

60.39% 0.15% 39.46%

Lyy 59.32% 0.25% 40.43%

Lzy 87.01% 5.82% 7.17%

Lzz 98.85% 0.05% 1.1%

4% weakening | Lxx 1.25% 0.31% 98.43%
Lxy 46.95% 2.65% 50.4%

Lxz 0.92% 20.02% 79.05%

Lyx 47.24% 0.52% 52.24%

Lyy 47.53% 0.16% 52.3%

Lzy 73.66% 9.54% 16.8%

Lzz 96.95% 0.85% 22%

8% weakening | Lxx 0% 0% 100%
Lxy 37.69% 3.56% 58.75%
Lxz 1.66% 4.05% 94.29%
Lyx 38.11% 0.58% 61.31%
Lyy 37.28% 0.19% 62.53%
Lzy 60.29% 12.82% 26.89%

Lzz 89.23% 5.51% 5.26%

Type 2 incoherently- | 1% weakening | Lxx 0% 0% 100%
amplified NFO Lxy 73.03% 0.1% 26.87%
Lxz 0.52% 0% 99.48%

Lyx 90.85% 0% 9.15%

Lyy 91.64% 0.05% 8.31%
Lzy 6.46% 17.9% 75.64%
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Lzz

6.15% 17.44% 76.41%

2% weakening | Lxx 0.08% 0% 99.92%
Lxy 59.87% 0.05% 40.08%

Lxz 0.33% 1.32% 98.35%

Lyx 78.75% 0.1% 21.15%

Lyy 73.47% 0.1% 26.43%

Lzy 1.4% 21.42% 77.18%

Lzz 0.51% 16.92% 82.56%

4% weakening | Lxx 0% 0% 100%
Lxy 48.66% 0.11% 51.23%

Lxz 0.14% 1.64% 98.22%

Lyx 55.14% 0.1% 44.76%

Lyy 47.14% 0.1% 52.75%

Lzy 1.18% 20% 78.82%

Lzz 0% 15.11% 84.89%

8% weakening | Lxx 0% 0% 100%
Lxy 35.47% 0.05% 64.47%

Lxz 0.42% 0% 99.58%

Lyx 34.84% 0.05% 65.1%

Lyy 25.68% 0.11% 74.22%

Lzy 0.86% 16.28% 82.87%

Lzz 0% 10.76% 89.24%

Type 3 incoherently- | 1% weakening | Lxx 30.24% 13.4% 56.36%
amplified NFO Lxz 32.61% 14.12% 53.28%
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Lyx

30.77% 15% 54.23%

Lyy 8.14% 29.3% 62.56%

Lyz 10.25% 27.58% 62.17%

Lzy 4.02% 31.84% 64.14%

Lzz 4.73% 30.65% 64.62%

2% weakening | Lxx 19.82% 19.74% 60.44%
Lxz 23.86% 18.82% 57.32%

Lyx 18.98% 20.55% 60.47%

Lyy 4.37% 31.91% 63.73%

Lyz 5.73% 31.06% 63.21%

Lzy 1.77% 32.26% 65.97%

Lzz 2.41% 32.28% 65.31%

4% weakening | Lxx 12.11% 25.97% 61.92%
Lxz 15.72% 23.99% 60.29%

Lyx 10.3% 26.03% 63.67%

Lyy 2.42% 35.22% 62.36%

Lyz 2.93%, 32.61% 64.46%

Lzy 0.83% 33.12% 66.05%

Lzz 1.36% 33.43% 65.21%

8% weakening | Lxx 6.78% 30.74% 62.48%
Lxz 9.13% 28.09% 62.77%

Lyx 6.63% 28.25% 65.13%

Lyy 1.36% 37.41% 61.22%

Lyz 2.09% 35.18% 62.73%
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Lzy

0.78%

34.98%

64.24%

Lzz

1.37%

36.32%

62.31%

“Both the frequency and amplitude changed by less than 1%.

*The frequency or amplitude changed by more than 1%, and the changes in the frequency are greater

than the changes in the amplitude.

“The frequency or amplitude changed by more than 1%, and the changes in the amplitude are greater

than the changes in the frequency.

Additional Table A2. Relative mean differences between 15-order ODE and 2"-order ODE in the

results of the simulations during ten periods of oscillations. Each relative mean difference was

calculated by dividing the absolute difference by the maximum value of oscillation of each oscillator.

For six representative 3-node oscillator models (*), each relative mean difference was calculated for

each parameter set and represented by mean + standard deviation.

Oscillator The relative mean difference
Simple NFO* 0.00039 +0.0021
Activator-amplified NFO* 0.000023 +0.00013
Inhibitor-amplified NFO* 0.0012 £0.0032

Type 1 incoherently-amplified NFO*

0.0093 £0.011

Type 2 incoherently-amplified NFO* 0.0000059 + 0.000033
Type 3 incoherently-amplified NFO* 0.042 £0.11
Circadian rhythm model by Leloup, et al. 0.00064

Circadian rhythm model by Goldbeter, et al. 0.0170

Repressilator 0.000029

Sinus node model by Yanagihara, et al. 0.00023
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Hodgkin-Huxley axon model 0.00087
Cell cycle model by Ferrell, et al. 0.000030
cAMP model by Martiel, et al. 0.0000060
Glycolysis model by Selkov model 0.000065
Glycolysis model by Higgins model 0.000020

Additional Table A3. Parameter sets

for the 3-node biochemical oscillator models for

mathematically controlled comparisons.

Model

Parameter set

Simple NFO

k =01,8=2k, =0.1, p=4k =02k =0.1,K, =0.01, k, =0.05

Activator-amplified NFO

k. =0012,S=2k,=0.1, p=4,k =02,k, =0.1, K, =0.01, k, = 0.05,
k,,, =0.188,¢ =2

variant

Inhibitor-amplified ~ NFO | k_=0.1,S§=2,k, =0.1, p=4,k, =0.047,k, =0.1, K, =0.01, k&, =0.05,
variant Ky =0.07,g =2

Type 1 incoherently- | k£ =0.027,S=2,k, =0.1, p=4,k, =02,k,=0.1,K, =0.01, k, =0.05,
amplified NFO variant k, =0.052,g=2

Additional Table A4. Percentage of parameter sets for the 3-node biochemical oscillator models

that did not sustain limit-cycle oscillation after interaction perturbation from total parameter sets.

Oscillator

Perturbation

Strength: 1%

Perturbation

Strength: 2%

Perturbation

Strength: 4%

Perturbation

Strength: 8%

Type 1 simple NFO

0.31%

0.66%

2.25%

6.18%

Activator-amplified

NFO

12.08%

15.38%

22.32%

34.06%
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Inhibitor-amplified

NFO 5.67% 13.92% 39.77% 59.55%
Type 1 incoherently-

amplified NFO* 11.01% 14.62% 20.75% 33.62%
Type 2 incoherently-

amplified NFO* 16.71% 23.15% 28.44% 34.58%
Type 3 incoherently-

amplified NFO* 0.73% 2.34% 6.78% 21.91%

II1. Additional Equations
Additional Equation A1. ODEs of the 3-node biochemical oscillators

State variables: x,y,z

Time derivatives of state variables: ﬂ,ﬂ,%
dt dt dt

(1) Simple NFO

dx  Sxk_

- = _kdxxx
dt  z"+1

D _foxx—tXV
dt K, +y
dz

—=kx(y-z

d 3 X(y—2)

(2) Activator-amplified NFO

ds _
dt
dy kvyxx"
_:—_k X
dr - 1+x? ? 4
dz  k, xx!

E_ 1+ x7

k

sx_basal

+ ksx Xz-— (kdxihasal + kdx X y) XX

- dz><
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(3) Inhibitor-amplified NFO

E - ka - (kdxibasa/ + kdx X y‘u)X *
dy
Z - ksyibasal + kSy XX (kdyibasal

dz _kxyx(ZT-z) k,xz
dt K +(ZT-z) K, ,+z

(4) Type 1 incoherently-amplified NFO

k q
%: f’;xyj; —k, xzxx
dy
Z: kxyibasal +ksy ><x_kdy Xy

p
dz_kxy" o,
dt  1+y’

(5) Type 2 incoherently-amplified NFO

q
ﬂ:k +kxz><x><z+M
dt

sx_basal yq +1 - kdx XX

d
d_J;:k3X(x_J’)

q
ézksz_kdzx y
dt yi+1

(6) Type 3 incoherently-amplified NFO

dx _ k,x(ZT-z)
dt (ZT-z)+K,,

sz xx—(k
dt

sy dy _basal

k, xx

+hy x(ZT —z))xy

dz _kxyx(ZT-z) k,xz
dt K +ZT-z) K, ,+z

(7) Activator-amplified NFO variant

+hy x(ZT —z))xy
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dx Sxk. x7
—=—4k X
dt  zP+1 N

A Xy

_kdxxx

" K, +y
dz
Ezkﬁ((y_z)

(8) Inhibitor-amplified NFO variant

dx  Sxk,
dt  z"+1

q
@:klxx+kam x—2 _kzxy
dt P l+y? K +y
dz
— =k, x(y—-z
dr yX(y—2)

(9) Type 1 incoherently-amplified NFO variant

q
@:SXka—i_kincx y _kdxxx
dt  z'+1 1+ y*
Q:klxx— kzxy
dt K, +y
dz
— =k, x(y—z
dr ;X (y—2)

Additional Equation A2. ODEs and parameters for naturally occurring biochemical oscillator
models

(1) Circadian rhythm model by Leloup et al.

State variables: M, , M., M,,P.,C.,P.,,C..,PC.,PC,,PC..,PC,,,B.,Bp,By,B\»,1,

Time derivatives of state variables: M, , M dM, , e , dCc , e dCer
dt dt dt ~dt dt " dt dt

b b 5

dPC. dPC, dPC., dPC,, dB. dB,, dB, dB,, dI,
dt ~ dt T odt T dt T odt’ dr Codt’ dt  dt
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n
dM ,, VS,,XBN B v XM,

d K, +B K,+M,
dM . Ve xB" Ve XM,

d K, +B," K, .+M. ™
am, Ve X K" Vs XMy

d  K,"+B) K

— Ndmb
mB + MB

dP, VipxP. V,,xP
—S=k,xM, - wXc | Tap X lcr +k,xPC.—k,xP.xC.—k, xP.
dt K,+F K, +F;
dc ViexCo  VyexC
=k xM. - ey e +ky x PCo —kyx B x Co —k,,, x Ce.

dt K,+C. K,+Cq
dPCP:KPXPC_I/zPXPCP_vdPCXPCP_k % P

dn cp
di K, +F. K, ,+F, K,+F,;
dCCP:VlCXCC_V2CXCCP_deCXCCP_k e

dn CcpP

d K,+C. K, ,+C,p K,+Cg

dPCe _ Vipe xPCc +V2PC><PCCP

—k,xPC.+k,xP.xC.+k,xPC, —k xPC,.—k, xPC,

dt K,+PC. K,+PC,

P P P

d CN:_V}PCX CN+V4PCX CNP—k2XPCN+k1XPCC_k7XBNXPCN+k8XIN_kanPCN
dt K,+PC, K,+PC,

dPCep  VipcXPCo Vipe XPCrp  Vipee X PCop

kdn x P CCP

dt K,+PC. K,+PC, K,+PC,

dPCyy _ Vipe XPCy _ Vire X PCyp _ Varen xPCyp

- kdn x PCNP

dt — K,+PC, K,+PC,, K,+PC,,

L —kyx B +kgx By —k,, x B

kdn x BCP

+kyx B, —k¢x B, —k,xB, xPC, +ksxI, —k, xB,

dBc:ka B_I/IBXBC+I/ZBXB

e ° K,+B. K, +Bg
dBp _ Vig X Bc _ Vg X Bep _vdBCXBCP _
dt  K,+B. K,+By, K,+Bgy
dBy _VigxBy ViyXBy,

dt K, +B, K,+B,

dBNP _ I/33 ><BN

_ Vig X Byp _vdBNXB

M~k X Byp

d K,+B, K,+B,, K,+B,

dl
dt

—N=—k8x]N+k7xBNxPCN—MN—

1
a = _kdn ><IN

d N
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n=4m=4,k
Voo =LVp =V, K,=07K,=1LK,;=0.8

Vp =1LV, =Ly, ,=02,K ,=03K, . =04K, 6 =04k, =001k, =00Lk,, =0.01

Vphos =0.6,V;, =LV=0.6,/, = Vphos’I/lPC = Vphas’VzB =0.1,V,e =0.1,V,, =03,V =0.LV; 5 =LV = Vphos
Vg =02V, =0.1,k, =08k, =02,k; =0.8,k, =0.2,k; =0.4,k, =0.2,k, =0.5,k, =0.1,k,, =0.01

ke =0.01,K, =0.3,K, = 0.1,K,, =0.3,v,,0 =L,V = 0.5,V,00 = 07,0, = 0.8,V = 0.7, Ve = Lvypey =1

n

=1k, =05xk

VSC = 08 x Vstot > vs

stot ? kSC = k
5 =0.7xv

stot 2

kSB = kstut

stot stot

(2) Circadian rhythm model by Goldbeter.

State variables: x1,x2,x3,x4

Time derivatives of state variables: @ dx2 di3 dx4

i’ dt T di T dt
axl = _ x(rM —rmRNAd)
dt  Cytoplasm
dx2

= x(rTL—-rP01+rP10)
dt  Cytoplasm

dx3
dt Cytoplasm
dx4
dt Cytoplasm

x(rP01-rP10—-rP12+rP21)

x(rP12—rP21-rP2n+rPn2—-rVd)

@ = € x(rP2n—rPn2)
dt r4

default =1.0x107", Cytoplasm =1.0x107"°,r4 =1.0x10""°,rM, =0.76,rM ,, =1.0,rM , = 4.0
}"M ™™,

KI
M, M,
rM "+ x5

rM = default xrM, x

rPO1,, xx2
rPO1,, +x2
rP10,, x x3
rP10, +x3
rP12,,xx3
rP12,,+x3
rP21,, + x4
rP21,, +x4

rP01,, =3.2,rP01,, =2.0,7P01 = Cytoplasm x
rP10,, =1.58,7P10,, = 2.0,7P10 = Cytoplasm x
rP12,,=5.0,rP12,, =2.0,rP12 = Cytoplasm x

rP21,,=2.5,rP21,,=2.0,rP21 = Cytoplasm x
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(3) Repressilator by Elowitz and Leibler (modified version).

State variables: x,y,z

Time derivatives of state variables: @,@,%
dt dt dt

@__kdx'x ks _'_kampxx2

dt I+x 1+Zz" 1+x°

dy _ _kxy .k

dt I+y 1+x"
dz k,xz k
= +

S

dt I+z 1+)y"

n=3k =007k, =01k, =007

s Namp T

(4) Sinus node model by Yanagihara ef al.
State variables: V,m,h,n,d, f,q

Time derivatives of state variables: dl,d—m,@,@,ﬁ,ﬂ,@
dt dt dt dt dt dt dt
dVv _ _(iNa g gy i+ ih)
dr Cm

dm
—=a x(1-m)—pf xm
% (I-m)-p,

dh
EZQhX(l—h)—ﬂhXh

dn
—=a x(1-n)—pf xn
7 ,x(=n)—p,
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ﬁ=0{d><(1—a7)—,3d><af

di
d
Lo x-1)-p,x1
d
“l=a,x (=)= f,xq
Cm=1
o~ Z0000355% (7 +20) o 0.000944x(V +60)
L N P 1
Ps 633 VTS
o 0009 06, g - Z0.000225x(V +40)
g 1+ ex (_V+3.8) " |—ex (V+40)
P91 P33
o Q00034x (7 100) o o0y 000055V +40) o oooic
T ep 00y T exp(- 40
P44 P
a = V+37 B =40><exp(—V+—62)
" V+37 " 17.8
—exp(— )+1
10
0.0145% (V +35)  0.03125xV 0.00421x (V —5)
a, = + HBd:_ _
T—exp(=) 3%) 1_exp(= ) —exp(’ ) +1
Pos P74 Pos
&, = 0.001209x exp(L—22), g, = ! —
. V-10
i, =12.5% (0.95%d +0.05)x (0.95% f +0.05) x(exp(— =)~

iy, =0.5xm’ x hx (V =30)

o = 0.8 (1= exp(— )

i, =0.4xgx(V +45)

o 07xnx (exp(0.0277x(V +90) ~1)
K exp(0.0277 x (V +40))

(5) Neuronal model by Hodgkin and Huxley
State variables: V,m, h,n
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Time derivatives of state variables: av dm dh dn

dt " dtdtdt
dv , )
C=Imgyoem’ xhx(V =y, )= goxn' x(V =v) =g, x(V =v,)
Cfi_za:(l_m)XaM—mbe
D (1-xa, ~hxb,
%Z(l—n)xaN_nbe

C=1,g,, =120,g, =36,g, =0.3,v,, =115,v, =—12,v, =10.6,1 =20

a, __01x@5-V) .a, =0.07><exp(—£),aN _0.01x@0-V)
VA o107
P 10 P 10
b, :4><exp(—£),bH = 1_ by =0-125XCXP(—£)
18 exp(™ )+l 80

(6) Cell cycle model by Pomerening et al.

state variables: a,b,c,d,e, f,2,h,i

time derivatives of state variables: @ ﬁ @ ﬁ @ ﬂ d_g % ﬂ

dt’dt’dt’ dt’dt’ dt’dt’dt’ dt

da_k i

= Ny — Mdest
dt

%:kax(cdklm—b—c—d—e)xa—kdxb—kdmxixb—k

xixa—k,x(cdkl, ~b—c—d—-e)xa+k,xb

weel x g x b - kweelbasal X (Weeltot - g) X b

+ kcdc25 X f xXc+ kcchSbasal x (Cdczstot - f) xc

dc .
E = kweel x g x b + kweelbasal X (Weeltot - g) x b - kcchS x f xC = kcdc25basal X (Cdczstot - f) XC—= kcak xc+ kpch X d - kdest X1>
dd .
Z = kcak xXc—= kpch X d - kcchS x f X d - kcchSbasal x (Cdczstot - f) X d + kweel x g xe+ kweelbasal X (Weeltot - g) xe— kdest x1
% = kcchS x f x d + kcchSbasal x (Cdczstot - f) X d - kweel X g xXe— kweelbasal X (Weeltot - g) xXe— kdest xixe
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df en(‘d(‘ZS

= Kedeason X Megeds Negeas
dt ec50,,,,5 “* +e"*

x(cde25,, = )= Keysoy X f

dg enweel
Z =- weeloff x eCSO Mypeel + enwm X g + kweelon X (Weeltot - g)
weel
dh e
_:kxon>< n n X(pIXIo _h)_kxo”xh
d ™ ec50 ., " +e ! pitell
di B
—=k X x(apc,, —1)—k X i
d 1 apcon ec 5 Opbdnap[ N hn"" ( D tot ) apcoff’
kwee
r=10,k,, =0.04,k,, =0.01k, =0.1,k, =0.001,k,,,, =0.05,k 1 = r !
Koers = 0.1,k yrspusas = M,cdklmt =230,cdc25,, =15,apc,, =50, pix1,, =50
r
nweel = 4’ ncdc25 = 4’ napc = 4’ nplxl = 4
ec50 ., =40,ec50,,,, =40,ec50,,.,; = 40,ec50,,. =40
kcdc250n = 1'75’kcd0250_ff = 02’ kapcon = 1’ kapcojf = O'IS’kplxlon = 1’ kplxlo_[’f' = 0 15
Foeeton =02,k 0y =175,k = 0.8,k . =0.008, weel,, =15

(7) cAMP model by Martiel and Goldbeter

State variables: x,y,z

Time derivatives of state variables: ﬁ,ﬂ,%
dt dt dt

dx

— =—fIx+1f2x(1-x

p SIx+f2x(1-x)

dy

— =gxoxy—(k +k)x

Rk w—(k+k)xy

%:ktxy_kexz

dt h

¢ =10,k =0.036,e=1,h=5,a=3,k, =0.666,L1=10,L2 = 0.005
q=4000,0=0.6,k =1.7,k, =5.4,k =0.9,0 =0.01, 4 =0.01
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_k+kyxz f2= kyxL1+k,xL2xcxz

Y

XXZ

11

1+z l+cexz
AxOxexY?
l+ax@+exY>x(1+a)

v =ax

(8) Glycolysis model by Sel’kov

State variables: x,y

Time derivatives of state variables: @,Q
dt dt

dx

—=1-xxy"

d 4

dy y—1

— =axpyx(xx -1

& yx(xxy™ =1)

y=2,a=1.1

14z

(9) Glycolysis model by Higgins (modified version)

State variables: x,y,z

Time derivatives of state variables: ﬁ,ﬂ,é
dt dt dt

ax_ XXy

dt 1+ yx(1+x)

ﬂzax XXy —v2x 4
dt 1+ yx(1+x) k+y

v1=0.1,b2=0.15,k =03, =10
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I'V. Additional Notes

Additional Note Al. Advantages of interaction perturbation over parameter perturbation in
this study
The purpose of this study is to investigate the different regulatory functions of networks arising from
the differences in their structure. This purpose can be achieved by examining how a network responds
to a perturbation of each link within the network. Then, a question is raised as to whether a parameter
perturbation in an ODE model can be regarded as a link perturbation.

The number and the function of the parameters are determined by the structure of the ODE model.
For instance, in a network structure, ‘Y inhibit X’ can be represented by the equation (1.1) as well as by
the equation (1.2). Y inhibits the synthesis of X in the equation (1.1) while Y facilitates the degradation

of X in the equation (1.2).

ax k

Lo koxX (1.1
d K +Y “ (1D
dx

—=k -k, xYxX (1.2
dt X dx ( )

There are three parameters (i.e. ksx, Km, and kdx) in the equation (1.1) and two parameters (i.e. ksx and
kdx) in the equation (1.2) although those two equations represent the same network structure which
consists of two links (i.e. ‘X on X’ and Y on X’). In the equation (1.1), kdx represents ‘X on X’; ksx and
Km represent ‘Y on X’. Herein, the perturbation of kdx clearly means the perturbation of the link ‘X on
X,

However, in the link ‘Y on X, the perturbation of either ks or Km may not exactly correspond to the
perturbation of the link. In the equation (1.2), kdx is involved in two links (i.e. ‘X on X’ and ‘Y on X’)
simultaneously. In this structure, it is impossible to perturb a link independently of other links by
parameter perturbation.

In summary, more than two parameters may represent a single link and a single parameter may be
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involved in more than two links. Therefore, this problem may undermine the reliability of the results of
parameter perturbations.

Direct modulation of specific interaction can be a solution to this problem. All the ODE models
which represent ‘Y inhibits X’ will consist of two interactions (i.e. X on X and Y on X). Herein ‘Y

inhibits X’ represents the negative interaction from Y to X. What will be the results when we directly

. . . X .. :
modulate the interaction from Y to X? In the equation (1.1), a:i—twﬂl increase due to the increased first

SX

+Y

m

term ( ). In the equation (1.2), (Z—)fwill also increase due to the decreased second term

(k, xY xX). Regardless of the structure of ODE models, the results of the direct perturbation of an

interaction reflect the link structure inside the network. Therefore, perturbation of interactions will be
methodologically suitable for analyses of the different functions of networks arising from their
structure. In this study, interactions between molecules were represented algebraically by using
Jacobian matrix and the functional characteristics of the networks were investigated by direct

perturbation of interactions.

Additional Note A2. Difference between the first-order ODE and the second-order ODE in
respect of responses to a perturbation of the system
In the first-order ODE, applying transient perturbation does not change the frequency and amplitude of
the limit cycle oscillator. However, the transient perturbation in the second-order ODE can change them.
This is because, for the second-order ODE, the first derivatives of the state variables as well as the state
variables themselves change their values during the integration process.

Suppose that the system is defined by coupled ODEs with two state variables, X and Y, for
convenience of explanation. If it is a first-order ODE system, we need two initial conditions (i.e.,

X(t=0) and Y(t=0)) and parameter values for numerical simulation. In this case, the simulation using
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identical parameter values and appropriate initial conditions would generally lead the system to
converge to a same fixed point (or limit cycle). In contrast, for the simulation of an equivalent second-

order ODE system, the number of required initial conditions becomes double compared to that for the
. dX dYy . . . .
first-order ODE system (i.e., X(t=0), Y(t=0), E(t = 0),;0 =0)). In this case, the simulation using

identical parameter values might not converge to a same fixed point (or limit cycle) even if the initial
conditions for X and Y (i.e., X(t=0), Y(t=0)) are identical. This is because the additionally required

initial conditions (i.e., CZ—X(t = 0),%0 =0)) are different. In Figure R1 shown below, we presented

4
the simulation results that show a difference between a first-order ODE system and the equivalent
second-order ODE system: different limit cycles are generated by integrations of the equivalent second-
order ODE system with the same parameter set and same initial values of the state variables, but with
different initial time derivatives of the state variables.
These results indicate that every time when the interaction perturbation is performed, the second-order
ODE system may reach a different initial condition (i.e., different initial values and different time

derivatives), consequently leading to a different limit cycle.
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A : B
First-order ODE system E Second-order ODE system
trajectory 1 E trajectory 1
0.4 : 0.4- trajectory 3
0.3 P1  § 0.3 P1
> : >
0.2+ : 0.2
0.1 : 0.1
c ] L] E c ] ]
0 2 4 : 0 2 4
X . X
i trajectory 2 E i trajectory 2
0.4 : 0.4 trajectory 4
0.3 = 0.3-
> o>
0.21 : 0.21
0.14 S 0.1
0 . P2 : 0 : P2_
0 2 4 . 0 2 4
X : X

Figure R1. Comparison between a first-order ODE system and the equivalent second-order ODE
system of a two-node activator amplified NFO. (A) Simulation results of the first-order ODE system.
Integrations from two different initial values (i.e., P1, P2) lead to the same limit cycle. (B) Simulation
results of the equivalent second-order ODE system. Integrations from the same initial values (e.g. P1)
can result in different limit cycles due to the different initial time derivatives of the state variables (e.g.
trajectory 1 and trajectory 3: their limit cycles are different). Detailed information on the simulation is

provided in Table R1.
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Table R1. Equations, parameters, and initial conditions for the simulation of a two-node activator

amplified NFO.

First-order ODE system

Equivalent second-order ODE system

Equations dx x4 d%x k x?
—=k_ 4k _x -k,  +k, xy)xx | —=k, x(k, y—-—2—
dt SX_ prime X 1 + xq ( dx _ prime dx y) dtz dxx( dyy xp + 1)
k x?
) —(k. . —x(k o+ k + = X s
ﬂ ) y xl i kdv <y ( SX_ prime ( dx _ prime dxy) xq + 1)
dt 1+x k (k ok ~ ksquq—l . ksqu2q—1)
dx _ prime dx xq +1 (xq +1)2
2 k,,x" k,px""  k px**
e O L ALY
dt T x”+1 (x +1)°
k x?
(ksx_prime - x(kdx_prime + kdxy) + m)
Parameters ksx _ prime 0 02’ ksx 1 kdx_prime = 02’ kdx =1L ksx _ prime O 02’ ksr 1 kdx _ prime 02’ kdx = 1’
=2, k, =0.01, k,, =0.01, p=2 =2, k, =001k, =0.01, p=2
Initial For trajectory 1, For trajectory 1,
conditions (%> Viop) = (4,0.3) (*,20>¥,-9) = (4,0.3)

For trajectory 2,

(X2 Y1=0) = (3,0.05)

& Dy

(—1.0388,0.0064)
dtt 0 d t 0

For trajectory 2,

(X205 V1=0) = (3,0.05)

dx d
& A

0.1700,0.0085
dt o " dt = o) ( )

For trajectory 3,
(%95 Vo) = (4,0.3)

dx d
& A

—1.0378,0.0054
dtt 0 d t = 0) ( )
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For trajectory 4,
(x_y>Y,-0) =(3,0.05)

X 0.1685,0.0070)

(dt t=0 ’ dt t=0
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