Supplementary Information for Gibson et al. (2017) Color naming across languages reflects
color use.

Supp. Materials, Methods, Analysis and Figures (SI-Section 1 to SI-Section 10; Figures S1-
S16; Tables S1-S6)

Data collection with the Tsimane’ was performed through daily trips to eight Tsimane’
communities near San Borja, Bolivia, in collaboration with the Centro Boliviano de
Investigacion y de Desarrollo Socio Integral (CBIDSI).

SI-Section 1: Additional details of the Color-naming Task

The variability of the tasks that were run under the World Color Survey. All previous
experiments in which participants from unindustrialized cultures were asked to label colors have
used variants of the World Color Survey (WCS) instructions (1-3). These instructions introduce a
complex notion of a “basic” color term, which takes several pages to describe. In writing these
instructions, the authors of the WCS were trying to prohibit participants from producing low-
frequency color terms like “scarlet” as a sub-class of red, or terms that are associated with only
one object. The notion of “basic” color category does not include categories that are subsets of
others, and can be applied broadly to many objects. But the concept of a basic color term has
theoretical problems, because it is not clear that color categories cannot be parts of others, or that
color categories cannot be very narrow; moreover, many languages simply do not have a super-
ordinate concept of “color”. Thus identifying “basic” color terms across languages begs the
question of what counts as a basic color category (4).(4). The definition is also problematic in
practice because it is so complex, making the notions difficult to explain, with the likely
consequence that different WCS researchers implemented the complex instructions differently.
An empirical evaluation of the WCS data suggests that there was variability in the kind of
strategy that was used by WCS experimenters in implementing this task. The range of strategies
can be captured by two extreme versions of the task: one in which participants could say
whatever color words that they wanted — a “free-choice” version — and a second variant in which
participants were restricted to choose a color word from a fixed set of choices — a “fixed-choice”
version. For example, the fixed-choice version of the task was explicit when gathering the Piraha
WCS data, as discussed by Everett (5). Among the Piraha queried in the WCS, all 25 participants
except one produced all and only the same set of four words (one participant also used one
additional word, in 5 trials); this outcome is extremely unlikely if the participants were not
constrained to use a particular set of terms. We can compare Piraha to the six other WCS
languages which also have four modal color words. Two of these languages are like Pirah, such
that only the same four or five terms were provided by all of the participants. But participants in
the other WCS languages with four modal color words produced more color terms: 15-17 terms
in each of these four languages (sampling 25 people in each language). This corroborates the
idea that WCS researchers may have used two versions of the task: a fixed-choice version (where
only 4 words are used by all participants in these languages) and a free-choice version, with no
such constraint, and the result that participants are much more variable in what they produce.

We quantified the variability in how the WCS task was implemented using two analyses. First,
we examined the ratio of the total number of words that any participant used in a WCS language



to the number of modal color terms. If a particular WCS task was implemented with a set of
fixed choices for that language, this ratio will be close to one. But if there were fewer constraints
on what words participants could use, then this ratio will result in a number larger than one. The
histogram of the WCS ratios in Figure S1 shows that many languages have a term-to-modal-
term ratio of exactly one, suggesting a fixed-choice task in those languages. Some languages
have a ratio very close to one, suggesting that some constraints were placed on what might be
said in those languages. And many languages have much higher ratios, suggesting that no
constraints were applied in these languages.
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Figure S1. A histogram of the ratio of the number of words that any participant used in a WCS
language to the number of modal color terms in that language. In this analysis, we restricted our
attention to the subset of 80 color chips that were used in our experiments, in order to compare
our results to those from the WCS. A ratio close to one suggests that the WCS task was
implemented with a set of fixed choices for that language. Ratios that are much larger than one
suggest that the WCS task was implemented with free choice of color terms for that language.
We include the Tsimane’ fixed-choice and free-choice ratios as baselines. For the bootstrap
comparisons in the text, we compare only to the 99 WCS languages that have at least 20
participants. We randomly selected data from 20 Tsimane’ subjects, and only include terms that
appeared more than once (Tsimane’ free choice = 18 total terms / 8 modal terms = 2.25).

What is the probability that we would observe each of the ratios in Figure S1 if the task given to
participants was to label colors freely? To answer this question, we calculated a distribution over
term-to-modal-term ratios based on bootstrap resampling our Tsimane’ free-choice data (see
Table S1) for the 99 WCS languages that have at least 20 participants. This distribution tells us



the probability that we would observe a certain term-to-modal-term ratio given randomly
sampled subjects and a free-choice task. Most of the languages in the WCS dataset (80/99) have
a term-to-modal-term ratio significantly less than the Tsimane’ free-choice task, suggesting that
these data were not collected with a fully free choice task. The data from the other 19 languages
(those marked with “FALSE” in column 3 in Table S1) were plausibly generated with a fully
free-choice task. Finally, seven of the 99 languages had term-to-modal ratios of exactly 1,
suggesting that they were plausibly generated using the fixed-choice task.

Smaller than Tsimane' free-
Language term-to-modal-term ratio choice ratio? (p<.01)
Abidji 1.33 TRUE
Agarabi 3.50 FALSE
Aguacateco 1.56 TRUE
Ampeeli 2.71 FALSE
Amuzgo 1.64 TRUE
Angaatiha 1.29 TRUE
Apinaye 1.83 TRUE
Arabela 1.86 TRUE
Bahinemo 1.29 TRUE
Bauzi 1.40 TRUE
Berik 2.67 FALSE
Bete 2.25 TRUE
Bhili 1.71 TRUE
Buglere 1.17 TRUE
Cakchiquel 1.64 TRUE
Camsa 1.73 TRUE
Carib 1.33 TRUE
Casiguran Agta 2.18 TRUE
CavineXa 1.17 TRUE
Cayapa 2.00 TRUE
Chcobo 1.00 TRUE
Chavacano 1.50 TRUE
Chayahuita 1.17 TRUE
Chinanteco 1.13 TRUE
Chiquitano 2.27 TRUE
Chumburu 1.88 TRUE
CofXn 1.00 TRUE
Colorado 1.20 TRUE
Culina 3.25 FALSE
Didinga 1.00 TRUE
Djuka 2.50 FALSE
Dyimini 1.43 TRUE
Eastern Cree 2.67 FALSE




Ejagam 1.00 TRUE
Ese Ejja 1.29 TRUE
Guahibo 1.30 TRUE
Guambiano 1.29 TRUE
Guarijio 1.83 TRUE
Gunu 3.00 FALSE
Halbi 2.75 FALSE
Huasteco 1.38 TRUE
Huave 1.20 TRUE
Iduna 3.40 FALSE
Ifugao 2.00 TRUE
Kalam 4.00 FALSE
Kamano-Kafe 2.86 FALSE
Kemtuik 2.14 TRUE
Kokoni 1.57 TRUE
Konkomba 2.80 FALSE
Kriol 1.30 TRUE
Kuku-Yalanji 2.40 TRUE
Kwerba 3.25 FALSE
Long-haired Kuna 211 TRUE
Mampruli 3.14 FALSE
Maring 243 TRUE
Martu Wangka 4.33 FALSE
Mawchi 1.29 TRUE
Mayoruna 1.00 TRUE
Mazahua 1.93 TRUE
Mazateco 1.30 TRUE
Menye 1.88 TRUE
Micmac 1.86 TRUE
Mikasuki 1.38 TRUE
Mixteco 1.50 TRUE
Murinbata 1.83 TRUE
Murle 1.57 TRUE
MXra PirahX 1.00 TRUE
Nafaanra 1.33 TRUE
NgXbere 2.29 TRUE
Ocaina 1.50 TRUE
Papago 2.00 TRUE
Patep 1.43 TRUE
Paya 1.40 TRUE
Saramaccan 2.18 TRUE




Sepik lwam 1.80 TRUE
Seri 1.14 TRUE
Shipibo 1.25 TRUE
SirionX 2.00 TRUE
Slave 2.00 TRUE
Sursurunga 2.00 TRUE
Tabla 1.14 TRUE
Tholi 1.29 TRUE
Teribe 1.75 TRUE
Ticuna 1.33 TRUE
Tifal 3.20 FALSE
Tlapaneco 1.33 TRUE
Tucano 1.17 TRUE
Ucayali Campa 3.00 FALSE
Vagla 1.00 TRUE
Vasavi 1.50 TRUE
Walpiri 4.71 FALSE
Waorani 2.00 TRUE
Wobe 1.33 TRUE
Yacouba 1.00 TRUE
Yakan 1.09 TRUE
Yaminahua 1.80 TRUE
Yucuna 1.50 TRUE
Yupik 2.17 TRUE
Zapoteco 1.14 TRUE

Table S1. The term-to-modal-term for each of the 99 WCS languages with at least 20
participants, along with whether each ratio is significantly smaller than the ratio generated from
samples of 20 participants in the Tsimane’ free-choice task, at p < 0.01. When the ratio is
significantly smaller, it provides evidence suggesting that the data from that language were not
gathered using a fully free-choice task. The data from the other 19 languages (those marked with
“FALSE” in column 3) were plausibly generated with a fully free-choice task.

Second, we examined the mean color-word-overlap proportion (CWO proportion) for the WCS
languages, where the CWO proportion is defined as the mean proportion of color terms that each
participant used which were also used by more than three-quarters of the other participants. A
larger average CWO proportion for a language indicates a greater likelihood that words were
constrained in the task. For example, 6 of the WCS languages have mean CWO proportions of
1.0, meaning that every term that a participant used was used by at least 75% of the other
participants. Forty of the WCS languages have a CWO proportion of .9 or higher, suggesting a
constrained vocabulary of color terms across participants, with few outlier terms. In contrast,
there are 17 languages in the WCS with mean CWO proportions of 0.7 or below, meaning that
30% or more of the color terms that participants used in these languages were used by fewer than
75% of other participants. In these languages, there were probably no constraints on what



speakers were told to say by their experimenters. Taken together, these two analyses suggest
that the specific methods used to implement the WCS task were likely variable from one
language to another.
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Figure S2. A histogram of the mean color-word-overlap proportion (CWO proportion) for the
WCS languages, where the CWO proportion is defined as the mean proportion of color terms
that each participant used which were also used by more than three-quarters of the other
participants. The non-normality of this distribution suggests that different tasks were used across
different WCS languages: a free-choice version and a fixed-choice version. A proportion close
to one suggests that the WCS task was implemented with a set of fixed choices for that language.
Proportions much less than one suggest that the WCS task was implemented with free choice of
color terms for that language. We include the Tsimane’ fixed-choice and free-choice WCO
proportions as baselines.

Instructions for the current study. We used two versions of a color-naming task: a free-choice
version, in which participants were simply asked to label Munsell chips spanning the color space
in a way that they thought others from their community would also label them; and a fixed-
choice version, in which the instructions were identical to the free-choice version, but
participants were also asked to choose from a fixed set of 8 choices (the modal labels from the
free-choice version). In pilot experiments on 12 Tsimane’ participants, we collected color-
labeling data on the 160 chips of the standard Munsell array (6); subsequent participants were
tested using a subset of 80 chips, sampling the array uniformly (the 80-chip array produced the
same results as the 160-chip array, but took half the time for data collection on each participant).



We provide a list of the Munsell chip designations for the chips we used in the Table S2. Each
color chip was affixed to a white cardboard square 2 inches on a side.

Participants were presented with the 80 chips in a different random order for each participant
under controlled lighting conditions using a light box. Color-naming variability measured in
studies that do not control for viewing conditions could arise because of variations in ambient
light, adding noise to the naming task. The WCS used a stereotyped order for all chips, which
may have also introduced systematic response biases. Using a random order for every participant
avoids this possibility. The chips were about 1.5” square, mounted on a white card, and
presented one at a time. The task was performed indoors for all three groups: at MIT for English
participants, at the CBIDSI headquarters in San Borja, Bolivia, for Spanish participants, and in
the village school houses for the Tsimane’ participants. For the Tsimane’ version of the task, the
light box was powered by a car battery which we transported to the Tsimane’ villages.

The complete instructions for the task were as follows:

In Tsimane’:

Ma’je' tsun chij mo'in coty cororsi' in Tsimanescan

Medyes qui tsun ma’je’ paj qui jitica mi’in mo’in coror in oij ches carta in.

Jevaj jedye’ buty tsun jidiyaja’ oij coror.

(Fixed-choice version of the task: Mo’ya 8 in: Tsincus, jaibas, jainas, yushfius, shandyes,
itsidyeisi, cafedyeisi, chocoratedyeisi, judyeya chames.

Dyim tyeva’ jufiis buty mi arajdye’ coij mo’ coror.)

In Spanish:

Queremos saber los nombres de los colores en Espafiol. Asi que queremos que nos digas los
colores de estas cartas. Dinos como la gente Ilamaria estas cartas en Espafiol.
(Fixed-choice version of the task: Hay 12 opciones: negro, blanco, rojo, azul, celeste, verde,
morado, cafe, amarillo, anaranjado, rosa, gris.

Escoge el nombre del color mas cercano.)

In English:

We want to know the words for colors in English. So we want you to tell us the colors of these
cards. Tell us what other English speakers would typically call these cards.

(Fixed-choice version of the task: There are 11 choices: black, white, red, green, blue, purple,
brown, yellow, orange, pink, grey. Choose the closest color word.)

English participants’ use of complex color terms. Out of 31 English participants in the free-
choice version of the task, 24 sometimes used multi-word color descriptors, such as “dark green”
or “baby blue”, resulting in 17.8% (436 / 2440) trials with multi-word color descriptors. We
entered the head noun as the color for these descriptors (e.g., “dark green” was coded as “green”;
“baby blue” as “blue”). Interestingly, the Bolivian-Spanish and Tsimane’ participants never used
multi-word color descriptors: they always used single word colors. The difference between
English on the one hand and Spanish and Tsimane’ on the other may partially arise from the
pragmatics of the situation. The English speakers knew that the testers were native English



speakers, and therefore the task became to label the colors as narrowly as possible (ignoring the
instructions, such that participants are supposed to label colors as other English speakers in their
community would). For the Tsimane’ and Bolivian Spanish speakers, the task instructions were
plausibly followed more closely, perhaps because the participants knew that the testers (E.G.,
M.G., J.J.-E.) were not native speakers of Tsimane’ or Bolivian Spanish.

Consistent behavior of participants. All participants, in both versions of the task, showed
above-chance categorization of the color chips into a color-partition space, thus ensuring that our
results could not be explained by poor color detection in some groups or participants (Figures
S3-S5 show sample color response grids for 5 randomly chosen speakers from each of the three
languages).

To ensure that our results could not be explained by participants randomly assigning color words
to color chips, we confirmed that each participant was responding to the task in a consistent way.
To do this, we tested if the number of color word clusters generated by each participant was
significantly smaller than expected if the participant were selecting color words from their
vocabulary at random. To do so we first defined a cluster as a group of adjacent chips
(horizontally, vertically, or diagonally) for which the speaker had chosen the same color word.
After computing the number of color word clusters that each participant produced in the task, we
calculated the probability of observing a number of clusters as low as the true number through a
permutation test with 100 samples. That is, for each participant we generated a baseline
distribution by randomly rearranging the color words 100 times and calculating the resulting
number of clusters each time. By comparing these 100 baseline clusters with the true number of
clusters that each participant produced, it is possible to determine the likelihood that participants
were simply uttering color words at random. Critically, this analysis is both sensitive to the
number of color words each participant used, and to the frequency with which they used each
word. On average, participants produced 17 color-word clusters. In contrast, the average baseline
number of clusters expected by chance was 46. Moreover, for all participants in all languages
(English, Spanish, and Tsimane’) and both tasks (fixed-choice and free-choice versions), all
baseline samples produced a strictly larger number of clusters than the ones participants
produced. The probability that participants could have produced such a structured division of the
grid space by chance is p < 0.001.



In the 24 chips

Our Code Munsell Code WCS Code el:p:;?::;:?? I:)(Lﬁ?:ﬂi?g evenly sampling expler:’ilr?n-lz;n 0
CIELAB?
Al 5R9/2 B1 FALSE TRUE FALSE FALSE
A2 10R9/2 B3 TRUE TRUE FALSE FALSE
A3 5YR9/2 BS FALSE TRUE FALSE FALSE
Ad 10YR9/4 B7 TRUE TRUE FALSE FALSE
A5 5Y9/6 B9 FALSE TRUE FALSE FALSE
AB 10Y9/6 B11 TRUE TRUE TRUE FALSE
AT 5GY9/4 B13 FALSE TRUE FALSE FALSE
A8 10GY9/4 B15 TRUE TRUE TRUE FALSE
A9 5G9/2 B17 FALSE TRUE FALSE FALSE
Al0 10G9/2 B19 TRUE TRUE FALSE FALSE
All 5BG9/2 B21 FALSE TRUE FALSE FALSE
Al2 10BG9/2 B23 TRUE TRUE FALSE FALSE
Al13 5B9/2 B25 FALSE TRUE FALSE FALSE
Al4 10B9/2 B27 TRUE TRUE FALSE FALSE
Al5 5PB9/2 B29 FALSE TRUE FALSE FALSE
Al6 10PB9/2 B31 TRUE TRUE FALSE TRUE
Al7 5P9/2 B33 FALSE TRUE FALSE FALSE
Al8 10P9/2 B35 TRUE TRUE FALSE FALSE
Al9 5RP9/2 B37 FALSE TRUE FALSE FALSE
A20 10RP9/2 B39 TRUE TRUE FALSE FALSE
B1 5R8/6 C1 TRUE TRUE FALSE TRUE
B2 10R8/6 C3 FALSE TRUE FALSE FALSE
B3 5YR8/8 B5 TRUE TRUE FALSE FALSE
B4 10YR8/14 C7 FALSE TRUE FALSE TRUE
B5 5Y8/14 Cc9 TRUE TRUE FALSE FALSE
B6 10Y8/12 C11 FALSE TRUE FALSE FALSE
B7 5GY8/10 C13 TRUE TRUE FALSE FALSE
B8 10GY8/8 C15 FALSE TRUE FALSE FALSE
B9 5G8/6 C17 TRUE TRUE TRUE FALSE
B10 10G8/6 C19 FALSE TRUE FALSE FALSE
B11 5BG8/4 C21 TRUE TRUE FALSE FALSE
B12 10BG8/4 C23 FALSE TRUE FALSE FALSE
B13 5B8/4 C25 TRUE TRUE FALSE TRUE
B14 10B8/6 Cc27 FALSE TRUE FALSE FALSE
B15 5PB8/6 C29 TRUE TRUE FALSE FALSE
B16 10PB8/4 C31 FALSE TRUE FALSE FALSE
B17 5pP8/4 C33 TRUE TRUE FALSE FALSE
B18 10P8/6 C35 FALSE TRUE FALSE FALSE
B19 5RP8/6 C37 TRUE TRUE FALSE FALSE
B20 10RP8/6 C39 FALSE TRUE FALSE FALSE
C1 5R7/10 D1 FALSE TRUE FALSE FALSE
c2 10R7/10 D3 TRUE TRUE TRUE FALSE




C3 5YR7/14 D5 FALSE TRUE FALSE FALSE
C4 10YR7/14 D7 TRUE TRUE FALSE FALSE
C5 5Y7/12 D9 FALSE TRUE FALSE FALSE
C6 10Y7/12 D11 TRUE TRUE FALSE FALSE
Cc7 5GY7/12 D13 FALSE TRUE FALSE FALSE
C8 10GY7/10 D15 TRUE TRUE FALSE FALSE
C9 5G7/10 D17 FALSE TRUE FALSE FALSE
C10 10G7/8 D19 TRUE TRUE TRUE FALSE
C11 5BG7/8 D21 FALSE TRUE FALSE FALSE
C12 10BG7/8 D23 TRUE TRUE FALSE FALSE
C13 5B7/8 D25 FALSE TRUE FALSE FALSE
C14 10B7/8 D27 TRUE TRUE FALSE FALSE
C15 5PB7/8 D29 FALSE TRUE FALSE FALSE
C16 10PB7/8 D31 TRUE TRUE FALSE FALSE
C17 5P7/8 D33 FALSE TRUE FALSE FALSE
C18 10P7/8 D35 TRUE TRUE FALSE FALSE
C19 5RP7/10 D37 FALSE TRUE FALSE FALSE
C20 10RP7/8 D39 TRUE TRUE FALSE FALSE
D1 5R6/12 El TRUE TRUE FALSE FALSE
D2 10R6/14 E3 FALSE TRUE FALSE FALSE
D3 5YR6/14 ES5 TRUE TRUE FALSE FALSE
D4 10YR6/12 E7 FALSE TRUE FALSE FALSE
D5 5Y6/10 E9 TRUE TRUE FALSE TRUE
D6 10Y6/10 Ell FALSE TRUE FALSE FALSE
D7 5GY6/10 E13 TRUE TRUE FALSE FALSE
D8 10GY6/12 E15 FALSE TRUE FALSE FALSE
D9 5G6/10 E17 TRUE TRUE FALSE FALSE
D10 10G6/10 E19 FALSE TRUE FALSE FALSE
D11 5BG6/10 E21 TRUE TRUE FALSE FALSE
D12 10BG6/8 E23 FALSE TRUE FALSE FALSE
D13 5B6/10 E25 TRUE TRUE FALSE FALSE
D14 10B6/10 E27 FALSE TRUE FALSE FALSE
D15 5PB6/10 E29 TRUE TRUE FALSE FALSE
D16 10PB6/10 E31 FALSE TRUE FALSE FALSE
D17 5P6/8 E33 TRUE TRUE FALSE FALSE
D18 10P6/10 E35 FALSE TRUE FALSE FALSE
D19 5RP6/12 E37 TRUE TRUE TRUE FALSE
D20 10RP6/12 E39 FALSE TRUE FALSE FALSE
El 5R5/14 F1 FALSE TRUE FALSE FALSE
E2 10R5/16 F3 TRUE TRUE FALSE FALSE
E3 5YR5/12 F5 FALSE TRUE FALSE FALSE
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E4 10YR5/10 F7 TRUE TRUE FALSE FALSE
ES 5Y5/8 F9 FALSE TRUE FALSE FALSE
E6 10Y5/8 F11 TRUE TRUE FALSE FALSE
E7 5GY5/10 F13 FALSE TRUE FALSE FALSE
E8 10GY5/12 F15 TRUE TRUE FALSE FALSE
E9 5G5/10 F17 FALSE TRUE FALSE FALSE
E10 10G5/10 F19 TRUE TRUE FALSE FALSE
E1l 5BG5/10 F21 FALSE TRUE FALSE FALSE
E12 10BG5/10 F23 TRUE TRUE TRUE FALSE
E13 5B5/10 F25 FALSE TRUE FALSE FALSE
E14 10B5/12 F27 TRUE TRUE TRUE FALSE
E15 5PB5/12 F29 FALSE TRUE FALSE FALSE
E16 10PB5/10 F31 TRUE TRUE TRUE FALSE
E17 5P5/10 F33 FALSE TRUE FALSE FALSE
E18 10P5/12 F35 TRUE TRUE TRUE FALSE
E19 5RP5/12 F37 FALSE TRUE FALSE FALSE
E20 10RP5/14 F39 TRUE TRUE FALSE FALSE
F1 5R4/14 Gl TRUE TRUE FALSE TRUE
F2 10R4/12 G3 FALSE TRUE FALSE FALSE
F3 5YRA4/8 G5 TRUE TRUE TRUE FALSE
Fa 10YR4/8 G7 FALSE TRUE FALSE FALSE
F5 5Y4/6 G9 TRUE TRUE TRUE TRUE
F6 10Y4/6 Gl1 FALSE TRUE FALSE FALSE
F7 5GY4/8 G13 TRUE TRUE TRUE FALSE
F8 10GY4/8 G15 FALSE TRUE FALSE FALSE
F9 5G4/10 G17 TRUE TRUE FALSE TRUE
F10 10G4/10 G19 FALSE TRUE FALSE FALSE
F11 5BG4/8 G21 TRUE TRUE TRUE FALSE
F12 10BG4/8 G23 FALSE TRUE FALSE FALSE
F13 5B4/10 G25 TRUE TRUE TRUE TRUE
F14 10B4/10 G27 FALSE TRUE FALSE FALSE
F15 5PB4/12 G29 TRUE TRUE TRUE FALSE
F16 10PB4/12 G31 FALSE TRUE FALSE FALSE
F17 5P4/12 G33 TRUE TRUE TRUE TRUE
F18 10P4/12 G35 FALSE TRUE FALSE FALSE
F19 5RP4/12 G37 TRUE TRUE TRUE FALSE
F20 10RP4/14 G39 FALSE TRUE FALSE FALSE
Gl 5R3/10 H1 FALSE TRUE FALSE FALSE
G2 10R3/10 H3 TRUE TRUE TRUE FALSE
G3 5YR3/6 H5 FALSE TRUE FALSE FALSE
G4 10YR3/6 H7 TRUE TRUE FALSE TRUE
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G5 5Y3/4 H9 FALSE TRUE FALSE FALSE
G6 10Y3/4 H11 TRUE TRUE FALSE FALSE
G7 5GY3/6 H13 FALSE TRUE FALSE FALSE
G8 10GY3/6 H15 TRUE TRUE TRUE FALSE
G9 5G3/8 H17 FALSE TRUE FALSE FALSE
G10 10G3/8 H19 TRUE TRUE FALSE FALSE
Gl1 5BG3/8 H21 FALSE TRUE FALSE FALSE
G12 10BG3/8 H23 TRUE TRUE FALSE FALSE
G13 5B3/8 H25 FALSE TRUE FALSE FALSE
Gl4 10B3/10 H27 TRUE TRUE TRUE TRUE
G15 5PB3/10 H29 FALSE TRUE FALSE FALSE
G16 10PB3/10 H31 TRUE TRUE TRUE FALSE
G17 5P3/10 H33 FALSE TRUE FALSE FALSE
G18 10P3/10 H35 TRUE TRUE FALSE FALSE
G19 5RP3/10 H37 FALSE TRUE FALSE FALSE
G20 10RP3/10 H39 TRUE TRUE FALSE FALSE
H1 5R2/8 11 TRUE TRUE TRUE FALSE
H2 10R2/6 13 FALSE TRUE FALSE FALSE
H3 5YR2/4 15 TRUE TRUE FALSE FALSE
H4 10YR2/2 17 FALSE TRUE FALSE FALSE
H5 5Y2/2 19 TRUE TRUE FALSE FALSE
H6 10Y2/2 111 FALSE TRUE FALSE FALSE
H7 5GY2/2 113 TRUE TRUE FALSE TRUE
H8 10GY2/4 115 FALSE TRUE FALSE FALSE
H9 5G2/6 117 TRUE TRUE FALSE TRUE
H10 10G2/6 119 FALSE TRUE FALSE FALSE
H11 5BG2/6 121 TRUE TRUE FALSE FALSE
H12 10BG2/6 123 FALSE TRUE FALSE FALSE
H13 5B2/6 125 TRUE TRUE FALSE FALSE
H14 10B2/6 127 FALSE TRUE FALSE FALSE
H15 5PB2/8 129 TRUE TRUE TRUE FALSE
H16 10PB2/10 131 FALSE TRUE FALSE FALSE
H17 5P2/8 133 TRUE TRUE FALSE TRUE
H18 10P2/6 135 FALSE TRUE FALSE FALSE
H19 5RP2/8 137 TRUE TRUE FALSE FALSE
H20 10RP2/8 139 FALSE TRUE FALSE FALSE

Table S2. The 160 Munsell chips that were used in our experiments. As indicated in the
rightmost four columns, 80 of these color chips were used in the labeling experiment; all 160
were used in the focal color determination; 24 were used in the analysis of CIELAB colors; and
15 were used in the reaction time (RT) experiment.
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Data from individual subjects. Here, we show the responses of 5 randomly chosen speakers
from each of the three languages for the Munsell-chip free-choice color-naming experiment.

Each color word is given a unique color, and the color of the chip for a given speaker reflects the

color word used for that chip by that speaker. The colors used for the main color words in
English and Bolivian Spanish are assigned based on the focal colors for those words. For

Tsimane’, we take the modal focal color (mode focal hue, mode focal luminance) for each color.
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Figure S3. Sample color grids for 5 randomly chosen speakers from English using the free-
choice paradigm, in which participants could label the colors without any restrictions on the
labels they could use.
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Figure S4. Sample color grids for 5 randomly chosen speakers from Bolivian Spanish using the
free-choice paradigm, in which participants could label the colors without any restrictions on the
labels they could use.
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Figure S5. Sample color grids for 5 randomly chosen speakers from Tsimane’ using the free-
choice paradigm, in which participants could label the colors without any restrictions on the

labels they could use.

15



ColorinFig.1 | Spanish

English

Tsimane’

blanco (100%, 100%)

white (100%, 100%)

jaibas (100%, 100%)

negro (100%, 100%)

black (100%, 100%)
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rojo (100%, 95%)

red (100%, 97%)

jainas (100%, 100%)

verde (100%, 100%)
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yushfius (78%, 57%)

marron (95%, 85%)

brown (100%, 100%)

cafedyeisi /
chocoratedyeisi (74%,
52%)

purpura (95%, 85%)

purple (97%, 100%)

itsidyeisi (64%, 40%)

naranja (100%, 85%)

orange (97%, 87%)

rosado (95%, 95%)

pink (100%, 100%)

celeste (100%, 95%)

azul (100%, 100%)

Table S3. Empirically determined “Basic Color Terms” in Bolivian Spanish, English and
Tsimane’. The first percentage is the fraction of each population that used the term at least once
in naming any color in the 80-chip free-choice color-naming task; the second percentage is the
largest modal value for that color term among all the color chips in the free-choice task
Corresponding terms across languages are identified using data from Figure 1. Terms have been
rank-ordered top-to-bottom according to frequency of use in Tsimane’. The color in the left
column provides a key with the results in Figure 1. Note that the word for “color” in Tsimane’ is
“yeisi” (often shortened to “yes / -s”). All of the color words that we encountered are native
(non-borrowed) Tsimane’ except the word for brown: cafedyeisi / chocoratedyeisi, borrowed
from Spanish.

The average surprisal analysis results of the fixed-options version of the task were strikingly
similar to those from the free-choice response task (compare Figure 1 with Figure S6). The
average surprisal of each language hardly changes at all from one task to the other: Tsimane’:
4.88 bits in free-choice; 4.91 in fixed-choice; English: 3.80 bits in free-choice; 3.86 in fixed-
choice; Bolivian Spanish: 3.86 bits in free-choice; 3.94 in fixed-choice. This demonstrates that
the free-choice and the fixed-choice tasks (the second of which is more similar to the WCS task)
provide strikingly similar results, suggesting a robustness of results to particular testing
procedures for color labeling tasks.
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Figure S6. Diamond plots of the population responses for English, Spanish and Tsimane’ in the
color-labeling task where participants had a fixed set of possible choices. Each chip that was
presented to the participant is shown using the modal color word used for that chip, where each
color word is represented by a different color. The diameter of the diamond is the proportion of
participants that use the modal color word for that chip (Similar conclusions were obtained using
the free-choice version of the task; compare with Figure 1 in the main text).

17



SI-Section 2: Control experiment with Tsimane’ and English speakers: Reaction times for
naming objects and colors

We performed a control experiment to ensure that the participants were fully engaged in the
various tasks. We assessed the time required to label 15 colored chips spanning the Munsell
array (including focal and boundary colors; Table S2), and eight common Tsimane’ objects (a
ripe banana, a ripe tomato, a rock, a stick, a leaf, a comb, a cup, and a fan (Tsimane’ artifact)),
which were physically presented to each participant (Figure S7).

Each participant received a different random order of the objects and colors. The participants
consisted of 66 Tsimane’ adults (mean age: 31.4 years; SD: 14.2 years; range 17-85; 44 females)
recruited from 3 Tsimane’ communities near San Borja, Bolivia, and 23 English participants
(mean age: 26.5 years; SD: 10.9 years; range 18-58; 10 females) recruited from the local MIT
community. We video-recorded all trials. Two coders independently timed each of the English
and Tsimane' videos. We used the average time of these measurements in our analyses, analyzing
over all trials

We fit a mixed effect linear regression predicting log color chip naming latency time from
language and the entropy of the color chip, as defined in equation (2) in the main article. We
included random intercepts for participant and color with a random slope by language for the
object label. We normalized the entropy predictor. We found that increased entropy led to
significantly higher naming latency in log seconds (beta=.25, t = 7.515, p <.0001). There was
also a main effect for English reaction times to be faster compared to Tsimane’ reaction times
(beta=-.19, t=-3.93, p <.0001). There was also no significant interaction although there was a
trend for the slope of entropy to be less steep in English (beta=-.06, chisq(1) = 3.40, p = .07).

For object naming latencies, there was again a main effect of entropy on latency (beta=.22,
t=4.74, p <.0001). There was no clear effect of language, and if anything English was slower for
object naming than Tsimane’ (beta=.13, t=1.81, chi2(1) = 3.39, p = .07) by a chi-squared
likelihood ratio test). There was a trend for the entropy effect to be greater for English (beta=.10
t=1.84, chisq(1) = 3.57, p =.06) although that trend is largely driven by the large average RT for
the object "stick" (which received many labels and elicited long latencies in English but not
Tsimane’) and we should therefore not conclude much from it.

Figure S7. Reaction time to naming objects (a,8 g 2 b:

objects) and colors (b, 15 colors) as a function of __| Tsimane' (N=66) e

the entropy of each object or color. Increased 2 3

entropy correlated with higher latency. For § S

objects: beta=.22, t=4.86, p < .0001; English 2 g

tended to be slower, although insignificantly Y P

(beta=.12, t=1.66, chi2(1) = 2.90, p =.09). For § é

colors: beta=.25, t = 7.34, p < .0001; main effect ki ‘_4) 8 ’

for English reaction times to be faster compared 0 *" 0

to Tsimane’ reaction times (beta=-.19, t=-4.08, p _(')_¢ Entropy (bits) 4 0  Entropy(bits) 4
<.0001). Error bars show 95% confidence Object naming Color naming

intervals on the mean log reaction time for each chip or object.
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SI-Section 3: Computing average surprisal for each chip
The average surprisal scores for each chip, in the three languages, is given in Figure S8.

By equation 1, the average surprisal score for a color chip c is:

1
P(clw)

) log

S(e)=)_ P(w

For example, suppose a particular color chip is labeled with four different words across the
population, in the following distribution:

C1: W1: 50%; W2: 30%; W3: 15%; Wa4: 5%
these are the P(w|c): the probabilities that a particular color c gets labeled as w

We also need the surprisal for each color word: -log P(c|w). We can compute the P(c|w) by
Bayes theorem:

= P(w]c) * P(c) / P(w)

We assume P(c) is uniform over the color space (= 1/80 for our 80 color chips), and we can
compute P(w) across the color space: how often a particular word gets used, across participants.
Suppose in this example that w has the following uses across the color space (suggesting equal
use across the color space):

W1: 20%; W2: 20%; W3: 20%; W4: 20%

listener surprisals for W1- W4: for each W, P(w|c) * P(c) / P(w)
Wi -log (5*1/80/.2) =5

Wa: -log ((3*1/80/.2) =5.737

W3: -log (.15 *1/80/ .2) = 6.737

W4: -log (.05 * 1/80 / .2) = 8.322

S(C1)=(5*5)+(3*5.737) + (.15 *6.737) + (.05 *8.322) = (2+1.72 + 1.01 + .416) =5.65
This means that it would take about 5.65 bits of information to transfer this particular color to a
listener. This is a lot of yes-no-questions because there aren’t very many color words in this

particular example vocabulary (four of the words are 80% of the words that people say), and
there are a lot of colors to transmit (80).
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SlI-Section 4: Analyses of average surprisal within the World Color Survey data

In order to compare our findings with the WCS we computed the informativity of each language
for the common 80 chips and we compared it with the number of color words used. Figure S9
shows the relation between number of color words and the average surprisal across languages
(see Figure 3A). As expected, languages with more color terms tend to have less uncertainty.
Spanish and English show the lowest uncertainty compared to other languages with a similar
number of color words. Estimates of average surprisal across the WCS uncovered a broad
diversity of color-systems among the world’s languages (Figure S9, smaller open circles);
Tsimane’ is representative of most color systems in the WCS. In addition, as the average number
of words increases across the population of languages, the average surprisal of the languages
decreases: in general, languages with more color terms have more informative color systems.
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To ensure the validity of our results we repeated the same analysis after filtering uncommon
words in all languages. To do so, we filtered out all color words for which the percentage of
participants using these words did not surpass thresholds of 20% and 50%, as shown in Figures
S10 and S11. Critically, the average surprisal values remain roughly constant for the free and
fixed-choice versions of the task in Tsimane’, English and Spanish, for the 0, 20 and 50%
thresholds, showing the robustness of the task and results.

Our results suggest that the most robust complexity metric to use when comparing color-naming
across languages is a trial-based measure of information, such as average surprisal (equation 2)
or mutual information (Lindsey et al, 2015) rather than the number of (basic) color words that
the language uses (Berlin & Kay, 1969). In particular, average surprisal provides a consistent
measure across different versions of the color-naming task, and it provides a trial-based measure
which takes into account the consistency of labeling a particular color across participants.
Interestingly, Tsimane’ turns out to have a less sophisticated color-naming system than the bulk
of the world’s languages: we can see from Figure 4 that 82 of the 110 WCS languages have
more information in their color-naming systems than Tsimane’. This is the case in spite of the
fact that Tsimane’ has 8 modal color names across its color grid, more than many languages
which have more information in their color-naming systems than Tsimane’ has. This is because
Tsimane’ has relatively low agreement across participants on what to call each color. In
particular, in the free-choice version of the color-naming task, 46 of the 80 color chips that
participants labeled had modal labels of below 50%. This contrasts with Pirahd from the WCS,
for example, which had only four modal color words (in a fixed-choice labeling paradigm), but
where participants had much higher agreement on each color chip. Under an information-
theoretic analysis, Tsimane’ and Piraha transmit similar amounts of information with their
labeling systems.
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Situating Tsimane’ in Berlin & Kay’s proposed color-word complexity space is difficult. There
are several irregularities. For example, it might seem that the word chames corresponds roughly
to “yellow” in Berlin & Kay’s ordered color hierarchy, and that it might enter the language fifth,
by the percentages in Table S3, such that 79% of participants use this color word. Upon closer
inspection however, one sees that chames is not used regularly by participants, in spite of the fact
that most people know the word. Indeed, although there were 8 color chips for which the modal
label was chames, these modal values were very low: between 17% and 43%. So while chames is
a color word that many participants use, it does not have a standardized meaning within the

language yet.
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SI-Section 5: Focal colors & unique hues

Following the Munsell-chip color naming experiment, each participant (N=99 Tsimane’; 55
Spanish; 29 English) was then presented with a standard 160-chip Munsell array of colors
(illuminated by the lightbox), and was asked to point out the best example of several color
words. The array of colors was organized by a 8 x 20 grid, mounted on matte black cardboard,
and each color was a square about 0.5cm across, separated from other colored squares by ~3mm.
We indexed the colors A-H according to lightness, and 1-20 according to hue. The chips most
often selected as focal colors for all the terms probed are given in Table S4. To show the
population results and evaluate the possible privilege of the unique hues, we computed the
probability density function for each of the four unique hues over the grid space. The contours in
Figure S8 show the probability that a given color word was used for each color chip, on the
basis of our empirical data. The lines show boundaries inside which probability mass is 5%,
25%, and 50%. The probability density functions were obtained through cubic spline
interpolation on the color grid. The probability density functions were computed in Python using
the "zoom" function in the scipy package, and the contours were calculated using the matplotlib
package. The rank-ordering of the colors by communication efficiency was not predicted by the
unique hues (Table S5).

Focal Munsell Proportion

Language Color chip code choosing this color | N

English blue E14 10B5/12 0.31 29
English brown H3 5YR2/4 0.45 29
English green E8 10GY5/12 0.62 29
English grey Al3 5B9/2 0.31 29
English orange E2 10R5/16 0.45 29
English pink D20 10RP6/12 0.34 29
English purple / violet G17 5P3/10 0.31 29
English red F1 5R4/14 1.00 29
English yellow B5 5Y8/14 0.59 29
Spanish azul (~blue) H15 5PB2/8 0.56 55
Spanish café (~brown) H3 S5YR2/4 0.44 55

celeste 10B5/12

Spanish (~light blue) El4 0.48 52
Spanish verde (~green) H10 10G2/6 0.38 55
Spanish naranja (~orange) E2 10R5/16 0.65 55
Spanish rosada (~pink) D1 5R6/12 0.25 55
Spanish morado (~purple) H16 10PB2/10 0.51 55
Spanish rojo (~red) F1 5R4/14 0.91 55
Spanish amarillo (~yellow) B5 5Y8/14 0.47 55
Tsimane' jainas (~red) F1 5R4/14 0.63 99
Tsimane' yushnus (~blue) E8 10GY5/12 0.14 99
Tsimane' shandyes (~green) E8 10GY5/12 0.17 99
Tsimane' itsidyeisi (~purple) H16 10PB2/10 0.27 90
Tsimane' cafedyeisi (~brown) H3 S5YR2/4 0.24 93
Tsimane' chamus (~yellow) B5 5Y8/14 0.18 91

Table S4. Most frequently chosen chips as best examples of the color terms queried,
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Rank | English Spanish Tsimane'
1| Al6 F1 H5
2| F1 Al6 Al6
3|B5 Al8 F1
4| G4 B5 Al8
5|B3 D3 E20
6 | H3 H3 A20
7| D3 E2 H3
8 | Ad Ab H7
9| E2 H15 G20

10 | A6 G4 Al4
11 | F3 F3 A2
12| C2 C4 G2
13| G2 A20 E2
14 | H7 D19 D1
15 | H5 H5 G4
16 | B19 G2 F19
17 | B1 G14 D19
18 | C20 B3 H1
19 | G18 B19 D3
20 | D17 A4 F3
21| C4 F17 B5
22 | F17 G18 C4
23 | A18 H17 H19
24 | G20 D17 C2
25 | E20 F15 G6
26 | E4 D1 A4
27 | D5 H19 F5
28 | H17 E20 B3
29 | A2 E4 G18
30 | A20 C2 B17
31| C16 B15 H13
32 | H19 H1 D5
33 | D19 Bl A6
34 | H1 C14 F9
35| D1 A2 E4
36 | G16 C16 D9
37| Cl4 G20 Al2
38 | D13 C20 E8
39 | B17 D13 D11
40 | E16 E16 E18
41 | E18 Al4 Al10
42 | F19 C18 H17
43 | E14 F5 D13
44 | B13 D15 G8
45 | H15 H7 C8
46 | C18 El4 El4
47 | D15 F19 F11
48 | A14 B13 D7
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49 | B15 G16 Hi1l
50 | F15 E18 G10
51 | G14 H13 F13
52 | C6 D5 C20
53 | E6 C6 F7

54 | C8 B7 H15
55| F9 C8 F17
56 | F13 F7 F15
57 | F7 G10 H9

58 | H13 G8 C6

59 | F5 B17 G12
60 | D7 ES8 B19
61 | C12 F9 El12
62 | B9 H9 Bl

63 | G8 F13 D17
64 | D9 D7 G14
65 | E8 G6 B7

66 | E12 Bl1l C12
67 | G10 Hi11l B15
68 | A8 C12 C10
69 | E10 E6 G16
70 | F11 Al2 E1l6
71 | H9 E10 B13
72 | H11 G12 A8

73 | B7 E12 C18
74 | C10 D9 B9

75| D11 A8 Bl1l
76 | G6 B9 Cl4
77 | B11 D11 E6

78 | Al12 C10 D15
79 | G12 F11 Cl6
80 | Al10 Al0 E10

Table S5. Chips rank-ordered by increasing average surprisal, based on data from the free-
choice color-labeling task (See Figure 3B).

SI-Section 6: Munsell vs. CIELAB results

The color-naming data were obtained with chips defined by the standard Munsell array. As with
all color-ordering systems, the Munsell system suffers some non-uniformities (7). To ensure that
the results were not attributed to the peculiar defects of the Munsell system, we analyzed only
those data for 24 color chips that sample the CIELAB color system evenly. The results show the
same pattern: warm colors are associated with higher average surprisal compared to cool colors
(Figure S12).
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Figure S12. Color chips rank-ordered by their average surprisal (computed using equation 1), for
Tsimane’, Bolivian-Spanish and English, using only data for the 24 chips that uniformly sample
the CIELAB color space. A. The 80 Munsell chips used in the color-naming experiment, plotted
in the CIELAB space (left panel) and the subset of the chips that uniformly sample the CIELAB
space (right panel). Table S2 indicates the Munsell values for the 24 chips. The 24 chips were
identified using an algorithm: first, the Munsell chips were projected into the CIELAB space,
which was divided into 24 equal hue sectors; the chip within each sector that had chroma
(saturation) value closest to 50 was selected. This procedure produced 24 chips that were roughly
equal in saturation and that sampled the CIELAB space evenly around the hue circle. B. For all
three languages, average surprisal was lower for warm colors compared to cool colors, for the
subsampled chips. Spearman correlations: English-Spanish 0.74; Spanish-Tsimane' 0.43;
English-Tsimane' 0.62.

SI-Section 7: Information-theoretic analysis & analysis with non-uniform prior

Equation (1) in the main text takes into account two factors: the probability P(wic) that a given
word will be produced to label the chip in question, and the log probability P(c|w) that a listener
will correctly recover the chip in question from the word. As a result, both the consistency across
the population in the words used for a given chip and the sampling density of the color space will
impact estimates of average surprisal. For example, in English, a card painted with turquoise will
have relatively high average surprisal (low communication efficiency) because there will be
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considerable variability in how the chip is labeled (green, blue, turquoise, cyan) and many other
color chips could be labeled with these words. Conversely, a chip painted with focal red will
have low surprisal (and high communication efficiency) because most people will use the term
“red” to describe it, and few other chips will be labeled red.

The term P(c|w) is intended to represent the probability that a listener would choose a color chip
c in response to color word w. We calculate P(c|w) from the color labeling data using Bayes rule:

P(w|c) P(c)

Plelw) = S mienrien

(equation SI-1)

This calculation requires that we choose a prior P(c) over color chips. For the analysis above, we
used a uniform prior over chips, in order not to bias the average surprisal scores toward favoring
any colors in particular. This uniform prior was also used by Lindsey et al. (2015).

But if we believe that people are biased to talk about more salient colors, then using a uniform
prior when calculating P(c|w) means that P(c|w) will not be a good approximation of the true
probability that a speaker would choose a chip given a word. Here we show that using a salience-
weighted prior does not affect the main result, that ranking color chips by average surprisal
produces a universal warm-to-cool ordering.

We calculated the average surprisal of all color chips in the three datasets presented here and in
the WCS data, this time using a prior P(c) proportional to the proportion of times that a color
appears in a foreground object in the natural scene data. We argued above that the proportion of
times a color appears in foreground objects is a measure of salience. The rank-ordered chips for
all languages under this prior are shown in Figure S13. The overall informativity for English is
3.64 bits; for Spanish, 3.75 bits; for Tsimane', 4.76 bits. This analysis therefore qualitatively
agrees with the one in the paper.

27



nhizh
cafiTizg

<chig

e |
Meragl I.-I..
By

Languages by increasing total surprisal

==
3
3
g

Eastern Cree

Chips by increasing average surprisal =>

Figure S13. Color chips from the three datasets presented here and the WCS, rank-ordered by
decreasing average surprisal under the non-uniform prior defined by the prevalence of colors in
objects obtained in a large databank of natural images (compare with Figure 4).
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SI-Section 8: Colors of objects identified in photographs

We analyzed the colors of “salient” objects identified in the Microsoft Research database of
20,000 natural images (8). This database, and similar databases obtained by collecting
photographs posted on the internet, has been used to address a number of issues, including the
assessment of artificial object recognition algorithms and the development of machine vision.
The images in the Microsoft database were curated from over 200,000 photographs: human
coders from Microsoft were tasked with identifying photographs depicting an object, and then
within those photographs, the coders identified the objects using a bounding box. As part of our
study, two people, ignorant of the purpose of our study, subsequently identified within the
bounded areas of the photographs those pixels that comprised the object: regions of each image
were traced using photoshop to create masks that contained the object and the background. The
objects within the photographs were further subdivided into naturally colored and un-naturally
colored categories. Using custom MATLAB scripts, the chromaticities of the pixels identified by
the masked regions were then projected onto an equiluminant plane of the CIELUV color space
within which we also projected the 80 Munsell color chips. The color of each pixel was then
classified as one of the 80 Munsell colors used in the color-naming experiments (the Munsell
color closest to the pixel color, defined using CIE xy chromaticity coordinates). For each of the
80 colors, we then determined the probability that the color would be found among the object
pixels versus among the background pixels by computing: [(number of pixels of given color in
objects — number of pixels of given color in backgrounds)/(number of pixels of given color in
objects + number of pixels of given color in backgrounds)]. The correlations shown in Figure 5
are maintained across the three languages (Figure S14).
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Research Asia
(MRSA) database of 20,000 natural images were identified by human observers who were blind
to the purpose of our study (see ref (29)). The colors of the pixels in the images were binned into
the 80 colors defined by the Munsell chips used in the behavioral experiments (across the images
there were 9.2x108 object pixels and 1.54x109 background pixels). The y-axis shows the
probability of an “object”pixel having a given color, calculated as: [(number of pixels of given
color in objects)/(number of pixels of given color in objects + number of pixels of given color in
backgrounds)]. The three languages were not significantly different from each other (Tsimane’:
slope = -0.003, Rho = -0.47; p=1x10"; Bolivian-Spanish: slope = -0.0025, Rho = -0.4; p=3x10*;
English: slope = -0.003, Rho = -0.48; p=6x10). Error bars show 95% C.I. computed through
bootstrapping: the 20000 images were sampled with replacement to create 1000 sets, on which
we performed the statistics.
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We also compared the colors of objects with behavioral relevance to trichromatic primates with
the communication efficiency of the colors (Figure S15). The data on the color statistics of the
objects and backgrounds for this analysis were obtained using a spectroradiometer, thus they
provide accurate representations of scene radiance, uncorrupted by the camera technology. These
results confirm our main conclusions, showing that warm colors tend to have lower average
surprisal than cool colors. Note that the spectral data analyzed in Figure S15 (and analysis of
physiological data from trichromatic non-human primates (9)) have been used to explain why
trichromatic primates have relatively good discrimination of red versus green. But until now it
has been assumed that categorization is equally good for warm versus cool. We show that this
assumption is not valid: warm colors are subject to lower average surprisal compared to cool
colors. This finding suggests a new explanation for the origin of the fundamental color category
distinction between warm versus cool—that the distinction between warm and cool arose
because of an asymmetry in the efficiency with which we communicate these colors. This
explanation is not tautological, but rooted in the way the color-vision system is deployed for
behavior.

900 - Figure S15. Colors associated with
— object objects tend to have lower surprisal
— background than colors associated with

backgrounds, using calibrated spectral
data (31). Spectral measurements from
Regan et al (2001), obtained for
objects that monkeys care about and
objects that monkeys do not care
about, were binned into the 80
Munsell chips. The histogram shows

the surprisal for the distribution of
samples identified as either “objects”

Counts

_ ' 80 or “backgrounds”. The two
low surprisal high surprisal distributions are significantly different
Color chips (rank-ordered) (t-test, p=10"8).

We are aware that prior work has attempted to draw correlations between color statistics in the
natural environment and color categories (10). But this work has not incorporated any
information about the behavioral relevance (to humans) of the colors. This is a crucial part of the
present report. It is already well established that natural images have a bias for warm and cool
colors (11-14), and the brain is adapted to these statistics (15-17). What we discovered is that
warm colors have lower surprisal compared to cool colors, which is consistent with the new idea
that it is the behavioral relevance of the colors, not simply their distribution in the natural world,
that gives rise to the fundamental warm/cool color categories.

The images contained in the Microsoft database were undoubtedly taken using many different
cameras under a range of different conditions and camera settings. We do not consider these
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images to be accurate representations of the color statistics of the objects depicted in the
photographs; the images are simply useful for us to test the hypothesis about the color statistics
of things that humans call objects (in this case, the objects are defined in the context of specific
photographs) and the communicative efficiency of the colors associated with those objects. That
the color statistics associated with any object depicted in a photograph deviates from the color
statistics of the object viewed in the real world is not a concern here, because we are not asking
about the faithfulness of the camera technology. Nonetheless, the analysis in Figure S15 helps
forge the link between our conclusions and the chromatic statistics of objects in the world.

One might ask why we bothered to conduct an analysis of the images in the Microsoft database
given the availability of the spectral measurements from Regan et al (2001). The answer is that
the Microsoft data base: (1) identifies objects using responses provided by human observers (not
monkeys); (2) includes a much larger sample of objects, of a much wider array of object types;
and (3) is a database used in machine vision/object-recognition algorithms (and is not unlike
other photographic databases used for these purposes), so documenting the color statistics within
this database is of independent value. Although we underscore that the spectral measurements of
real objects estimated from the colors measured in the photographs are very likely inaccurate,
because the cameras do not capture the full spectral content of the scene and often employ a
number of compression and distortion algorithms implemented in order to render the
photographs more appealing, it is noteworthy that color naming of objects seen in the real world
and color naming of photographs of the same objects are highly correlated. Nonetheless, we need
not invoke this correlation because we are simply interested in knowing whether there is any
correlation between what a human observer calls "an object™ and the color of it, regardless of
what the object is (and whether it is in the real world or in a (poorly calibrated) photograph).

Prior work has addressed the relationship between the chromatic sensitivity of the photoreceptor
pigments and natural scene statistics (18) or facial complexion (19). An analysis of photoreceptor
responses may show how the visual system achieves sensitivity to the warm-cool chromatic axis,
but it does not uncover the important asymmetry in communicative efficiency to warm versus
cool colors, or the impact of culture, that we document here.

SI-Section 9: Use of color terms in a contrastive-labeling task

To assess the significance of between-language differences in likelihood of using a color word,
we fit a mixed effect logistic regression predicting, for each trial, whether a color word was used.
We included a fixed effect of language (English or Tsimane’), random intercepts for participant
and object with a random slope by language for object. We found a significant effect of language
(beta=-5.22, z=-5.88, p<.0001) such that Tsimane’ speakers were less likely to use a color word,
analyzing only trials in which the same head noun was used across the two similar items. The
effect held even looking at only participants who used at least one color word or adjective
(beta=-2.82, z=-4.54, p<.0001). This controls for the possibility that some participants may have
understood the task as to label only the head noun, and not any distinguishing modifiers.

We performed a separate version of the experiment with a different group of 27 Tsimane’ adults
(mean age: 34.5 years; SD: 16.2 years; range 18-74; 22 females), in which the pairs of
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contrasting objects were presented at the same time. The contrasting color feature was even
more apparent than when the objects were presented one at a time; the results of this experiment
confirmed the conclusions drawn from the sequential task.

SI-Section 10: Tsimane’ participants’ knowledge of Spanish

As part of our testing procedure in Tsimane’, we assessed participants' knowledge of Spanish
words by asking them to translate 11 common Spanish objects into Tsimane’ (e.g., perro (“dog”),
rio (“river”), casa (“house”)). The number of correct translations was coded numerically from 0
to 11, providing a rough estimate of their exposure to Spanish. To avoid inflated scores from
participants who may have overheard the Spanish words while waiting for their turn, we used
two different lists.

List 1: Perro (dog) hermano (brother) sal (salt) puerta (door) cabeza (head) vibora (snake) remo
(oar) estomago (stomach) venado (deer) techo (ceiling) estrella (star)

List 2: rio (river) diente (tooth) flecha (arrow) casa (house) negro (black) aguila (eagle) choclo
(corn) selva (jungle) pared (wall) pierna (leg) huevo (egqg)

For the 58 participants that performed the free-choice task, the mean number of correct answers
was 7.5/ 11, with only 3 getting all 11, across the seven villages where we tested. For the 41
participants that performed the fixed-choice task, the mean number of correct answers was 9.4 /
11, with 16 getting all 11 correct (9 of these were bilinguals from various villages, but tested in
San Borja at CBIDSI; the other 32 were tested in three villages). For the free-choice task, all of
the color words that we encountered were native (non-borrowed) Tsimane’ except (a) the word
for brown (cafedyeisi / chocoratedyeisi, borrowed from Spanish) and (b) azul the Spanish word
for “blue”, used by one participant.

Analysis of the relation between exposure to Spanish and color communication efficiency.
To compare each participant’s Spanish score with their efficiency of color-term usage we
modified our measure of informativity of a color system to quantify the informativity of each
individual speaker. To do so, we relied on equations (1) and (3) from Section 1. As before, the
probability of selecting a chip given a word, P(c|w), is computed using data from all participants.
However, for the analysis in this section we compute a participant's probability of saying a word
given a chip, P(w]c), from the data only for that participant. That is, P(w|c) for a participant is a
conditional distribution with probability 1 on the word chosen by the participant given a chip,
and 0 on all other words. This analysis quantifies how uncertain a random member of the
population would be about color chips given the color words produced by an individual. If an
individual uses color words consistently and similarly to the overall community, then the
population’s uncertainty about the intended color chips will be low, and we can say the
individual's color language is highly informative. If an individual uses color words inconsistently
and idiosyncratically, then the population's uncertainty about intended chips would be high, and
her language would be less informative. Figure S16 shows the relation between knowledge of
Spanish and individual uncertainty computed this way. Using the data from the free-choice
labeling task, we found a negative correlation between these two variables (r=-0.318; t=-2.826,
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df=71; p=0.006), suggesting that increased knowledge of Spanish results in a color word choice
that reduces the population’s uncertainty about the color chip being communicated.

o
P
'

Uncertainty
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4.4-

0 3 6 9
Spanish knowledge

Figure S16. Relation between Spanish score (measure from 0 to 11), and the uncertainty in the
population given each speaker’s color word choices.

Although this analysis reveals a significant correlation between exposure to Spanish and
communication efficiency, these effects could be driven by participants’ age and/or education
(which may both increase participant’s knowledge of Spanish and their knowledge of color
words). To test this possibility, we conducted a linear regression with conditional entropy as the
dependent variable and age, education and knowledge of Spanish as the independent variables.
Consistent with the first analysis, knowledge of Spanish was a significant predictor of
conditional uncertainty. In contrast, age and education were not (Table S6).

Estimate | Std. | t value | Pr(>|t|)
Error
Intercept | 5.0175 | 0.143 | 35.173 | <0.001 | ***
Education | -0.0002 | 0.014 | -0.016 | 0.9875
Age 0.0038 |0.003 | 1.254 |0.2134
Spanish | -0.0343 | 0.013 | -2.561 | 0.0123 | *
Table S6. Knowledge of Spanish, but not age or education, predicted conditional entropy.
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