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Fig. S1.  Maximum rooting depth grouped by biomes (1). 
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Fig. S2. Well observations of long-term mean water table depth (WTD) over North America (2).  
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Fig. S3. (A) Schematic of root-water relations along a drainage gradient, (B) shallow and wide (cm) 
Salsola rigida roots in Israel limited by rare and shallow infiltration (3), (C) dimorphic roots of 
Eucalyptus marginata in Western Australia (4) (WTD=14.9m), and (D) aerial and shallow roots of 
Cecropia distachya (d1), C. ficifolia (d2), and C. sciadophylla (d3, d4) in Amazonia lowlands (5) 
(each tick mark = 10cm). 
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Compiling Rooting Depth Observations  

We compiled rooting depth observations from published literature, government papers, and 
unpublished theses and reports. We searched by key words such as “root”, “rooting depth”, and “root 
system” in Web of Science database and Digital Library of JSTOR (http://about.jstor.org/), and found 
more reports through citations within the documents. Our compilation continues as more data come 
into light by incorporating international literature. The 2,020 entries of ~1100 species we have 
compiled so far are given in a large table at the end of this SI Appendix. 

We recorded the following information: 

(A) Reference of data source (all included in the reference list at the end of this document) 

(B) Geographic Location (nearest city, state or province, country or region, continent) 

(C) Biome (if not given by the author, it is based on the map of major world biomes from 
Wikipedia: http://commons.wikimedia.org/wiki/File:Biomes.jpg); inconstancies in terminology are 
to be expected 

(D) Observation Site (for those investigations that include multiple sites) 

(E) Vegetation Phenology / Leaf Form (evergreen vs. deciduous, broad-leaf vs. needle-leaf, 
perennial vs. annual for herbaceous plants, succulents, geophytes etc.); some are not given and thus 
based on information found on the USDA Plant Database (https://plants.usda.gov/java/), and if not 
listed, Wikipedia 

(F) Vegetation Growth Form or Stature (large or small tree, woody shrub, vines, grass, and 
herbs); where not specified by the author, information is found on the internet (such as Wikipedia and 
USDA Plant Database) 

(G) Common Name of plants in English (where available) 

(H) Scientific Name, recording dominant species if roots are not distinguished among species; 
no entry if not given by the investigators, as is often the case when terms such as “tropical rainforest” 
or “shrub land” are used only 

(I) Maximum Rooting Depth (m) 

Although the focus of the data compilation, the absolute maximum rooting depth is difficult 
to ascertain because most excavations, soil trenches, coring, or rhizotron/mini-rhizotron tubes 
terminated at arbitrary depths without knowing or following the deepest roots to the end. In most 
cases, the maximum rooting depth recorded is the depth of the investigation, such as the depth of the 
trench or the soil core, and they are clearly under-estimates of the true maximum rooting depths. In 
other cases where chemical tracers are used to infer the depths of root “water-uptake”, the maximum 
rooting depth can be over-estimated if capillary rise transported the tracer upward toward the 
shallower roots, or under-estimated if tracer injection depth is above the maximum rooting depth and 
taken up by the shallower portion of the root system. The recorded maximum rooting depth can be 
that of a single plant (e.g. through excavation of individuals), the mean of several plants of the same 
species (e.g., in monoculture stands), or that of many species/individuals intercepted by the soil 
trench, monoliths, or cores.  

(J) Method of making root observations, including excavation of the whole or partial root 
system, soil trench walls and root counting using a grid overlay, soil monoliths, road cuts or quarry 
exposures, stream bank erosion exposures, soil coring or block sampling, rhizotron or mini-rhizotron 
imaging, and natural or injected isotopes or other chemical tracers found in plant tissues. We avoided 
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the latter if there are direct measurements of rooting depths in the area, but included it in regions with 
few data such as the Kalahari Desert. 

(K) Profile Data availability: some provide quantitative information on root mass or length 
distribution with depth, while others are in the form of scaled drawings and photographs 

(L) Mean Annual Precipitation (Ppt) (mm) as reported by the investigators based on site or 
nearest rain gage (no attempt was made to fill in the data gaps) 

(M) Precipitation Seasonality as reported by the investigators 

(N) Potential Evapotranspiration (PET) (mm) as reported by the investigators 

(O) Topographic Position of the site, e.g., hilltop or ridge, mid-slope vs. valley, floodplain vs. 
upland, slope aspect, scree slope, good vs. poor drainage etc., as reported by the investigators 

(P) Water Table Depth Range (m) at the site as reported by the investigators (where available) 
over the period of investigation 

(Q) Mean Water Table (WT) Depth (m) at the site as reported by the investigators 

In some cases, water table position is inferred from authors’ remarks, such as deeper 
excavation below a certain depth is prevented by the water table, or site is poorly drained with 
frequent soil mottling at a certain depth, or hydric soil at a certain depth, or roots were restricted by 
water-logging at a certain depth.  

(R) Soil Texture or Type as reported by the investigators, with vertical sequence in some 
cases; no entry where no soil information is given 

(S) Nature of soil hardpans or concretions, as reported by the investigators 

(T) Depth at which hardpans / concretions are encountered, as reported by the investigators 

(U) Bedrock types and degree of fracturing, as reported by the investigators 

(V) Depth of bedrock, as reported by the investigators 

(W) Human Alterations (such as croplands/plantations/coppices, plowed, recently burned, 
fertilized, drained, or irrigated), as reported by the investigators 

(X-Y) Latitude and Longitude (in decimal degree) 

Precise geographic locations are often not provided, or roughly provided to the degree and 
minutes, particularly in the older literature before GPS is widely used in the field. In these cases, 
GoogleEarth is used to estimate a location that best fits the information provided by the investigators 
(e.g. 35km SE of a particular city, in a forest surrounded by croplands, on a NE facing slope, etc.). If 
the authors indicate that heavy equipment is used for excavation, the site is assumed to be near roads. 
If hydraulic excavation is used and a pond/river is mentioned as the water source, the site is assumed 
to be near these water features. If the site elevation is given, the site location is further constrained by 
roaming on GoogleEarth. In some cases detailed maps of the research forests or experimental stations 
can be found with a Google Search independently, which often have names of research tracks and 
plots, further constraining the locations. But many of the site locations cannot be constrained and are 
left undefined. 

(Z) Elevation of the site (m) 

Where not reported, elevation is found from GoogleEarth based on reported or estimated 
latitude-longitude, or the best fit based on authors’ descriptions. 
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(AA) Author Notes, direct quotes from the authors regarding root characteristics not reflected 
by rooting depth information, such as lateral extent, depth of structural vs. absorbing roots, dimorphic 
roots, seasonal root demographics, etc., as well as remarks on the site conditions. 

(AB) Notes on data compilation (e.g., estimating site locations, rooting depth extrapolations 
etc.), including some comments and notes by us; sometimes direct quotes from authors are placed 
here in quotation marks when space in AA is limited. 

The greatest disappointment in the course of this data compilation effort is that many, many 
studies only examined the shallow roots down to a few tens of centimeters (e.g., 30cm is very common 
for fine root biomass and turn-over studies, the standard IPCC sampling depth for soil organic 
carbon). These data are not recorded here, which unfortunately excluded many studies with otherwise 
excellent and detailed observations. 

A spreadsheet containing observed rooting depths can be accessed with the online Supporting 
Information. It contains the complete references organized alphabetically by authors: A(6–18), B(19–
40), C(41–67), D(68–92), E(93–99), F(100–112), G(113–125), H(126–143), I(144), J(145–157), K(4, 
158–174), L(175–191), M(192–212), N(213–225), O(226–229), P(5, 230–238), Q(239), R(240–261), 
S(3, 262–297), T(298–303), V(304–307), W(308–322), X(323, 324), Y(325–327), Z(328–334) 

 

 

Rooting Depth Analyses 

Rooting depth is plotted in Fig. 3 of the main text against (A) mean annual precipitation, (B) 
soil texture class (Table S1A), (C) depth of soil physical barriers (hardpan, bedrock), (D) sorted by 
plant growth form (Table S1B), (E) sorted by genus for the 30 most observed genera (Table S1C), 
and (F) water table depth. Most investigations lack information on one or more of the factors 
considered here, and only the available pairs are used. Thus each plot has a different sample size with 
only partial overlap. The sample size is given in the plots, out of a total of 2,020 root observations. 

For rooting depth, mean annual precipitation, water table depth, and depth of soil physical 
barriers, sometimes a range of values are given by the investigators, and the mid-point is used in the 
plot.  

For plotting rooting depth against soil texture class, numerical value of 1 to 7 is assigned to 
soils of increasingly coarser texture, with 1=clay, and 7=coarse sand and gravel (Table S1A). Sites 
with shallow bedrocks or soil hardpans are not included in this plot. 

For plotting rooting depth against growth forms, the mean rooting depth for each class is used 
to rank them from 1 to 11, with 1=succulents, and 11=evergreen broadleaf trees (Table S1B).  

In plotting rooting depth vs. the 30 most observed genera in this dataset, the mean rooting 
depth for each is used to rank them from 1 to 30, with 1=Carex (sedge) and 30=Acacia (Table S1C). 
Also included here are Opuntia (prickly pear), Fagus (beech), Salix (willow) and Banksia (banksia), 
which although have fewer observations than others are nonetheless representative of characteristic 
environments such as the desert and the boreal region. 

Unfortunately, there is practically no report on precipitation or snowmelt infiltration depth at 
the sites where rooting depths are investigated. 
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Table S1. Rooting depths sorted by soil texture classes (A), growth forms (B), and the 30 most 
observed genera in this dataset (C). In (C) the genera marked in green are the six best observed, and 
they are plotted in Fig. S6 along precipitation and water table gradients 

(A)  Soil 
Texture  

Soil Type  Mean Rooting 
Depth (m) 

Std Dev (m)  Sample Size

1  clay  2.27  1.31  13 

2  clay‐loam, clay‐silt, silty‐clay 1.34  1.77  95 

3  silt, peat, deeply weathered 
tropical clay 

2.30  3.27  207 

4  silty‐loam, silty‐sand, sandy‐
clay, clay‐sand 

1.59  1.43  339 

5  sandy‐loam, sandy‐silt  3.54  8.30  427 

6  fine‐medium sand  2.36  4.79  287 

7  coarse sand, gravel, rock 
fragments 

4.09  9.33  58 

        

(B) Growth 
Form  

Growth Form / Phenology  Mean Rooting 
Depth (m) 

Standard 
Deviation 

(m) 

Sample Size

1  succulent/storage herb  0.72  1.17  41 

2  deciduous needle‐leaf tree  0.78  0.57  12 

3  annual herb  0.90  0.76  29 

4  perennial grass  1.04  0.73  254 

5  annual grass  1.06  0.98  36 

6  perennial herb  1.20  1.10  290 

7  deciduous shrubs  1.76  2.78  118 

8  evergreen needle‐leaf tree  1.79  2.79  351 

9  evergreen shrubs  2.07  2.29  235 

10  deciduous broad‐leaf tree  3.71  6.99  409 

11  evergreen broad‐leaf tree  6.30  10.17  245 

        

(C) Genus   Genera  Common Name Mean Rooting 
Depth (m) 

Standard 
Deviation 

(m) 

Sample Size

1  Carex  Sedge  0.59  0.37  23 

2  Opuntia  Prickly Pear  0.68  0.51  6 

3  Picea  Spruce  0.74  0.47  82 

4  Fagus  Beech  0.83  0.46  8 

5  Bouteloua  Grama Grass  0.84  0.40  18 

6  Larix  Larch  0.90  0.67  14 

7  Zea mays  Maize  0.91  0.36  15 

8  Stipa  Feather grass  1.01  0.48  25 

9  Pseudotsuga  Douglas fir  1.03  0.37  15 

10  Bromus  Brome grass  1.19  0.51  12 

11  Festuca  Fescue  1.23  0.84  23 

12  Abies  Fir  1.30  0.67  28 

13  Combretum  Bushwillow  1.32  0.70  13 

14  Agropyron  Wheatgrass  1.34  0.41  22 

15  Atriplex  Saltbush  1.35  1.13  13 
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16  Salix  Willow  1.35  1.53  8 

17  Artemisia  incl. sagebrush  1.48  0.77  31 

18  Andropogon  Beard Grass  1.60  0.78  13 

19  Acer  Maple  1.75  1.26  18 

20  Juniperus  Juniper  2.41  2.40  22 

21  Pinus  Pine  2.45  3.92  152 

22  Brachystegia  Miombo  2.68  1.16  32 

23  Populus  Poplar  3.00  4.75  33 

24  Ulmus  Elm  4.83  2.83  11 

25  Quercus  Oak  5.23  5.79  60 

26  Tamarix  Tamarisk  5.33  6.71  12 

27  Banksia  Banksia  5.56  2.38  7 

28  Prosopis  Mesquites  6.08  10.41  23 

29  Eucalyptus  Eucalyptus  8.71  8.75  45 

30  Acacia  Acacia  12.85  17.99  34 
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Fig. S4. Tree roots of Eastern Nebraska (288): (A) counties of roots excavation, (B) observed water table depth from groundwater wells 
(2), (C) and (D) roots of two plains-cottonwood specimens, and (E) and (F) roots of two Siberian-elm specimens. 
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Fig. S5. Rooting depth vs. WTD for 46 trees (37 species) in Eastern Nebraska (288) indicating three types of root-WTD relations. 
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Fig. S6. Rooting depth vs. precipitation (top) and WTD (bottom) for the six best observed genera 
(marked in green in Fig. 4e and Table S1C), with Pearson correlation coefficient r and the sample 

size N. Note vertical scale difference. Not all sites have both precipitation and water table data. 
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Inverse Modeling of Root Water Uptake Profiles 

The inverse model has three parts. First, we simulate the soil water profile at each grid and 
time step, driven by observed climate, soil properties and topography, at 30 arc-second global grids 
(<1km) and hourly steps. The results are the soil water supply profile at any grid/time, wetted by 
infiltration from the top and groundwater from below. Second, we calculate plant transpiration from 
observed/reanalysis atmosphere and leaf area index. The results are the actual plant water demand. 
Third, we use Ohm’s law to allocate the demand as root water uptake from different soil depths. The 
root uptake alters the soil water profile, infiltration and water table recharge, and subsequent uptake. 
Thereby the inverse model captures the 2-way plant-water relations. The three parts are computed at 
each time step, as described below. 

1. Estimating Soil Water Profile 

We use a continental-scale hydrology model designed to resolve 1km-scale processes 
globally, at hourly steps over decades, run offline forced by satellite-observed leaf area index (LAI) 
and observed or reanalysis atmospheric conditions. The model is described in detail elsewhere (335, 
336); its basic structure is illustrated in Fig. S7 and briefly outlined here. 
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Fig. S7. Structure of the hydrology model: (A) soil layer thickness increases with depth (to 1km), 
porosity/permeability decrease with depth depending on land slope s (3 examples shown), and a 

dynamic water table that rises and falls depending on recharge R, 2-way exchange with rivers and 
floodplains (B), and lateral groundwater convergence among grid columns (C). 

 

Each continent is represented by discrete land columns of 30 arc-second horizontal resolution 
(<1km). Each land column is 1km-deep, and has 40 layers (Table S2, Fig. S7A red symbol/line, 
showing only top 40m). Lacking global 3D porosity/permeability data, we assume that both 
parameters decrease with depth exponentially, the rate depending on local land slope (2) so that 
porosity drops quickly with depth in steep uplands with shallow bedrocks (Fig. S8). The three black 
lines in Fig. S7A give examples of three slopes, i.e., how the permeability/porosity values drop with 
depth, shown as fractions of the top 1m known values from global soil datasets.  

Table S2. Model soil layer thickness and depth (m) 

Layer Number Thickness (m) 
Cumulative depth 

(m) 
Layer Number Thickness (m) 

Cumulative depth 
(m) 

1  0.1  0.1  21  0.7  6.2 

2  0.1  0.2  22  0.7  6.9 

3  0.1  0.3  23  0.8  7.7 

4  0.1  0.4  24  0.9  8.6 

5  0.1  0.5  25  1.0  9.6 

6  0.2  0.7  26  1.0  10.6 

7  0.2  0.9  27  1.2  11.8 

8  0.2  1.1  28  1.2  13.0 

9  0.2  1.3  29  1.5  14.5 

10  0.2  1.5  30  1.5  16 

11  0.3  1.8  31  2.0  18 

12  0.3  2.1  32  2.0  20 

13  0.3  2.4  33  3.0  23 

14  0.3  2.7  34  6.0  29 

15  0.4  3.1  35  11  40 

16  0.4  3.5  36  20  60 

17  0.4  3.9  37  50  110 

18  0.5  4.4  38  100  210 

19  0.5  4.9  39  250  460 

20  0.6  5.5  40  540  1000 

 The model does not explicitly represent the depth to the bedrock. However, the regolith-
bedrock transition is in reality blurred by saprolites and bedrock fractures that store and transmit 
water, and the frequency and connectivity of fractures tend to decrease with depth in a gradual 
manner. Some of the fractures can be very deep, and roots are known to penetrate into them to obtain 
water and nutrients, particularly in water stressed seasons and settings such as rocky terrain covered 
with only a thin soil/regolith mantle (25, 27, 28, 33, 87, 99, 131, 145, 165, 182, 221, 239, 246, 253, 
258, 259, 337–342). There is further evidence of this in Fig. 3C where roots have penetrated into the 
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bedrocks (points below 1:1 line). Thus a gradual transition in the model is deemed more realistic than 
a sharp no-flow boundary.  

 

 

 

 

 

 

 

 

 

 

Fig. S8. The e-folding depth of exponential decrease with depth in permeability and porosity, obtained 
from local terrain slope and winter temperature (defining permafrost depth). 

 

In regions with seasonal frost or permafrost, the shallow frost table prevents drainage, thus 
the decrease in porosity and permeability is faster than in unfrozen soils. This fact is accounted for 
by an empirical formula relating frost table depth to January temperature, as fully described elsewhere 
(2). This leads to the shallow e-folding depth (f values) in Fig. S8 in cold regions. 

In each model grid column, the canopy water balance determines the interception, with the 
remaining water reaching the soil. Infiltration is determined by solving the 1D Richards equation of 
soil water movement in partially saturated media. The infiltration pulses (green arrow, Fig. S7A) wet 
the top soil and may or may not reach the water table, the latter being the lower boundary condition 
(saturation). The water table position is dynamic in time and variable in space, driven by recharge or 
discharge (R) from/to the soil above (blue arrow, Fig. S7A), the 2-way exchange with local (within-
grid) rivers and floodplains/wetlands (Fig. S7B), and lateral drainage from higher to lower grid cells 
(groundwater convergence, Fig. S7C) constrained by the sea level (the ultimate boundary condition 
for continental drainage). The 2-way exchange with rivers and floodplains within a grid cell (Fig. 
S7B) is calculated using USGS MODFLOW river conductance formula (343) (Chapter 6, River 
Package), so that rivers receive base-flow if the water table in the cell is higher than the river surface 
elevation, and infiltrate into stream beds if the water table is lower. Floodwater can infiltrate into the 
sediments (bank storage) and seep out later (344). Lateral groundwater convergence (Fig. S7C) is 
calculated using the Darcy’s law driven by the water table gradient, using the Dupuit-Forchheimer 
formula (345), which calculates the vertically-integrated lateral fluxes. This approach is necessitated 
by lacking the depth-structure in soil/regolith/bedrock permeability. It also reduced computation 
greatly, making it feasible to run the model dynamically at sub-kilometer grids over the globe. The 
model has been tested and applied to investigate the role of groundwater in regulating river flow, 
flooding, wetlands, soil moisture, and evapotranspiration over N. America (346–348) and the Amazon 
Basin (335, 336, 349, 350). 

Input data on the land side include soil texture (as sand and clay fractions) and land surface 
topography (Table S3). A well-known issue in modeling soil hydrology is the poorly constrained soil 
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hydraulic parameters based on empirical “pedo-transfer functions” that relate a limited number of soil 
texture classes to porosity, saturated hydraulic conductivity, field capacity, wilting point, and water 
content - metric potential, and water content - hydraulic conductivity relations. These empirical 
functions had been derived from soil samples in the temperate northern latitudes and are inadequate 
for tropical soils such as deeply weathered clays; tropical clays behave fundamentally differently, 
“draining like sand but holding on to moisture like clay” due to the formation of clay aggregates 
(351). This is a primary cause of the low infiltration rate in the earlier model studies of the Amazon 
(335, 336), and needs to be addressed. We thus introduce a new soil class, termed “tropical clay”, to 
the 12 existing classes in the Clapp-Hornberger (352) pedo-transfer function, the latter widely applied 
in large-scale land models. The new soil class has a saturated hydraulic conductivity of 0.5m/day 
similar to that of a sandy clay loam (i.e., drains like sand), but a wilting point at a volumetric water 
content of 0.235 similar to that of a clay loam (i.e., hold onto water like clay). We assigned soils 
classified as Ultisols or Oxisols into this new category. 

The model is run at 30-arc second grid resolution, continent by continent with sea-level as the 
lateral boundary condition, at 1-hour time steps, and over 11-years (2003-2013) to capture the event 
to inter-annual time-scales of variability. Model output is saved at monthly steps for later analyses, 
due to the enormous of amount of data and physical limits on data output/storage. The initial water 
table depth is the climatologic equilibrium water table obtained earlier (2) at the same global grid. To 
spin up the model to the new ECMWF-Interim climate forcing and the new root water uptake, and its 
feedback to soil hydrology, we run the model for 11 years, and then use the end water table and soil 
moisture profile to repeat the run, starting roots again from the top. This is repeated until long-term 
drifts are eliminated. The final water table is deeper in drier climates than before (2) largely due to 
groundwater use by adaptive and deep root uptake in the current model run.   

 

Table S3. Model forcing data 

Data Type Source Coverage Resolution 

Atmosphere 

ECMWF-Interim 
(http://www.ecmwf.int/en/research/climate-reanalysis/era-

interim), 
and precipitation from MSWEP (http://www.gloh2o.org)  

Global 
Jan 1979 - 

present 

0.25o lat-lon 
(~25 km) 
3 hourly 

Leaf Area 
Index (LAI) 

MODIS Mod15A3 
(https://lpdaac.usgs.gov/products/modis_products_table/mcd

15a3) 
NCAR Seasonal Cycle 

http://www2.mmm.ucar.edu/wrf/users/download/get_source
s_wps_geog.html 

Global 
July 4 2002 

- present 

30” 
4 days 

Vegetation 
Types 

MODIS land use 
(http://www2.mmm.ucar.edu/wrf/users/download/get_sourc

es_wps_geog.html)  

Global 
For the year 

2000 

~1km at 
Equator (32 

arc-sec) 

Maximum 
Leaf 

Conductance 

NASA Land Data Assimilation System 
(http://ldas.gsfc.nasa.gov/nldas/web/web.veg.table.html) 

Lookup 
table 

By vegetation 
type 

Vegetation 
Height 

ORNL DAAC Global Forest Canopy Height 
(http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10023) 

Global 1km 

Soil Texture 
FAO Global Harmonized Soil Data Base 

(http://webarchive.iiasa.ac.at/Research/LUC/External-
World-soil-database/HTML/) 

Global 
~1km at 

Equator (30 
arc-sec) 
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Land Surface 
Topography 

SRTM (HydroSHEDS) below 60 o N 
(http://hydrosheds.cr.usgs.gov/index.php)  

Global 
~1km at 

Equator (30 
arc-sec) 

 

2. Estimating Plant Water Demand 

Plant transpiration is calculated using the Penman-Monteith equation modified by 
Shuttleworth-Wallace (S-W) (353, 354) to separate evaporation from transpiration in areas of partial 
vegetation cover. Input to the S-W equation includes atmosphere and vegetation variables as 
summarized in Table S3.  

The atmospheric variables, including temperature, air humidity, pressure, wind, surface 
downward short-wave and net radiation, and soil temperatures, are directly derived from the 
ECMWF-Interim Reanalysis products. Atmospheric reanalyses assimilate multitudes of observations 
into models of atmospheric dynamics to produce regularly gridded (in space and time) atmospheric 
fields over continents or the globe. ECMWF-Interim Reanalysis offers ~0.7o latitude-longitude grid 
resolution and 3-hourly global products from 1979 to present. Wind and radiation fields are 
interpolated to our 30” grids; temperature, surface pressure and humidity are adjusted for elevation 
difference. Precipitation is obtained from the Multi-Source Weighted-Ensemble Precipitation 
(MSWEP) version 1.1 dataset, a 3-hourly 0.25o global gridded product merging gauge, satellite, and 
ECMWF-Interim Reanalysis. The precipitation corrections applied to the reanalysis product removed 
the early biases (e.g., in the Amazon where it rained too much in the dry season, as discussed in our 
earlier work) (335, 336, 349). If the grid cell has snow, we apply snowmelt (instead of precipitation) 
from an off-line Interim-Land (355) simulation from the ECMWF land model, forced by exactly the 
same atmosphere (including MSWEP precipitation) as in our experiments. 

The land variables needed for the S-W formula include canopy water storage capacity and 
canopy-level stomata resistance, which are functions of the leaf area index (LAI) as observed by the 
MODIS satellites at 4-day intervals and 1km grids. The MODIS product, however, is plagued with 
frequent cloud cover in the tropics. The frequently missing data, and the spuriously rapid fluctuations 
in LAI within a matter of days, prevent us from using the product directly. We thus resort to the 
seasonal cycle in LAI derived from MODIS product by NCAR (Table S3). This unfortunately 
eliminated the large inter-annual variations in plant productivity, which can be lower in drought years, 
thus reducing water demand and preventing deep roots. Other land variables include the vegetation 
type and the associated maximum leaf-level stomata conductance, vegetation height required to 
calculate the roughness height and friction wind velocity for turbulent transfer.  

This gives the actual (not potential) plant water needs, because the transpiration here is 
inferred from the actual LAI and observed/reanalysis atmosphere. This actual water need is to be met 
by taking water from the soil layers/depths as deemed necessary, discussed next. 

 

3. Determining Root Water Uptake Profile 

There is a fast growing literature on modeling plant root dynamics (59, 356–374). Our goal 
here is not to develop another model, but to ask one simple question using inverse modeling: what 
would be the global patterns in root water-uptake depth, if indeed roots respond to local soil water 
profiles as revealed here by observations? This question is similar to those addressed by several 
investigators using global model inversions, that is, to back-calculate the necessary uptake depth to 
meet the observed plant productivity. These earlier inverse models assumed that root-water uptake 
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reflects the plants’ tendency to maximize primary production (356, 357), or to minimize energy 
expenditure while meeting water demands (362), and other ecological principles with carbon/nutrient 
constraints (367). Our inverse model differs from these earlier model inversions, because it is based 
on the conceptual model proposed here; that is, root water uptake profile depends on the soil water 
profile, which depends on both infiltration from above (accounted for in earlier inverse models) and 
drainage from below (neglected in earlier models). The latter is influenced by the spatial patterns and 
temporal dynamics of the groundwater, which depends strongly on the fine-scaled topographic 
structure.  

We follow the Ohm’s law of potential-driven flow through 
parallel-connected electronic resistors, here the resistors being the 
multiple soil layers simultaneous conducting water to roots (Fig. S9). 
This way, uptake occurs preferentially in low-resistance layers, but also 
in high-resistance layers, resulting in an overall least resistance path for 
the whole soil column-plant system. We calculate a dimensionless “ease 
function” (e) for each soil layer (j) given its water potential and depth 
below the surface:  

݁ 	ൌ 	ቌ
߰ െ ߰
2
3݄௩  ݀

ቍ																															ሺ1ሻ				 

where ψlmin is the minimum leaf water potential set here as a constant of 
-2MPa for simplicity, ψj is the soil water potential in layer j, hveg is the 
vegetation height, and dj is the depth of soil layer j. The numerator is the 
driving force for soil-root-leaf water flux, and the denominator is the 
resistance to that flux (lifting height or flow path length of soil water, 
assuming mean canopy height being 2/3 of vegetation height) (data 
source in Table-S3). Thus the 
model makes it easier for roots to 
take up water from wetter (higher 

soil-to-leaf water potential difference and soil hydraulic 
conductivity) and shallower (shorter lifting height and flow 
path, reducing resistance) soil layers. The fractional 
contribution from each soil layer (rj) is then based on the 
relative value of e and layer thickness (soil water store): 

ݎ		 	ൌ
݁∆ݖ

∑ ݁∆ݖ
																																												ሺ2ሻ				 

 

where zj is the thickness of soil layer j. As an example, Fig. 
S10 illustrates a typical soil column in the dry season that is 
wetted from the top by the shallow and infrequent dry-season 
infiltration events, and from below by a water table. The soil 
water potential (blue dashed line) is high near the surface, 
decreasing with depth due to the shallow infiltration, but 
increases again in the capillary fringe. Accordingly, the easy 
function (green solid line) decreases with depth as a result of 
both decreasing soil water potential (ψj) and increasing soil 
depth (dj). It would increase again in the capillary fringe, but 

 

Increasing Value 

Soil Water 
Potential

Ease 
Function

Infiltration 

Capillary 
Rise

Water Table 

Land Surface 

Fig. S10. Schematic profiles of 
the soil water potential (blue 
dashed line) and the ease 
function (green solid line).  

 

 

Fig. S9. Root water-
uptake from “parallel-
connected” soil layers. 

 

Transpiration 

Evaporation 
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only slightly due to the greater lifting depths. The result is that plants must balance water availability 
and the cost of procuring that water, but will pay the cost only if necessary to meet transpiration 
demand. Where the leaf area index is low, uptake will only use the top-wetted zone, but where it is 
high, uptake will cross the dry zone to reach the bottom-wetted zone maintained by groundwater 
capillary rise. 

For a soil column with a very deep water table, the root zone soils are only wetted from the 
top by infiltration events, and both the soil water potential and the ease function would decrease 
monotonically with depth, leading to the widely reported deceasing root presence with depth in well-
drained upland environments. 

Thus in this model, root water uptake favors wetter and shallower soil layers, but roots also 
tap into drier and deeper layers if it is demanded by the transpiration calculated in the previous section. 
We further apply the following rules. (a) Uptake starts from the top, activating the deeper layer only 
when the ease function in the deeper layer is greater than in all the layers above. (b) If a layer does 
not contribute water for over a year, it is flagged inactive and can only be re-actived when condition 
(a) is met. (c) There is no root water uptake below the water table, and where/when the water table 
rises above the top soil layer, uptake is assumed to be from the top layer only (10cm thick). (d) Soil 
water content in each layer cannot fall below the wilting point, and if roots demand more water, the 
result is a deficit not met and recorded in the model output, as in the case of high leaf area index 
sustained by irrigation. We note that our hydrology model does not represent crop irrigation, and 
where this happens the artificially high LAI will lead to either a large deficit, or a much deeper root 
uptake if the water table is accessible. Therefore our inverse model gives the root-uptake depths as if 
all vegetation depends on the natural hydrologic cycle, and caution should be used in interpreting 
results in regions of heavily irrigated croplands.  

Maximum root water uptake depth from the inverse model (Fig. S11-15) can be viewed 
interactively and downloaded as NetCDF files by continent at the European Union eartH2Observ 
Water Cycle Integrator (WCI), a public data portal (https://wci.earth2observe.eu/).  
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Fig. S11. Maximum depth of root water uptake (m) in S. America, averaged over 10yrs, with details 
over three regions. White grid cells have leaf area index (LAI) not detectable by MODIS and hence 

are not modeled. 
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Fig. S12. Maximum depth of root water  
uptake (m) in Africa averaged over 10yrs,  
with details over three regions. Deepest  
uptake occurs in areas of dry climate, high 
LAI, and accessible groundwater. 
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Fig. S13. Maximum depth of root water uptake (m) in Southeast Asia, 
Australia, and New Zealand. Uptake is shallow in per-humid tropics 
and deep in arid regions with high LAI and accessible water table. 
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Fig. S14. Maximum depth of root water uptake (m) in North-Central America (details over E Nebraska and areas of known deep roots). 
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Fig. S15. Maximum depth of root water uptake (m) in Eurasia. 
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Fig. S16.  Inverse-modeled 10yr-mean precipitation infiltration depth (m) with details over the same regions as in Fig. 6 of the main text. 
It reflects the climate (precipitation amount and frequency), soil texture giving it a patchy appearance, and the water table depth (Fig. 
S17), the latter sets the maximum depth of infiltration, although on arid uplands it rarely reaches the water table. This is why the 
infiltration depth reflects the topographic structure, because the water table surface is known to mimic the topography, esp. near the river 
valleys. 
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Fig. S17.  Inverse-modeled 10yr-mean water table depth (m) with details over the same regions as in Fig. 6 of the main text.  The color-
scale is different from that of root uptake depth (Fig. 6, Fig. S11-15) and precipitation infiltration depth (Fig. S16) in order to display the 
very large range of water table depth. Note that compared to our early model estimates (2), the water table is now deeper in the lowlands, 
because here plant roots can use shallow groundwater, drawing down the water table. 
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