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1 Supplementary information

1.1 Generalisation methods

We choose 5 level 0 generalisers to feed into the level 1 generaliser. We chose these 5 due

to (a) ease of implementation through existing software packages, (b) the differences in their

approaches and (c) a proven track record in predictive accuracy.

1.1.1 Gradient boosted trees and Random forests

Both Gradient boosted trees and random forests produce ensembles of regression trees [1].

Regression trees partition the space of all joint covariate variable values into disjoint regions

Rj (j = {1, 2, ..., J}) which are represented as terminal nodes in a decision tree. A constant γj

is assigned to each region such that the predictive rule is x ∈ Rj → f(x) = γj [2]. A tree is
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therefore formally expressed as T (x, θ) =
∑J

j=1 γjI(x ∈ Rj).

Gradient boosted trees model the target function by a sum of such trees induced by forward

stagewise regression

fM (x) =

M∑
m=1

T (x, θm) (1)

θ̂m = arg min
θm

N∑
i=1

L(yi, fm−1(xi) + T (xi, θm)) (2)

Solving equation 1 is done by functional gradient decent with regularisation performed via

shrinkage and cross validation [3]. In our implementations we also stochastically sampled

covariates and samples in each stagewise step [4].

Random forests combine trees by bagging [2] where bootstrap samples (B) of covariates and

data are used to create an average ensemble of trees:

fM (x) =
1

B

B∑
b=1

T (x, θb) (3)

The optimal number of bootstraped trees B is found by cross validation [5].

We used the H2O package in R to fit both the gradient boosted models and random forest

models and meta-parameters such as tree depth and samples per node were evaluated using a

coarse grid search.

1.1.2 Elastic net regularised regression

Elastic net regularised regression [6] is a penalised linear regression where the coefficients of the

regression are found by

fM (x) = XT γ̂ (4)

γ̂ = arg min
γ

||y − fM (x)||2 + λ2||γ||2 + λ1||γ||1 (5)

Where the subscripts on the penalty terms represent the `1 (i.e. lasso) and `2 (i.e. ridge)

norms. These norms induce shrinkage in the coefficients of the linear model allowing for better

generalisation.
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Equation 4 is fitted by numerically maximising the likelihood and optimal parameters for λ1, λ2

are computed by cross validation over the full regularisation path. Fitting was done using the

H2O package in R.

1.1.3 Generalised additive splines

Generalised additive splines extend standard linear models by allowing the linear terms to be

modelled as nonlinear flexible splines [7].

fM (x) = γ0 + f1(x1)+, ..,+fm(xm) (6)

s.t. arg min
β

||y − fM (x)||2 + λ

∫
(f
′′
M (x))2dx (7)

Where f
′′

denotes the second derivative and penalises non smooth functions (that can potentially

overfit). Fitting was done using generalised cross validation with smoothness selection done via

restricted maximum likelihood. Fitting was done using the mgcv package in R.

Multivariate adaptive regression splines

Multivariate adaptive regression splines [8] build a model of the form

fM (x) =

M∑
i=m

γiVi(x) (8)

Where βis are coefficients and Vis are basis functions that can either be constant, be a hinge

function of the form max(0, x − const),max(0, const − x), or the product of multiple hinge

functions. Fitting is done using a two stage approach with a forward pass adding functions

and a backward pruning pass via generalised cross validation. Fitting was done using the earth

package in R.
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1.2 Details of the Gaussian Process

For the Gaussian process spatial component the covariance function is chosen to be Matérn of

smoothness ν = 1:

kθ(si, sj) = κ/τ‖si − sj‖K(2)
1 (κ‖si − sj‖), (9)

with κ =
√

2/ρ an inverse range parameter (for range, ρ), τ a precision (i.e., inverse variance)

parameter, and K(2)
1 the modified Bessel function of the second kind and order 1. Typically, θ

is defined with elements {log κ, log τ} to ensure positivity via the exponential transformation.

For computational efficiency and scalability we follow the stochastic partial differential equation

(SPDE) approach [9] to approximate the continuous Gaussian process in Equation 1 (main

manuscript) with a discrete Gauss-Markov random field (GRMF) of sparse precision matrix,

Qθ [= Σ−1θ ], allowing for fast computational matrix inversion [10]. To find the appropriate

GMRF structure, the Matérn [11] spatial component is parametrised as the finite element

solution to the SPDE, (k2 −4)(τf(s)) =W(s) defined on a spherical manifold, S2 ∈ R3, where

4 = ∂
∂s2

(1)

+ ∂
∂s2

(2)

+ ∂
∂s2

(3)

is the Laplacian (for Cartesian coordinates s(1), s(2), s(3)) and W(s) is

a spatial white noise process [9].

To extend this spatial process to a spatio-temporal process, temporal innovations are modelled

by first order autoregressive dynamics:

f(si, t) = φf(si, t− 1) + ω(si, t), (10)

where |φ| < 1 is the autoregressive coefficient and ω(si, t) is iid Normal. Practically the spatio-

temporal process is achieved through a Kronecker product of the (sparse) spatial SPDE precision

matrix and the (sparse) autoregressive temporal precision matrix.

As specified above in our GMRF implementation we instead use the precision (inverse covariance)

matrix. Using the precision matrix the conditional predictive distribution takes the form

z|y, θ ∼ N(µ∗, Q−1∗) (11)

µ∗ = µ(s′,t′)|θ +Q−1(s′,t′),(s◦,t◦)|θA
TQy|(s◦,t◦),θ

(
y −Aµ(s◦,t◦)|θ

)
(12)

Q−1∗ = Q−1(s′,t′),(s◦,t◦)|θ (13)

Where Q(s′,t′),(s◦,t◦)|θ = Q(s′,t′)|θ +ATQy|(s◦,t◦),θA. In Equation 12 A is introduced as a sparse

observation matrix that maps the finite dimensional GMRF at locations (s◦, t◦) to functional
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evaluations at any spatio-temporal locations e.g prediction locations (s′, t′) or data locations

(s, t), provided these locations are within a local domain.

1.3 Bias variance derivation for a Gaussian process stacked generaliser

Theorem 1. Consider a function {f : RN → R} for which a sample D = {xi, yi} exists,

where yi = f(xi) and i = {1, ..., n}. Fit L level 0 generalisers, M1(x), ..,ML(x), trained

on data D. Next define two ensembles of the L models, the first using a weighted mean,

M̄cwm(x) =
∑L

i=1 βiMi(x), and the second as the mean of a Gaussian process, M̄gp(x) =∑L
i=1 βiMi(x) + Σ2Σ−11

(
f(x)−

∑L
i=1 βiMi(x)

)
, with β subject to convex combinations for both

models. If the squared error is taken for both ensembles i.e. ecwm(x) = (f(x)− M̄cwm(x))2 and

egp(x) = (f(x) − M̄gp(x))2, then from the contribution of the covariance (I − Σ2Σ1)egp(x) ≤

ecwm(x) ∀x

Proof. Consider a function f from RN to R for which a sample D = {xi, yi} exists, where

yi = f(xi) and i = {1, ..., n}. fit L level 0 generalisers, M1(x), ..,ML(x) (see Algorithm 1 in

main manuscript).

Consider two ensembles, M̄ , of the M1(x), ..,ML(x) models

M̄cwm(x) =
L∑
i=1

βiMi(x) (14)

M̄gp(x) =
L∑
i=1

βiMi(x) + Σ2Σ
−1
1

(
f(x)−

L∑
i=1

βiMi(x)

)
(15)

With convex combination constraints βi ≥ 0∀i and
∑L

i=1 βi = 1.

Model 1 (Equation 14), referred too here as a constrained weighted mean, is the predominant

ensemble approach taken previously [12–15]. Model 2 (equation 15), is the conditional expectation

of ensembling via Gaussian process regression see (main manuscript and [11]). To simplify

notation here Σ2 = Σ(s′,t′),(s,t)|θ and Σ1 = Σy|(s,t),θ.

Define the squared error between the target function and each individual level 0 generaliser

as εi(x) = (f(x) −Mi(x))2. Define the squared error between the target function and the
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ensemble as e(x) = (f(x)− M̄(x))2. Following from [14] define the ambiguity of a given model

as ai(x) = (M̄(x)−Mi(x))2.

As derived in [14] the ensemble ambiguity from using a constrained weighted mean ensemble

(model 1 above) subject to convex combinations is defined as the weighted sum of the individual

ambiguities.

ā(x) =

L∑
i=1

βiai(x) =

L∑
i=1

βi(M̄(x)−Mi(x))2 (16)

ā(x) = ε̄(x)− e(x) (17)

where ε̄(x) =
∑L

i=1 βiεi(x). Therefore the ensemble squared error when using a constrained

weighted mean is ecwm(x) = ε̄(x)− ā(x).

Using the Gaussian process (model 2 above) the ensemble ambiguity is defined as.

ā(x) =
L∑
i=1

βi(M̄(x)−Mi(x))2

+ Σ2∗Σ
−1
1∗

( L∑
i=1

βi
(
f(x)−Mi(x)

)2 − L∑
i=1

βi
(
M̄(x)−Mi(x)

)2)
(18)

ā(x) =
L∑
i=1

βiai(x) + Σ2∗Σ
−1
1∗

( L∑
i=1

βiei(x)−
L∑
i=1

βiai(x)

)
(19)

In equations 18 and 19 above the covariance matrices operate on the ambiguities, and as such

are suffixed with asterixes to distinguish those from equation 15. Additionally β in equations 18

and 19 are also subject to convex combination constraints. Substituting 17 into equation 19

yields:

ā(x) = ε̄(x)− e(x) + Σ2∗Σ
−1
1∗

(
ε̄(x)− ε̄(x) + e(x)

)
(20)

ā(x) = ε̄(x)− e(x) + Σ2∗Σ
−1
1∗ e(x) (21)(

I− Σ2∗Σ
−1
1∗

)
egp(x) = ε̄(x)− ā(x) (22)

The right hand side of equation 22 is identical to that derived using a constrained weighted

mean in equation 17, but the left hand side error term, egp(x) is augmented by (I− Σ2∗Σ
−1
1∗ ).

Clearly ā(x) ≤ ε̄(x) ∀x, with ā(x) = ε̄(x) only when the ensemble equals the true target function,

M̄ = f(x), and e(x) = 0. It follows that the left hand side of equation 22
(
I−Σ2∗Σ1∗

)
e(x) ≥ 0 ∀x.
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Therefore from the contribution of the precision or covariance stacking using a Gaussian

process approach always has a lower error than stacking via a constrained weighted mean,

with the error terms being equal when the contribution of the covariance is zero. That is

(I− Σ2∗Σ1∗)egp(x) ≤ ecwm(x) ∀x �

We note the main purpose of this proof is to bring to light intuitions about why stacking using

Gaussian processes can improve predictive performance. We highlight that the proof is based

on the assertion that the data generating process is contained within the hypothesis set of

functions we are using i.e, y = f(x). This restrictive condition is required and generality beyond

this condition will lead to ”no free lunches” [16]. Our main goal in this proof is to firstly

restate the results of [14] - that improved generalisation accuracy can result from an ensemble

of variable and accurate generalisers. Secondly we aimed to show further prediction accuracy

can be achieved by modelling the residual variation left over from the ensemble.

1.4 Alternative stacking designs

We have presented the rational for stacking and introduced a basic design (design 1 in figure

1) where multiple level 0 generalisers are stacked through a single level 1 generaliser. For this

design we proposed a Gaussian process or constrained weighted mean as the level 1 generaliser.

In figure 1 we suggest two alternative stacking designs.

In design 2, multiple level 0 generalisers are fitted and then passed through individual level 1

generalisers before being finally combined in a level 2 generaliser. An example of this scheme

would be to fit multiple level 0 generalisers using different algorithmic methods (see Appendix

1.1) and then feed each of these into a Gaussian process regression. This design allows for the

Gaussian processes to learn individual covariance structures for each level 0 algorithmic method

(as opposed to a joint structure as in design 1). These level 1 Gaussian processes can then be

combined through a constrained weighted mean level 2 generaliser.

In design 3, a single level 0 generaliser is used and fed into multiple level 1 generalisers before

being combined via a level 2 generaliser. An example of this scheme would be to fit a single

level 0 method, such as a linear mean or random forest, and then feed this single generaliser
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into multiple level 1 Gaussian processes. These multiple Gaussian processes can learn different

aspects of the covariance structure such as long range, short range or seasonal interactions.

These level 1 generalisers can then be combined, as in design 2, through a constrained weighted

mean level 2 generaliser.
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Design 1

Design 2

Design 3

Level 0 Level 0 Level 0 Level 0

Level 1

Level 0 Level 0 Level 0 Level 0

Level 1 Level 1 Level 1 Level 1

Level 2

Level 1 Level 1 Level 1 Level 1

Level 2

Level 0

Figure 1. Three suggested stacking designs. In this paper we have exclusively used design 1,

where multiple level 0 generalisers are combined through a level 1 generaliser. An alternative

(design 2) is to feed each level 0 generaliser into a unique level 1 generaliser and then combine

them together through a level 2 generaliser. Another alternative (design 3) is to have a single

level 0 generaliser feeding into multiple level 1 generalisers that are then combined through a

level 2 generaliser
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