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1. Thermoelectric properties of Mg3.1T0.1Sb1.5Bi0.49Te0.01 (T = W, Ni, Mo, V, and Zn) 
2. XRD of Mg3.1A0.1Sb1.5Bi0.49Te0.01 (A = Fe, Co, Hf, and Ta) 

3. XRD of Mg3.2-xCoxSb1.5Bi0.5-xTex (x = 0, 0.025, 0.05, 0.075, and 0.1) 
4. Thermoelectric properties of Mg3.2-xCoxSb1.5Bi0.49Te0.01 

5. Hall measurement of Mg3.2Sb1.5Bi0.49Te0.01 
6. Rietveld refinement of neutron powder diffraction 

7. Calculated dielectric constant for Mg3Sb2 and Mg3Sb1.5Bi0.5 
8. Densities of Mg3.2Sb1.5Bi0.49Te0.01 and Mg3.1A0.1Sb1.5Bi0.49Te0.01 (A = Fe, Co, Hf, 

and Ta) 
9. Specific heat and thermal diffusivities of Mg3.2Sb1.5Bi0.49Te0.01 and 

Mg3.1A0.1Sb1.5Bi0.49Te0.01 (A = Fe, Co, Hf, and Ta) 
10. Repeated measurement of electrical resistivity 
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Figure S1. Thermoelectric properties of Mg3.1T0.1Sb1.5Bi0.49Te0.01 (T = W, Ni, Mo, V, 
Zn). (a) Electrical conductivity, (b) temperature exponent of electrical conductivity, 
(c) Seebeck coefficient, (d) power factor, (e) thermal conductivity, and (f) ZT. 
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Figure S2. XRD patterns of Mg3.2A0.1Sb1.5Bi0.49Te0.01 (A = Fe, Co, Hf, and Ta). 
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Figure S3. XRD patterns of Mg3.2-xCoxSb1.5Bi0.49Te0.01 (x = 0, 0.025, 0.05, 0.075, and 
0.1). 
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Figure S4. (a) Temperature-dependent electrical conductivity of, (b) relationship 
between the temperature exponent and composition for, (c) Seebeck coefficient of, 
and (d) PF of Mg3.2-xCoxSb1.5Bi0.49Te0.01 (x = 0, 0.025, 0.05, 0.075, and 0.1).  
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Figure S5. (a) Temperature-dependent thermal conductivity and (b) ZT of 
Mg3.2-xCoxSb1.5Bi0.49Te0.01 (x = 0, 0.025, 0.05, 0.075, and 0.1). (c) Calculated (ZT)eng at 
TC = 323 K and TH = 773 K and (d) comparison of (ZT)avg among 
Mg3.2Sb1.5Bi0.49Te0.01 and Mg3.2-xCoxSb1.5Bi0.49Te0.01. 
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Figure S6. Repeated Hall measurements of Mg3.2Sb1.5Bi0.49Te0.01 during the heating 
and cooling cycles. 
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Figure S7. Rietveld refinement of neutron diffraction for (a) Mg3.2Sb1.5Bi0.49Te0.01 and 
(b) Mg3.1Co0.1Sb1.5Bi0.49Te0.01. 

 

The appearance of unknown impurity peaks in the samples prepared for neutron 
powder diffraction meant some assumptions had to be made to reach a stable, 
converging refinement. The first assumption made was that the Mg1 site (1/3, 2/3, z) 
was fully occupied for both the undoped and doped samples. This site often overfilled 
when refinement was attempted. The isotropic displacement parameters (Biso) found 
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during refinement of the undoped sample were used and fixed during refinement of the 
doped sample. Additionally, the Co occupancy was fixed based on the formula, 
Mg3.1Co0.1Sb1.5Bi0.49Te0.01. Based on the assumption that the Mg1 site was fully 
occupied, the Co was placed on the Mg2 site (0, 0, 0). Attempts to refine more 
parameters than those reported often yielded physically unreasonable values for the 
isotropic displacement parameters and occupations. It is possible that without the 
presence of impurities, a more in-depth refinement could be performed, which could 
yield different results. 

 

Table S1. Detailed results for the refinement of Mg3.2Sb1.5Bi0.49Te0.01 and 
Mg3.1Co0.1Sb1.5Bi0.49Te0.01. 

 Mg3.2Sb1.5Bi0.49Te0.01 Mg3.1Co0.1Sb1.5Bi0.49Te0.01 

Rp 25.0 29.5 

Rwp 23.9 30.1 

Re 12.5 12.2 

Chi2 3.684 6.106 

a 4.5755(4) Å 4.5711(5) Å 

c 7.2626(8) Å 7.261(1) Å 

Mg1 z 0.6292(7) 0.6236(9) 

Sb/Bi/Te z 0.2310(7) 0.2310(10) 

Biso Mg1 1.6 Å2 1.6 Å2 

Biso Mg2 1.2 Å2 1.2 Å2 

Biso Sb/Bi/Te 1.2 Å2 1.2 Å2 

Mg2 occupation 89% ± 2% 91% ± 2% 
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Table S2. Calculated dielectric constant for Mg3Sb2 and Mg3Sb1.5Bi0.5 

Material Contributions xx yy zz 

Mg3Sb2 
electronic 13.8 13.8 16.4 

ionic 16.3 16.3 17.3 

Mg3Sb1.5Bi0.5 
electronic 15.4 15.1 18.1 

ionic 17.3 16.9 18.1 

 
 
Table S3. Densities of Mg3.2Sb1.5Bi0.49Te0.01 and Mg3.1A0.1Sb1.5Bi0.49Te0.01 (A = Fe, Co, 
Hf, and Ta). 

Specimen Density (g cm-3) 

Mg3.2Sb1.5Bi0.49Te0.01 4.41 

Mg3.1Fe0.1Sb1.5Bi0.49Te0.01 4.40 

Mg3.1Co0.1Sb1.5Bi0.49Te0.01 4.41 

Mg3.1Hf0.1Sb1.5Bi0.49Te0.01 4.54 

Mg3.1Ta0.1Sb1.5Bi0.49Te0.01 4.33 
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Figure S8. Thermal diffusivities and specific heat of Mg3.2Sb1.5Bi0.49Te0.01 and 
Mg3.1A0.1Sb1.5Bi0.49Te0.01 (A = Fe, Co, Hf, and Ta). 
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Figure S9. Electrical resistivity of Mg3.2Sb1.5Bi0.49Te0.01 and Mg3.1Ta0.1Sb1.5Bi0.49Te0.01 
during heating and cooling cycles. 


