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Appendix S1

Deriving the observation-level variance σ2
ε using log-normal approximation for

the negative binomial distribution with log link

Here, we only deal with the case of the negative binomial distribution, but this derivation process is directly
applicable to the quasi-Poisson and gamma distributions with log link. Given a random variable x is negative
binomially distributed, the mean and variance of x are respectively:

E[x] = λ,

var[x] = λ+ λ2

θ
,

where λ and θ are defined as in Table 1. When the distribution of ln(x) follows the natural logarithm of a
log-normal distribution. Then, the variance of ln(x) is:

var[ln(x)] = ln
(

1 + var[x]
E[x]2

)
.

Therefore:

var[ln(x)] = ln
(

1 + λ+ λ2/θ

λ2

)
.

By rearranging, we obtain:

var[ln(x)] = ln
(

1 + 1
λ

+ 1
θ

)
.

which is the observation-level variance for the negative binomial distribution with the log link function derived
using the log-normal approximation.

1



Appendix S2

Comparison of the three methods for obtaining the observation-level variance σ2
ε

for the Poisson distribution

We plot three different methods for obtaining the observation-level variance (formally we refered this as the
distribution-specific variance for Poisson; for details see Appendix S4). We first load the packages that are
need in the calculations:
# install.packages('latex2exp') # install it if you do not have this
library(latex2exp) # enable to use LaTex in R expression
# install.packages('extremevalues') library(extremevalues) # this is needed
# unless running a commented-out part of the script
# install.packages('numDeriv')
library(numDeriv) # we need a numerical method for getting derivatives of probit

Make sure you have installed and loaded all these packages to your current R session.
lnX <- seq(-20, 3, by = 0.001)
X <- exp(lnX)
plot(X, 1/X, type = "l", lty = "dotted", ylab = "Observation-level variance",

xlab = TeX("$\\lambda$"), ylim = c(0, 10))
lines(X, log(1 + 1/X))
lines(X, trigamma(X), lty = "dashed")
legend(15, 10, c(TeX("$\\frac{1}{\\lambda}$"), TeX("$\\ln\\left(1+\\frac{1}{\\lambda}\\right)$"),

TeX("$\\psi_1(\\lambda)$")), lty = c(3, 1, 2), bty = "n")
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Figure 1: A comparsion of the three observation-level variance functions.

As you see, these three functions seem to converge for values larger than about 2 (Figure S1). Now we zoom
into this figure.
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plot(X, 1/X, type = "l", lty = "dotted", ylab = "Observation-level variance",
xlab = TeX("$\\lambda$"), ylim = c(0, 10), xlim = c(0, 3))

lines(X, log(1 + 1/X))
lines(X, trigamma(X), lty = "dashed")
legend(2, 10, c(TeX("$\\frac{1}{\\lambda}$"), TeX("$\\ln\\left(1+\\frac{1}{\\lambda}\\right)$"),

TeX("$\\psi_1(\\lambda)$")), lty = c(3, 1, 2), bty = "n")
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Figure 2: A comparsion of the three observation-level variance functions zoomed in.

We see substantial divergence among the three functions at small values of λ (Figure S2). Therefore, it is
important to report which method is used when calculating R2

GLMM and ICCGLMM, especially with small λ.

Incidentally, we can obtain the delta method version of σ2
ε using the R function D, without having to do

derivations by hand!
FunX <- expression(log(X)) # function of X
DXFunX <- D(FunX, "X") # getting a derivative with respect to X
DXFunX # this is 1/lambda and lambda*(1/lambda)^2 will be 1/lambda

## 1/X

# the delta method for variance approximation (Delta 1)
VarOd <- X * eval(DXFunX)^2
plot(X, 1/X, type = "l", lty = "dotted", ylab = "Observation-level variance",

xlab = TeX("$\\lambda$"), lwd = 4, ylim = c(0, 10), xlim = c(0, 3))
points(X, VarOd, type = "l", lty = "dashed", col = "red", lwd = 2)
legend(1.5, 10, c(TeX("$\\frac{1}{\\lambda}$"), "", "D function in R"), lty = c(3,

0, 2), col = c("black", "black", "red"), bty = "n", )

There is an exact match between the results from the delta method and the delta method outcome VarOd as
both are 1

λ (1/X).

It is also very important to realize that when 1
λ (Poisson distributions), 1

λ + 1
θ (negative-binomial distributions)

or 1
ν (gamma distributions) are under 0.5, estimates of the observation-level variance σ2

ε from the three
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Figure 3: A comparsion of alternative approaches for applying the delta method.

methods can be noticeable different. This can also be seen in the worked examples (Appendix S6). Our
recommendation is to use the traigamma function approach, which we did in our worked examples.

Appendix S3

Looking into the performance of the delta method for bias corrections

Below we compare the exact mean (equation (5.8)) and the approximated mean (equation (6.2)) under 3
different variance values (σ2

τ = 0.25, 0.5 and 1) with Poisson (count) data.
Beta <- seq(-4, 4, by = 0.05)
VarQuarter <- 0.25
VarHalf <- 0.5
VarOne <- 1

FunB1 <- expression(exp(Beta)) # inverse of log or exp
DBFunB1 <- D(FunB1, "Beta") # taking derivative of FunB1

lnExactQuarter <- exp(Beta + 0.5 * VarQuarter)
lnApproxQuarter <- exp(Beta) + 0.5 * VarQuarter * eval(DBFunB1)
lnExactHalf <- exp(Beta + 0.5 * VarHalf)
lnApproxHalf <- exp(Beta) + 0.5 * VarHalf * eval(DBFunB1)
lnExactOne <- exp(Beta + 0.5 * VarOne)
lnApproxOne <- exp(Beta) + 0.5 * VarOne * eval(DBFunB1)

plot(lnExactQuarter, lnApproxQuarter, type = "l", ylab = "Approximated mean by the delta method",
xlab = "Exact mean", xlim = c(0, 20), ylim = c(0, 20))

lines(lnExactHalf, lnApproxHalf, lty = 2)
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lines(lnExactOne, lnApproxOne, lty = 3)
abline(0, 1, col = "red")
legend(0, 20, c(TeX("$\\sigma^2_{\\tau} = 0.25"), TeX("$\\sigma^2_{\\tau} = 0.5"),

TeX("$\\sigma^2_{\\tau} = 1")), lty = c(1, 2, 3), bty = "n")
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Figure 4: Performance of approximations (black) against unbiased line for Poission (count) data with the
log-link.

As is visibale from Figure S4, the delta method approximation starts to perform worse with larger mean
values and also larger variance values.

Now we look at the performance of three approximations of mean values (equations (6.7)-(6.9)); we will
call equation (6.7) the delta approximation, equation (6.7) the tanh (hyperbolic tangent) approximaiton,
equation (6.8) the normal approximation (because this approximation uses the similarity between the logistic
distribution and the normal distribution (see equation (6.10)). Note that in this case (proportion data with
the logit link), we have to use simulations to obtain correct mean values.
Beta <- seq(-10, 10, by = 0.05)
FunB2 <- expression(exp(Beta)/(1 + exp(Beta)))
DBDBFunB2 <- D(D(FunB2, "Beta"), "Beta") # taking derivative of FunB2 twice

# getting unbiased means using simulations
logitSimQuarter <- logitSimHalf <- logitSimOne <- 1:length(Beta)
for (i in 1:length(Beta)) {

logitSimQuarter[i] <- mean(plogis(Beta[i] + rnorm(1e+06, 0, sqrt(VarQuarter))))
logitSimHalf[i] <- mean(plogis(Beta[i] + rnorm(1e+06, 0, sqrt(VarHalf))))
logitSimOne[i] <- mean(plogis(Beta[i] + rnorm(1e+06, 0, sqrt(VarOne))))

}

logitApprox1Quarter <- eval(FunB2) + 0.5 * VarQuarter * eval(DBDBFunB2)
logitApprox2Quarter <- plogis(Beta - 0.5 * VarQuarter * tanh(Beta * (1 + 2 *
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exp(-0.5 * VarQuarter))/6))
logitApprox3Quarter <- plogis(Beta/sqrt(1 + ((16 * sqrt(3))/(15 * pi))^2 * VarQuarter))
logitApprox1Half <- eval(FunB2) + 0.5 * VarHalf * eval(DBDBFunB2)
logitApprox2Half <- plogis(Beta - 0.5 * VarHalf * tanh(Beta * (1 + 2 * exp(-0.5 *

VarHalf))/6))
logitApprox3Half <- plogis(Beta/sqrt(1 + ((16 * sqrt(3))/(15 * pi))^2 * VarHalf))
logitApprox1One <- eval(FunB2) + 0.5 * VarOne * eval(DBDBFunB2)
logitApprox2One <- plogis(Beta - 0.5 * VarOne * tanh(Beta * (1 + 2 * exp(-0.5 *

VarOne))/6))
logitApprox3One <- plogis(Beta/sqrt(1 + ((16 * sqrt(3))/(15 * pi))^2 * VarOne))

plot(logitSimQuarter, logitApprox1Quarter, type = "l", ylab = "Approximated mean by the two methods",
xlab = "Simulated mean (unbiased)")

lines(logitSimHalf, logitApprox1Half, lty = 2)
lines(logitSimOne, logitApprox1One, lty = 3)
lines(logitSimQuarter, logitApprox2Quarter, lty = 1, col = "green")
lines(logitSimHalf, logitApprox2Half, lty = 2, col = "green")
lines(logitSimOne, logitApprox2One, lty = 3, col = "green")
lines(logitSimQuarter, logitApprox3Quarter, lty = 1, col = "blue")
lines(logitSimHalf, logitApprox3Half, lty = 2, col = "blue")
lines(logitSimOne, logitApprox3One, lty = 3, col = "blue")
abline(0, 1, col = "red")
legend(0, 1, c(TeX("$\\sigma^2_{\\tau} = 0.25 (delta)"), TeX("$\\sigma^2_{\\tau} = 0.5 (delta)"),

TeX("$\\sigma^2_{\\tau} = 1 (delta)"), TeX("$\\sigma^2_{\\tau} = 0.25 (tanh)"),
TeX("$\\sigma^2_{\\tau} = 0.5 (tanh)"), TeX("$\\sigma^2_{\\tau} = 1 (tanh)"),
TeX("$\\sigma^2_{\\tau} = 0.25 (normal)"), TeX("$\\sigma^2_{\\tau} = 0.5 (normal)"),
TeX("$\\sigma^2_{\\tau} = 1 (normal)")), lty = c(1, 2, 3, 1, 2, 3, 1, 2,
3), co = c(rep(c("black", "green", "blue"), each = 3)), bty = "n", cex = 0.7)

From Figure S5 this is hard to see differences between the two methods so we zoom in apart from deviations
occur most at around 0.69 an 0.71.
plot(logitSimQuarter, logitApprox1Quarter, type = "l", ylab = "Approximated mean by the two methods",

xlab = "Simulated mean (unbiased)", xlim = c(0.69, 0.71), ylim = c(0.69,
0.71))

lines(logitSimHalf, logitApprox1Half, lty = 2)
lines(logitSimOne, logitApprox1One, lty = 3)
lines(logitSimQuarter, logitApprox2Quarter, lty = 1, col = "green")
lines(logitSimHalf, logitApprox2Half, lty = 2, col = "green")
lines(logitSimOne, logitApprox2One, lty = 3, col = "green")
lines(logitSimQuarter, logitApprox3Quarter, lty = 1, col = "blue")
lines(logitSimHalf, logitApprox3Half, lty = 2, col = "blue")
lines(logitSimOne, logitApprox3One, lty = 3, col = "blue")
abline(0, 1, col = "red")
legend(0.69, 0.71, c(TeX("$\\sigma^2_{\\tau} = 0.25 (delta)"), TeX("$\\sigma^2_{\\tau} = 0.5 (delta)"),

TeX("$\\sigma^2_{\\tau} = 1 (delta)"), TeX("$\\sigma^2_{\\tau} = 0.25 (tanh)"),
TeX("$\\sigma^2_{\\tau} = 0.5 (tanh)"), TeX("$\\sigma^2_{\\tau} = 1 (tanh)"),
TeX("$\\sigma^2_{\\tau} = 0.25 (normal)"), TeX("$\\sigma^2_{\\tau} = 0.5 (normal)"),
TeX("$\\sigma^2_{\\tau} = 1 (normal)")), lty = c(1, 2, 3, 1, 2, 3, 1, 2,
3), co = c(rep(c("black", "green", "blue"), each = 3)), bty = "n", cex = 0.7)

It seems all approximation do worse as σ2
τ increases. As one can see the tanh approximation performs best.
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Figure 5: Performance of approximations (black) against unbiased line for binomial data with the logit-link
(red).
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Figure 6: Zooming in on the performance of approximations (black) against unbiased line for binomial data
with the logit-link (red).
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Appendix S4

Why R2
GLMM and ICCGLMM using variances on the latent scale are estiamted on

the data/original scale

Here, we use R2
GLMM and ICCGLMM as calculated using the ‘delta-method-based’ observation-level variance.

Marginal R2
GLMM from a quasi-Poisson GLMM (model 2 in the main text) using the variance components

and the obervation-level variance (note both are on the latent scale) can be expressed as:

R2
QP−ln(m) =

σ2
f

σ2
f + σ2

α + σ2
ε

.

By applying the delta method for variance approximation, we can approximate R2
GLMM on the data/orignal

scale can be written as:

R2
QP−ln(m)∗ ≈

σ2
f

(
dg(β0)
dβ0

)2

(σ2
f + σ2

α + σ2
ε )

(
dg(β0)
dβ0

)2 ,

where g is the transformation function (inverse link function).

By simplifying this, we obtain:

R2
QP−ln(m)∗ ≈

σ2
f

σ2
f + σ2

α + σ2
ε

= R2
QP−ln(m).

This argument above is directly transferable to ICCGLMM and to other non-Gaussian distributions. Thus,
R2

GLMM and ICCGLMM using variances on the latent scale approximates to R2
GLMM and ICCGLMM on

data/orignal scale. Also, this implies that ICC on the data/orignal scale can be written by using the binomial
(binary) GLMM when n = 1 (Model 6):

ICCbinom−logit∗ ≈ σ2
αp

2/(1 + eb)2

(σ2
α + σ2

e)p2/(1 + eb)2 + p(1 − p) ,

where p is the mean on the data scale and b is the corresponding value on the latent scale and p = eb/(1 + eb);
this was first derived in Browne et al. (2005, J. R. Statstic. Soc. A., 168: 599-613) using the delta method.
An ICC can be approximated by using the delta method and then, the observation-level σ2

ε for the binomial
distriubtion with the logit link (based on the delta method) is 1/p(1 − p) when n = 1 (see Table 2):

ICCbinom−logit ≈ σ2
α

σ2
α + σ2

e + 1/p(1 − p) .

Given p = eb/(1 + eb), p(1 − p) = eb/(1 + eb)2 and also eb = p/(1 − p) and therefore, (1 + eb)2 = 1/(1 − p)2.
It follows that ICC on the data scale can be re-written as:

ICCbinom−logit∗ ≈ σ2
αp

2(1 − p)2

(σ2
α + σ2

e)p2(1 − p)2 + p(1 − p) ,

By dividing both the numerator and denominator by p2(1 − p)2, we have:
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ICCbinom−logit∗ ≈ σ2
α

σ2
α + σ2

e + 1/p(1 − p) .

This is the same as the ICC formula above. Also, a more general formulat for ICCbinom−logit is:

ICCbinom−logit ≈ σ2
α

σ2
α + σ2

e + 1/np(1 − p) .

Appendix S5

Comparing the distribution-specific and observation-level variance for the three
common link functions of the binomial distribution

We plot how the ‘delta-method-based’ observation-level variance (when n = 1) change as p (probability;
Prob) changes for the logit, probit and complementary log-log link function along with the corresponding
‘theortical’ distribution-specific variance.
Prob <- seq(1e-04, 0.9999, by = 1e-04)
FunPlogit <- expression(log(Prob/(1 - Prob))) # logit
FunPcclog <- expression(log(-log(1 - Prob))) # c-c log

DPFunPlogit <- D(FunPlogit, "Prob") # derivative of logit
DPFunPcclog <- D(FunPcclog, "Prob") # derivative of cclog
# the delta method for variance approximation
VarOlogit <- Prob * (1 - Prob) * eval(DPFunPlogit)^2
# VarDlogit<-1/(Prob*(1-Prob)) # as in Table 2 - equivalent as above the
# delta method (note some differences from the others)
VarOprobit <- Prob * (1 - Prob) * grad(qnorm, Prob)^2
# VarDprobit<-2*pi*Prob*(1-Prob)*(exp((extremevalues::invErf(2*Prob-1))^2))^2
# as in Table 2 - equivalent as above the delta method
VarOcclog <- Prob * (1 - Prob) * eval(DPFunPcclog)^2
# VarDcclog<-Prob/((log(1-Prob))^2*(1-Prob)) # as in Table 2 - equivalent as
# above

Note that for the probit function, we had to use the numerical approach (numDeriv package) rather than
the default D function. However, these functions listed in Table 3 can be directly used; they will produce the
same results.
plot(Prob, VarOlogit, type = "l", ylab = "Variance", xlab = "Probability", ylim = c(0,

20))
lines(Prob, VarOprobit, col = "red")
lines(Prob, VarOcclog, col = "blue")
abline(pi^2/3, 0, lty = "dashed")
abline(1, 0, lty = "dashed", col = "red")
abline(pi^2/6, 0, lty = "dashed", col = "blue")
legend(0.5, 20, c("Logit (link)", "Logit (latent)", "Probit (link)", "Probit (latent)",

"CClog(link)", "CClog(latent)"), lty = c(1, 2, 1, 2, 1, 2), col = rep(c("black",
"red", "blue"), each = 2), bty = "n")

It becomes clear form the corresponding figure that the observation-level variance is always larger than
distribution-specific variance apart from the case of complementary-complementary (c-c) log link. It may
not be surprising to see the observation-level variances increase at both extreme (0 and 1) because the
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Figure 7: A comparision of distribution-specific and observation-level variances for the 3 common link
functions.

total variance decreases and uncertainty increases near 0 and 1. It is hard to distinguish group-level form
observation-level variance.

Appendix S7

R2
GLMM and ICCGLMM without σ2

d

de Villemereuil and colleagues (2016, Genetics, 204: 1281-1294) demonstrated that hertaiblity on the latent
scale can be caculated without σ2

d. This is useful if the latent scale is the scale of interest, because selection can
also be inferred on the latent scale. More broadly, this is difficult to apply to cases like binary data, because
σ2
e (overdisperson variance) is theortically zero and since σ2

d is excluded from the calculateion of σ2
ε = σ2

e = 0
(but see Browne et al., 2005, J. R. Statstic. Soc. A., 168: 599-613). Consequently, de Villemereuil et al
(2016) define R2 and ICC for Models 5 & 6 usiing an additive overdisperson term to obtain σ2

e :

R2
GLMM(m)∗ =

σ2
f

σ2
f + σ2

α + σ2
e

R2
GLMM(c)∗ =

σ2
f + σ2

α

σ2
f + σ2

α + σ2
e

ICCGLMM∗ = σ2
α

σ2
α + σ2

e

The main difference between R2
GLMM and ICCGLMM, and R2

GLMM∗ and ICCGLMM∗ are that R2
GLMM∗ and

ICCGLMM∗ can be 1 while R2
GLMM and ICCGLMM can never become 1 (cf. Nagelkerke, 1991, Biometrika,

78: 691-692; this paper proposes how to make R2 for generalized linear models, GLM have the maximum
value of 1). R2

GLMM∗ and ICCGLMM∗ are likely to be useful when one sees the variance due to non-Guassian
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distribution (distribution-specific variance) as some noise added on the data (original) scale. This may be
analgous to taking out variance due to measurement error in the context of a Gaussian GLMM. We note that
you can also add an overdisperson term to obtain σ2

e in Models 2-4 and calcuate R2
GLMM∗ and ICCGLMM∗,

which are distinct from R2
GLMM and ICCGLMM, which we defined in the main text.
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