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Additional Figure A1. Step-by-step procedures for the interaction perturbation method to 

analyze an activator-amplified NFO. The steps in Figure A1 are an example of the steps in Figure 1. 

Step 1. An activator-amplified NFO is chosen for interaction perturbation; Step 2. A parameter set is 

defined so that a limit cycle oscillation can be generated; Step 3. The first-order ODEs are transformed 

into the equivalent second-order ODEs by differentiation. The second-order ODEs are represented by 

the matrix product of the Jacobian matrix and first-order ODEs. Here, the Jacobian matrix shows its 

complete algebraic form. The element of the Jacobian matrix at the intersection of the ith row and jth 

column denotes the interaction from node j to node i. For example, the expression, -kdx×x, corresponds 

to the first row and the second column element of the Jacobian matrix. Therefore, it denotes the 

interaction from Y to X); Step 4. The interaction from Y to X is weakened by 2% during one period of 

oscillation. The weakening factor of 0.98 is applied to the expression, -kdx×x, for this perturbation; 

Step 5-1. The first-order ODEs are numerically integrated until a limit cycle oscillation is generated. 

The time course of the variable X is plotted. The point P1 ( 0 0 0( ( ), ( ), ( )) (4,0,0)X t t Y t t Z t t    ) 

indicates the initial values for this integration; Step 5-2. A point is taken along a limit cycle (i.e., P2), 

and then the second-order ODEs are integrated using the perturbed Jacobian matrix during one period 

of oscillation. The point P2 is 

 ( 1500 1500 1500 1500 1500 1500( ), ( ), ( ), ( ), ( ), ( )
dX dY dZ

X t t Y t t Z t t t t t t t t
dt dt dt

      ) = (0.1995, 0.0582, 0.0366, 

0.0051, -0.0002, 0.0007). Note that the values (i.e., X, Y, Z) as well as the time derivatives (i.e., dXdt, 

dYdt, dZdt) of the state variables are required for integration of the second-order ODEs; Step 5-3. After 

the perturbation (at point P3), the second-order ODEs are integrated using unperturbed Jacobian matrix. 

The point P3 is ( 2 1750 1750 1750 1750 1750( ), ( ), ( ), ( ), ( ), ( )
dX dY dZ

X t t Y t t Z t t t t t t t t
dt dt dt

      ) = (0.5066, 

0.1111, 0,1777, 0.0506, 0.0009, 0.0266). Although the second-order ODEs are integrated using the 
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parameter sets which are the same as those for the integration of the first-order ODEs, the different 

trajectories are obtained because of the different subsets of the initial conditions (i.e., in the case of the 

first order ODEs: X, Y, Z; in the case of the second order ODEs: X, Y, Z, dXdt, dYdt, dZdt); Step 6. 

The changes in the frequency and amplitude produced by the interaction perturbation are calculated. 

Here, the frequency is increased and the amplitude is decreased. 
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Additional Figure A2. Density plots of the simple NFO. Both frequency and amplitude are hardly 

modulated regardless of the type of perturbed link. 
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Additional Figure A3. Density plots of the activator-amplified NFO. Changes in frequency were 

larger than changes in amplitude. Perturbation of Lxx and Lxy mainly resulted in changes in frequency. 
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Additional Figure A4. Density plots of the inhibitor-amplified NFO. Changes in frequency were 

larger than changes in amplitude. Perturbation of Lxx and Lxy mainly resulted in changes in frequency. 
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Additional Figure A5. Density plots of the type 1 incoherently-amplified NFO. Changes in  

amplitude were larger than changes in frequency. Perturbation of Lxx and Lxz mainly resulted in 

changes in amplitude. 



 10

 

Additional Figure A6. Density plots of the type 2 incoherently-amplified NFO. Changes in 

amplitude were larger than changes in frequency. Perturbation of Lxx and Lxz mainly resulted in 

changes in amplitude. 
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Additional Figure A7. Density plots of the type 3 incoherently-amplified NFO. Changes in  

amplitude were larger than changes in frequency. Perturbation of Lyy, Lyz, Lzy and Lzz mainly 

resulted in changes in amplitude. 
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II. Additional Tables 

Additional Table A1. Regulatory patterns of the frequency and amplitude according to the types 

of interactions. 

Network structure 

of oscillators 

Strength of 

perturbation 

type of 

interaction 

Pattern Ra Pattern Fb Pattern Ac

Simple NFO 1% weakening Lxx 
98.88% 0.01% 1.11% 

Lxz 
95.29% 0.82% 3.89% 

Lyx 
98.78% 0.05% 1.17% 

Lyy 
99.58% 0% 0.42% 

Lzy 
79.88% 1.1% 19.02% 

Lzz 
82.78% 1.14% 16.08% 

2% weakening Lxx 
98.02% 0.03% 1.95% 

Lxz 
92.98% 1.04% 5.98% 

Lyx 
97.52% 0.13% 2.35% 

Lyy 
99.38% 0% 0.62% 

Lzy 
72.92% 0.82% 26.26% 

Lzz 
76.82% 0.8% 22.38% 

4% weakening Lxx 
96.79% 0.1% 3.11% 

Lxz 
90.84% 1.28% 7.88% 

Lyx 
95.24% 0.43% 4.33% 

Lyy 
98.88% 0.03% 1.09% 

Lzy 
66.28% 0.65% 33.08% 

Lzz 
70.85% 0.63% 28.52% 
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8% weakening Lxx 
94.78% 0.26% 4.97% 

Lxz 
88.53% 1.62% 9.85% 

Lyx 
91.59% 1.03% 7.39% 

Lyy 
98.02% 0.12% 1.86% 

Lzy 
61.3% 0.54% 38.16% 

Lzz 
65.49% 0.53% 33.98% 

Activator-amplified 

NFO 

1% weakening Lxx 
2.85% 74.02% 23.13% 

Lxy 
0.52% 90.06% 9.42% 

Lxz 
71.8% 23.64% 4.55% 

Lyx 
91.59% 7.49% 0.91% 

Lyy 
97.95% 1.85% 0.2% 

Lzx 
71.92% 23.43% 4.65% 

Lzz 
76.71% 17.86% 5.43% 

2% weakening Lxx 
2.05% 72.59% 25.36% 

Lxy 
0.53% 89.78% 9.68% 

Lxz 
68.85% 26.05% 5.1% 

Lyx 
88.72% 9.8% 1.48% 

Lyy 
96.4% 3.23% 0.38% 

Lzx 
68.87% 26% 5.12% 

Lzz 
76.19% 18.17% 5.64% 

4% weakening Lxx 
1.81% 71.77% 26.42% 

Lxy 
0.37% 90% 9.63% 

Lxz 
65.44% 28.76% 5.81% 

Lyx 
85.11% 12.84% 2.05% 
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Lyy 
93.97% 5.44% 0.58% 

Lzx 
65.52% 28.75% 5.72% 

Lzz 
75.1% 19.39% 5.51% 

8%weakening Lxx 
1.79% 70.99% 27.22% 

Lxy 
0.32% 90.16% 9.51% 

Lxz 
61.06% 32.5% 6.43% 

Lyx 
81.36% 15.02% 3.62% 

Lyy 
89.71% 9.36% 0.93% 

Lzx 
61.24% 32.33% 6.43% 

Lzz 
72.26% 22.15% 5.6% 

Inhibitor-amplified 

NFO 

1% weakening Lxx 
0.05% 99.93% 0.02% 

Lxy 
0.06% 99.89% 0.06% 

Lyx 
99.04% 0.38% 0.58% 

Lyy 
48.58% 7.7% 43.71% 

Lyz 
55.61% 8.9% 35.5% 

Lzy 
0.48% 61.64% 37.88% 

Lzz 
1.08% 67.64% 31.28% 

2% weakening Lxx 
0.04% 99.87% 0.09% 

Lxy 
0.78% 99.17% 0.05% 

Lyx 
98.08% 0.43% 1.49% 

Lyy 
30.13% 14.02% 55.85% 

Lyz 
28.49% 22.05% 49.46% 

Lzy 
1.12% 62.66% 36.22% 

Lzz 
1.91% 70.42% 27.66% 



 15

4% weakening Lxx 
0.02% 99.86% 0.12% 

Lxy 
1.15% 98.81% 0.04% 

Lyx 
96.77% 0.7% 2.53% 

Lyy 
27.55% 14.03% 58.42% 

Lyz 
19.8% 30.38% 49.82% 

Lzy 
1.23% 63.85% 34.92% 

Lzz 
1.96% 71.44% 26.59% 

8% weakening Lxx 
0.01% 99.84% 0.15% 

Lxy 
1.21% 98.76% 0.03% 

Lyx 
93.7% 1.9% 4.4% 

Lyy 
27.54% 14.05% 58.41% 

Lyz 
15.46% 38.17% 46.38% 

Lzy 
1.08% 64.68% 34.24% 

Lzz 
1.95% 70.71% 27.34% 

Type 1 incoherently-

amplified NFO 

1% weakening Lxx 
0.46% 0% 99.54% 

Lxy 
64.27% 0.56% 35.17% 

Lxz 
1.02% 5.99% 92.99% 

Lyx 
71.22% 0.1% 28.68% 

Lyy 
71.12% 0.15% 28.73% 

Lzy 
94.44% 3.01% 2.56% 

Lzz 
100% 0% 0% 

2% weakening Lxx 
0.98% 0% 99.02% 

Lxy 
56.76% 1.08% 42.16% 

Lxz 
1.04% 15.02% 83.94% 
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Lyx 
60.39% 0.15% 39.46% 

Lyy 
59.32% 0.25% 40.43% 

Lzy 
87.01% 5.82% 7.17% 

Lzz 
98.85% 0.05% 1.1% 

4% weakening Lxx 
1.25% 0.31% 98.43% 

Lxy 
46.95% 2.65% 50.4% 

Lxz 
0.92% 20.02% 79.05% 

Lyx 
47.24% 0.52% 52.24% 

Lyy 
47.53% 0.16% 52.3% 

Lzy 
73.66% 9.54% 16.8% 

Lzz 
96.95% 0.85% 2.2% 

8% weakening Lxx 
0% 0% 100% 

Lxy 
37.69% 3.56% 58.75% 

Lxz 
1.66% 4.05% 94.29% 

Lyx 
38.11% 0.58% 61.31% 

Lyy 
37.28% 0.19% 62.53% 

Lzy 
60.29% 12.82% 26.89% 

Lzz 
89.23% 5.51% 5.26% 

Type 2 incoherently- 

amplified NFO 

1% weakening Lxx 
0% 0% 100% 

Lxy 
73.03% 0.1% 26.87% 

Lxz 
0.52% 0% 99.48% 

Lyx 
90.85% 0% 9.15% 

Lyy 
91.64% 0.05% 8.31% 

Lzy 
6.46% 17.9% 75.64% 
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Lzz 
6.15% 17.44% 76.41% 

2% weakening Lxx 
0.08% 0% 99.92% 

Lxy 
59.87% 0.05% 40.08% 

Lxz 
0.33% 1.32% 98.35% 

Lyx 
78.75% 0.1% 21.15% 

Lyy 
73.47% 0.1% 26.43% 

Lzy 
1.4% 21.42% 77.18% 

Lzz 
0.51% 16.92% 82.56% 

4% weakening Lxx 
0% 0% 100% 

Lxy 
48.66% 0.11% 51.23% 

Lxz 
0.14% 1.64% 98.22% 

Lyx 
55.14% 0.1% 44.76% 

Lyy 
47.14% 0.1% 52.75% 

Lzy 
1.18% 20% 78.82% 

Lzz 
0% 15.11% 84.89% 

8% weakening Lxx 
0% 0% 100% 

Lxy 
35.47% 0.05% 64.47% 

Lxz 
0.42% 0% 99.58% 

Lyx 
34.84% 0.05% 65.1% 

Lyy 
25.68% 0.11% 74.22% 

Lzy 
0.86% 16.28% 82.87% 

Lzz 
0% 10.76% 89.24% 

Type 3 incoherently-

amplified NFO 

1% weakening Lxx 
30.24% 13.4% 56.36% 

Lxz 
32.61% 14.12% 53.28% 
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Lyx 
30.77% 15% 54.23% 

Lyy 
8.14% 29.3% 62.56% 

Lyz 
10.25% 27.58% 62.17% 

Lzy 
4.02% 31.84% 64.14% 

Lzz 
4.73% 30.65% 64.62% 

2% weakening Lxx 
19.82% 19.74% 60.44% 

Lxz 
23.86% 18.82% 57.32% 

Lyx 
18.98% 20.55% 60.47% 

Lyy 
4.37% 31.91% 63.73% 

Lyz 
5.73% 31.06% 63.21% 

Lzy 
1.77% 32.26% 65.97% 

Lzz 
2.41% 32.28% 65.31% 

4% weakening Lxx 
12.11% 25.97% 61.92% 

Lxz 
15.72% 23.99% 60.29% 

Lyx 
10.3% 26.03% 63.67% 

Lyy 
2.42% 35.22% 62.36% 

Lyz 
2.93% 32.61% 64.46% 

Lzy 
0.83% 33.12% 66.05% 

Lzz 
1.36% 33.43% 65.21% 

8% weakening Lxx 
6.78% 30.74% 62.48% 

Lxz 
9.13% 28.09% 62.77% 

Lyx 
6.63% 28.25% 65.13% 

Lyy 
1.36% 37.41% 61.22% 

Lyz 
2.09% 35.18% 62.73% 
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Lzy 
0.78% 34.98% 64.24% 

Lzz 
1.37% 36.32% 62.31% 

 aBoth the frequency and amplitude changed by less than 1%. 

bThe frequency or amplitude changed by more than 1%, and the changes in the frequency are greater 

than the changes in the amplitude. 

cThe frequency or amplitude changed by more than 1%, and the changes in the amplitude are greater 

than the changes in the frequency. 

 

Additional Table A2. Relative mean differences between 1st-order ODE and 2nd-order ODE in the 

results of the simulations during ten periods of oscillations. Each relative mean difference was 

calculated by dividing the absolute difference by the maximum value of oscillation of each oscillator. 

For six representative 3-node oscillator models (*), each relative mean difference was calculated for 

each parameter set and represented by mean ± standard deviation. 

Oscillator The relative mean difference 

Simple NFO* 0.00039 ± 0.0021 

Activator-amplified NFO* 0.000023 ± 0.00013 

Inhibitor-amplified NFO* 0.0012 ± 0.0032 

Type 1 incoherently-amplified NFO* 0.0093 ± 0.011 

Type 2 incoherently-amplified NFO* 0.0000059 ± 0.000033 

Type 3 incoherently-amplified NFO* 0.042 ± 0.11 

Circadian rhythm model by Leloup, et al. 0.00064 

Circadian rhythm model by Goldbeter, et al. 0.0170 

Repressilator 0.000029 

Sinus node model by Yanagihara, et al. 0.00023 
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Hodgkin-Huxley axon model 0.00087 

Cell cycle model by Ferrell, et al. 0.000030 

cAMP model by Martiel, et al. 0.0000060 

Glycolysis model by Selkov model 0.000065 

Glycolysis model by Higgins model 0.000020 

 

Additional Table A3. Parameter sets for the 3-node biochemical oscillator models for 

mathematically controlled comparisons. 

Model Parameter set 

Simple NFO 
1 2 30.1, 2, 0.1, 4, 0.2, 0.1, 0.01, 0.05sx dx mk S k p k k K k         

Activator-amplified NFO 

variant 

1 2 30.012, 2, 0.1, 4, 0.2, 0.1, 0.01, 0.05,

0.188, 2
sx dx m

amp

k S k p k k K k

k q

       
 

Inhibitor-amplified NFO 

variant 

1 2 30.1, 2, 0.1, 4, 0.047, 0.1, 0.01, 0.05,

0.07, 2
sx dx m

amp

k S k p k k K k

k q

       

 

Type 1 incoherently-

amplified NFO variant 

1 2 30.027, 2, 0.1, 4, 0.2, 0.1, 0.01, 0.05,

0.052, 2
sx dx m

inc

k S k p k k K k

k q

       

 

 

Additional Table A4. Percentage of parameter sets for the 3-node biochemical oscillator models 

that did not sustain limit-cycle oscillation after interaction perturbation from total parameter sets. 

Oscillator Perturbation 

Strength: 1% 

Perturbation 

Strength: 2% 

Perturbation 

Strength: 4% 

Perturbation 

Strength: 8% 

Type 1 simple NFO 
0.31% 0.66% 2.25% 6.18% 

Activator-amplified 

NFO 
12.08% 15.38% 22.32% 34.06% 
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Inhibitor-amplified 

NFO 
5.67% 13.92% 39.77% 59.55% 

Type 1 incoherently-

amplified NFO* 
11.01% 14.62% 20.75% 33.62% 

Type 2 incoherently-

amplified NFO* 
16.71% 23.15% 28.44% 34.58% 

Type 3 incoherently-

amplified NFO* 
0.73% 2.34% 6.78% 21.91% 

 

 

III. Additional Equations 

Additional Equation A1. ODEs of the 3-node biochemical oscillators 

State variables: , ,x y z  

Time derivatives of state variables: , ,
dx dy dz

dt dt dt
  

(1) Simple NFO 

2
1

3

1

( )

sx
dxp

m

S kdx
k x

dt z
k ydy

k x
dt K y

dz
k y z

dt


  




  


  

  

(2) Activator-amplified NFO 

_ _( )

1

1

sx basal sx dx basal dx

p
sy

dyp

q
sz

dzq

dx
k k z k k y x

dt

k xdy
k y

dt x

k xdz
k z

dt x
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(3) Inhibitor-amplified NFO 

_

_ _

1 2

1 2

( )

( ( ))

( )

( )

p
sx dx basal dx

sy basal sy dy basal dy

m m

dx
k k k y x

dt
dy

k k x k k ZT z y
dt

k y ZT z k zdz

dt K ZT z K z

    

       

   
 

  

 

(4) Type 1 incoherently-amplified NFO 

_

1

1

q
sx

dxq

sy basal sy dy

p
sz

dzp

k ydx
k z x

dt y

dy
k k x k y

dt

k ydz
k z

dt y


   



    


  



 

(5) Type 2 incoherently-amplified NFO 

_

3

1

( )

1

q
sx

sx basal xz dxq

q

sz dz q

k ydx
k k x z k x

dt y

dy
k x y

dt

dz y
k k z

dt y


      



  

   


 

(6) Type 3 incoherently-amplified NFO 

_

1 2

1 2

( )

( )

( ( ))

( )

( )

sx
dx

mx

sy dy basal dy

m m

k ZT zdx
k x

dt ZT z K

dy
k x k k ZT z y

dt
k y ZT z k zdz

dt K ZT z K z

 
  

 

      

   
 

  

 

(7) Activator-amplified NFO variant 
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2
1

3

1 1

( )

q
sx

amp dxp q

m

S kdx x
k k x

dt z x
k ydy

k x
dt K y

dz
k y z

dt


    

 


  


  

 

(8) Inhibitor-amplified NFO variant 

2
1

3

1

1

( )

sx
dxp

q

amp q
m

S kdx
k x

dt z

k ydy y
k x k

dt y K y

dz
k y z

dt


  




    
 

  

 

(9) Type 1 incoherently-amplified NFO variant 

2
1

3

1 1

( )

q
sx

inc dxp q

m

S kdx y
k k x

dt z y

k ydy
k x

dt K y

dz
k y z

dt


    

 


  


  

 

 

Additional Equation A2. ODEs and parameters for naturally occurring biochemical oscillator 

models 

(1) Circadian rhythm model by Leloup et al. 

State variables: , , , , , , , , , , , , , , ,P C B C C CP CP C N CP NP C CP N NP NM M M P C P C PC PC PC PC B B B B I   

Time derivatives of state variables: , , , , , , ,C C C CP CPP BdM dP dC dP dCdM dM

dt dt dt dt dt dt dt
 

, , , , , , , ,C N CP NP C CP N NP NdPC dPC dPC dPC dB dB dB dB dI

dt dt dt dt dt dt dt dt dt
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n
sp N mP PP

dmp Pn n
AP N mP P

n
C sC N mC C

dmc Cn n
AC N mC C

m
sB IB mB BB

dmb Bm m
IB N mB B

v B v MdM
k M

dt K B K M

dM v B v M
k M

dt K B K M

v K v MdM
k M

dt K B K M

 
   

 

 
   

 

 
   

 

 

1 2
4 3

1 2
4 3

1 2

1

C P C P CP
sP P C C C dn C

p C dp CP

C C C C CP
sC C C C C dnc C

p C dp CP

CP P C P CP dPC CP
dn CP

p C dp CP d CP

CP C C

p C

dP V P V P
k M k PC k P C k P

dt K P K P

dC V C V C
k M k PC k P C k C

dt K C K C

dP V P V P v P
k P

dt K P K P K P

dC V C

dt K C

 
          

 

 
          

 

  
    

  


 


2C CP dCC CP

dn CP
dp CP d CP

V C v C
k C

K C K C

 
  

 

 

1 2
4 3 2 1

3 4
2 1 7 8

1 2

C PC C PC CP
C C C N C dn C

p C dp CP

N PC N PC NP
N C N N N dn N

p N dp NP

CP PC C PC CP dP

p C dp CP

dPC V PC V PC
k PC k P C k PC k PC k PC

dt K PC K PC

dPC V PC V PC
k PC k PC k B PC k I k PC

dt K PC K PC

dPC V PC V PC v

dt K PC K PC

 
             

 

 
             

 

 
  

 

3 4

CC CP
dn CP

d CP

NP PC N PC NP dPCN NP
dn NP

p N dp NP d NP

PC
k PC

K PC

dPC V PC V PC v PC
k PC

dt K PC K PC K PC


 



  
    

  

 

1 2
5 6

1 2

3 4
5 6 7 8

3

C B C B CP
sB B C N dn C

p C dp CP

CP B C B CP dBC CP
dn CP

p C dp CP d CP

N B N B NP
C N N N N dn N

p N dp NP

NP B N

p N

dB V B V B
k M k B k B k B

dt K B K B

dB V B V B v B
k B

dt K B K B K B

dB V B V B
k B k B k B PC k I k B

dt K B K B

dB V B

dt K B

 
         

 

  
    

  

 
            

 


 


4

8 7

B NP dBN NP
dn NP

dp NP d NP

N dIN N
N N N dn N

d N

V B v B
k B

K B K B

dI v I
k I k B PC k I

dt K I
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4, 4, 1, 0.5 , ,

1, , 0.8 , 0.7 , 0.7, 1, 0.8

1.1, 1, 0.2, 0.3, 0.4, 0.4, 0.01, 0.01, 0.01

0.6

stot sP stot sC stot sB stot

stot sP stot sC stot sB stot AP AC IB

mP mC mB mP mC mB dmp dmc dmb

phos

n m k k k k k k k

v v v v v v v K K K
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(2) Circadian rhythm model by Goldbeter. 

State variables: 1, 2, 3, 4x x x x   

Time derivatives of state variables: 
1 2 3 4

, , ,
dx dx dx dx
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(3) Repressilator by Elowitz and Leibler (modified version). 

State variables: , ,x y z  

Time derivatives of state variables: , ,
dx dy dz

dt dt dt
 

2

21 1 1

1 1

1 1

ampd s
n

d s
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d s
n

k xk x kdx

dt x z x
k y kdy

dt y x

k z kdz
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(4) Sinus node model by Yanagihara et al. 

State variables: , , , , , ,V m h n d f q  

Time derivatives of state variables: , , , , , ,
dV dm dh dn dd df dq

dt dt dt dt dt dt dt
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(5) Neuronal model by Hodgkin and Huxley 

State variables: , , ,V m h n  
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Time derivatives of state variables: , , ,
dV dm dh dn

dt dt dt dt
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(6) Cell cycle model by Pomerening et al. 

state variables: , , , , , , , ,a b c d e f g h i  

time derivatives of state variables: , , , , , , , ,
da db dc dd de df dg dh di

dt dt dt dt dt dt dt dt dt
 

1 1

25 25

1 1

( 1 )

( 1 ) ( 1 )

( 25 )

( 1

synth dest a tot d

a tot d dest wee wee basal tot

cdc cdc basal tot

wee wee basal tot

da
k k i a k cdk b c d e a k b

dt
db

k cdk b c d e a k b k i b k g b k wee g b
dt

k f c k cdc f c

dc
k g b k wee g

dt

            

                  

      

      25 25 2

2 25 25 1 1

25 25

) ( 25 )

( 25 ) ( 1 )

(

cdc cdc basal tot cak pp c dest

cak pp c cdc cdc basal tot wee wee basal tot dest

cdc cdc basal

b k f c k cdc f c k c k d k i

dd
k c k d k f d k cdc f d k g e k wee g e k i

dt
de

k f d k cdc
dt

              

                   

     1 125 ) ( 1 )tot wee wee basal tot destf d k g e k wee g e k i e           



 29

25

25 25

1

1 1

1

1 1

25 25
25

1 1
1

1 1

1

( 25 )
50

( 1 )
50

( 1 )
50

cdc

cdc cdc

wee

wee wee

plx

plx plx

n

cdc on tot cdc offn n
cdc

n

wee off wee on totn n
wee

n

plx on tot plx offn n

plx

df e
k cdc f k f

dt ec e

dg e
k g k wee g

dt ec e

dh e
k plx h k h

dt ec e

di
k

dt

     


      


     



1

( )
50

apc

apc apc

n

apcon tot apcoffn n

plx

h
apc i k i

ec h
    



  

1
1 1

25
25 25

1 25 1

1 1

10, 0.04, 0.01, 0.1, 0.001, 0.05,

0.1, , 1 230, 25 15, 50, 1 50

4, 4, 4, 4

50 40, 50 4

wee
synth dest a d wee wee basal

cdc
cdc cdc basal tot tot tot tot

wee cdc apc plx

plx wee

k
r k k k k k k

r
k

k k cdk cdc apc plx
r

n n n n

ec ec

      

     

   

  25

25 25 1 1

1 1 2

0, 50 40, 50 40

1.75, 0.2, 1, 0.15, 1, 0.15

0.2, 1.75, 0.8, 0.008, 1 15

cdc apc

cdc on cdc off apcon apcoff plx on plx off

wee on wee off cak pp c tot

ec ec

k k k k k k

k k k k wee

 

     

    

  

 

(7) cAMP model by Martiel and Goldbeter 

State variables: , ,x y z  

Time derivatives of state variables: , ,
dx dy dz

dt dt dt
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(8) Glycolysis model by Sel’kov 

State variables: ,x y  

Time derivatives of state variables: ,
dx dy

dt dt
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dt
dy

y x y
dt
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(9) Glycolysis model by Higgins (modified version) 

State variables: , ,x y z  

Time derivatives of state variables: , ,
dx dy dz

dt dt dt
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IV. Additional Notes 

Additional Note A1. Advantages of interaction perturbation over parameter perturbation in 

this study 

The purpose of this study is to investigate the different regulatory functions of networks arising from 

the differences in their structure. This purpose can be achieved by examining how a network responds 

to a perturbation of each link within the network. Then, a question is raised as to whether a parameter 

perturbation in an ODE model can be regarded as a link perturbation. 

The number and the function of the parameters are determined by the structure of the ODE model. 

For instance, in a network structure, ‘Y inhibit X’ can be represented by the equation (1.1) as well as by 

the equation (1.2). Y inhibits the synthesis of X in the equation (1.1) while Y facilitates the degradation 

of X in the equation (1.2). 

sx
dx

m

kdX
k X

dt K Y
  


 (1.1) 

sx dx

dX
k k Y X

dt
    (1.2) 

There are three parameters (i.e. ksx, Km, and kdx) in the equation (1.1) and two parameters (i.e. ksx and 

kdx) in the equation (1.2) although those two equations represent the same network structure which 

consists of two links (i.e. ‘X on X’ and ‘Y on X’). In the equation (1.1), kdx represents ‘X on X’; ksx and 

Km represent ‘Y on X’. Herein, the perturbation of kdx clearly means the perturbation of the link ‘X on 

X’.  

However, in the link ‘Y on X’, the perturbation of either ksx or Km may not exactly correspond to the 

perturbation of the link. In the equation (1.2), kdx is involved in two links (i.e. ‘X on X’ and ‘Y on X’) 

simultaneously. In this structure, it is impossible to perturb a link independently of other links by 

parameter perturbation. 

In summary, more than two parameters may represent a single link and a single parameter may be 
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involved in more than two links. Therefore, this problem may undermine the reliability of the results of 

parameter perturbations. 

Direct modulation of specific interaction can be a solution to this problem. All the ODE models 

which represent ‘Y inhibits X’ will consist of two interactions (i.e. X on X and Y on X). Herein ‘Y 

inhibits X’ represents the negative interaction from Y to X. What will be the results when we directly 

modulate the interaction from Y to X? In the equation (1.1), 
dX

dt
will increase due to the increased first 

term ( sx

m

k

K Y
). In the equation (1.2), 

dX

dt
will also increase due to the decreased second term 

( dxk Y X  ). Regardless of the structure of ODE models, the results of the direct perturbation of an 

interaction reflect the link structure inside the network. Therefore, perturbation of interactions will be 

methodologically suitable for analyses of the different functions of networks arising from their 

structure. In this study, interactions between molecules were represented algebraically by using 

Jacobian matrix and the functional characteristics of the networks were investigated by direct 

perturbation of interactions. 

 

Additional Note A2. Difference between the first-order ODE and the second-order ODE in 

respect of responses to a perturbation of the system 

In the first-order ODE, applying transient perturbation does not change the frequency and amplitude of 

the limit cycle oscillator. However, the transient perturbation in the second-order ODE can change them. 

This is because, for the second-order ODE, the first derivatives of the state variables as well as the state 

variables themselves change their values during the integration process.  

 Suppose that the system is defined by coupled ODEs with two state variables, X and Y, for 

convenience of explanation. If it is a first-order ODE system, we need two initial conditions (i.e., 

X(t=0) and Y(t=0)) and parameter values for numerical simulation. In this case, the simulation using 
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identical parameter values and appropriate initial conditions would generally lead the system to 

converge to a same fixed point (or limit cycle). In contrast, for the simulation of an equivalent second-

order ODE system, the number of required initial conditions becomes double compared to that for the 

first-order ODE system (i.e., X(t=0), Y(t=0), ( 0), ( 0)
dX dY

t t
dt dt

  ). In this case, the simulation using 

identical parameter values might not converge to a same fixed point (or limit cycle) even if the initial 

conditions for X and Y (i.e., X(t=0), Y(t=0)) are identical. This is because the additionally required 

initial conditions (i.e., ( 0), ( 0)
dX dY

t t
dt dt

  ) are different. In Figure R1 shown below, we presented 

the simulation results that show a difference between a first-order ODE system and the equivalent 

second-order ODE system: different limit cycles are generated by integrations of the equivalent second-

order ODE system with the same parameter set and same initial values of the state variables, but with 

different initial time derivatives of the state variables. 

 These results indicate that every time when the interaction perturbation is performed, the second-order 

ODE system may reach a different initial condition (i.e., different initial values and different time 

derivatives), consequently leading to a different limit cycle. 
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Figure R1. Comparison between a first-order ODE system and the equivalent second-order ODE 

system of a two-node activator amplified NFO. (A) Simulation results of the first-order ODE system. 

Integrations from two different initial values (i.e., P1, P2) lead to the same limit cycle. (B) Simulation 

results of the equivalent second-order ODE system. Integrations from the same initial values (e.g. P1) 

can result in different limit cycles due to the different initial time derivatives of the state variables (e.g. 

trajectory 1 and trajectory 3: their limit cycles are different). Detailed information on the simulation is 

provided in Table R1. 
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Table R1. Equations, parameters, and initial conditions for the simulation of a two-node activator 

amplified NFO.  

 First-order ODE system Equivalent second-order ODE system 

Equations 
_ _( )

1

q

sx prime sx dx prime dxq

dx x
k k k k y x

dt x
      


 

1

p

sy dyp

dy x
k k y

dt x
   


  

2

2

_ _

1 2 1

_ 2

( )
1

( ( ) )
1

( )
1 ( 1)

p
sy

dx dy p

q
sx

sx prime dx prime dx q

q q
sx sx

dx prime dx q q

k xd x
k x k y

dt x

k x
k x k k y s

x

k qx k qx
k k y

x x

 

 


    


  
 

  

1 2 12

2 2

_ _

( ) ( )
1 1 ( 1)

( ( ) )
1

p p p
sy sy sy

dy dy p p p

q
sx

sx prime dx prime dx q

k x k px k pxd y
k k y

dt x x x

k x
k x k k y

x

 

    
  

  


 

Parameters _ _0.02, 1, 0.2, 1,

2, 0.01, 0.01, 2

sx prime sx dx prime dx

sy dy

k k k k

q k k p

   

   
 

_ _0.02, 1, 0.2, 1,

2, 0.01, 0.01, 2

sx prime sx dx prime dx

sy dy

k k k k

q k k p

   

   
 

Initial 

conditions 

For trajectory 1,  

0 0( , ) (4,0.3)t tx y    

For trajectory 2,  

0 0( , ) (3,0.05)t tx y    

For trajectory 1,  

0 0( , ) (4,0.3)t tx y  

0 0

( , ) ( 1.0388,0.0064)
t t

dx dy

dt dt 
   

For trajectory 2,  

0 0( , ) (3,0.05)t tx y    

0 0

( , ) (0.1700,0.0085)
t t

dx dy

dt dt 
  

For trajectory 3, 

0 0( , ) (4,0.3)t tx y    

0 0

( , ) ( 1.0378,0.0054)
t t

dx dy

dt dt 
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For trajectory 4, 

0 0( , ) (3,0.05)t tx y    

0 0

( , ) (0.1685,0.0070)
t t

dx dy

dt dt 
  


