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S1 Physicochemical properties

Table 1: Selected 17 physicochemical properties used to create amino acid encodings.

Category Property

Contactivity Average flexibility indices (Bhaskaran and Ponnuswamy, 1988)
Contactivity 14 Å contact number (Nishikawa and Ooi, 1986)
Contactivity Accessible surface area (Radzicka and Wolfenden, 1988)
Contactivity Buriability (Zhou and Zhou, 2004)
Contactivity Contact frequency in proteins from class β, cutoff 12 Å, separation 5 Å (Wozniak and Kotulska,

2014)
Contactivity Contact frequency in proteins from class β, cutoff 12 Å, separation 15 Å (Wozniak and Kotulska,

2014)
β-frequency Average relative probability of inner beta-sheet (Kanehisa and Tsong, 1980)
β-frequency Relative frequency in β-sheet (Prabhakaran, 1990)
β-frequency Thermodynamic β-sheet propensity (Kim and Berg, 1993)
Hydrophobicity Hydrophobicity index (Argos et al., 1982)
Hydrophobicity Optimal matching hydrophobicity (Sweet and Eisenberg, 1983)
Hydrophobicity Hydrophobicity-related index (Kidera et al., 1985)
Hydrophobicity Scaled side chain hydrophobicity values (Black and Mould, 1991)
Polarity Polarizability parameter (Charton and Charton, 1982)
Polarity Mean polarity (Radzicka and Wolfenden, 1988)
Size Average volumes of residues (Pontius et al., 1996)
Stability Side-chain contribution to protein stability (kJ/mol) (Takano and Yutani, 2001)
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S2 Quick Permutation Test (QuiPT)

Permutation tests are commonly used for filtering important n-grams testing, the hypothesis that
an occurrence of n-gram and a value of a target are independent. However, exhaustive testing of
permutations is computationally expensive and, as a result, they often become one of the most lim-
iting factors in these kinds of analyses. Therefore, we developed the Quick Permutation Test which
effectively filters n-gram features, without requiring exhaustive testing, and using the information
gain (mutual information) as the criterion of the importance of a specific n-gram. Using QuiPT we
selected the most discriminating n-grams extracted from the hexapeptides of the training data set.
Again, the counts of n-grams were binarized (1 if n-gram was present, 0 if absent). Only n-grams
with p-value smaller than 0.05 were assumed to be informative.

Consider a contingency table for a target y and a feature x (Tab. 2). For example, the entry n1,0
is the number of cases when the target is 1 and the feature is 0.

Table 2: A contingency table for a target y and a feature x.
target / feature 1 0 total

1 n1,1 n1,0 n1,·
0 n0,1 n0,0 n0,·

total n·,1 n·,0 n

Under the hypothesis that x and y are independent, the probability of observing such a con-
tingency table is given by the multinomial distribution in which all probabilities depend only on
marginal distributions. The idea of the permutation test is to reshuffle labels of features and tar-
gets, while keeping the fixed total number of positives for features and targets. When we impose
this constraint on the multinomial distribution, then the probability of occurrence for a given con-
tingency table depends on only one entry, n1,1, which is fairly easy to compute. After computing
Information Gain (IG) for each possible value of n1,1 ∈ [0,min(n·,1;n1,·)], we get the distribution
of Information Gain under the hypothesis that the target and feature are independent. We reject
the null hypothesis of independence, if the IG for the tested feature is above the required quantile
from the IG distribution.

The analytic formula for the distribution enables to perform the permutation test much quicker.
Furthermore, we get exact quantiles even for extreme tails of the distribution, which is not guaranteed
by random permutations. For example, for the test at the level α = 10−8, which can often occur in
the corrections for multiple testing, the standard deviation of quantile estimate in the permutation

test, p(1−p)
m , is roughly equal to α itself even for a very large number of permutations like m = 108.

In the context of n-gram data, we can further speed up our algorithm. Note that test statistics
depends only on n·,1, i.e., the number of positive cases in the feature when the target y is common for
testing all n-gram features. Although we test millions of features, there are only a few distributions
that we need to compute because the usual number of positives in n-gram feature is small. We take
advantage of this fact and compute quantiles only for this small number of distributions. Therefore,
the complexity of our algorithm is roughly equal to O(n · p), where n and p represents the number
of features and number of positives, respectively.

Last, let us point out that QuiPT is very similar to Fisher’s exact test. From the derivation
provided in reference (Lehmann and Romano, 2008) and elsewhere, it becomes obvious that QuiPT
is a heuristics for an unsolved problem of a two-tailed Fisher’s exact test. In this heuristics, the
extremity of a contingency table is defined by its information gain.
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S3 Sensitivity and specificity

Sensitivity and specificity of classifiers with various encodings for every possible combination of
sequence lengths in the training and testing data sets.

The classifier based on the best-performing encoding always have a good specificity and sensitiv-
ity. The color of the square is proportional to the number of encodings in its area. Points represent
classifiers based on special encodings: the best-performing encoding, full amino acid alphabet and
two two standard encodings, ADEGHKNPQRST, C, FY, ILMV, W (Kosiol et al., 2004) and AG,
C, DEKNPQRST, FILMVWY, H (Melo and Marti-Renom, 2006).
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S3.1 Training peptide length: 6, test peptide length: 6
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S3.2 Training peptide length: 6, test peptide length: 7-10
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S3.3 Training peptide length: 6, test peptide length: 11-15
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S3.4 Training peptide length: 6, test peptide length: 16-25
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S3.5 Training peptide length: 6-10, test peptide length: 6
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S3.6 Training peptide length: 6-10, test peptide length: 7-10
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S3.7 Training peptide length: 6-10, test peptide length: 11-15

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.4 0.6 0.8

Mean specificity

M
e
a
n
 s

e
n
s
it
iv

it
y

Best-performing encoding

Full alphabet

Standard encoding (Kosiol, et al., 2004)

Standard encoding (Melo and Marti-Renom, 2006)

200 400 600
Number of encodings

11



S3.8 Training peptide length: 6-10, test peptide length: 16-25
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S3.9 Training peptide length: 6-15, test peptide length: 6
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S3.10 Training peptide length: 6-15, test peptide length: 7-10
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S3.11 Training peptide length: 6-15, test peptide length: 11-15
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S3.12 Training peptide length: 6-15, test peptide length: 16-25
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S4 Bootstrap confidence intervals for benchmark

We computed 0.95 confidence intervals for all classifiers by bootstrapping results of the bench-
mark(Efron and Tibshirani, 1994). Briefly, predictions returned by classifiers were sampled with
replacement number of times equal to the total number of predictions. For each bootstrap sample
we computed performance measures. Repeating the procedure 1000 times, we obtained a robust es-
timate of 95% confidence intervals adjusted for multiple comparison using Dunn – Šidák correction,
therefore significantly different values of performance measures can be distinguished (see Tab. 3 and
Fig. 1).

17



Sensitivity Specificity

AUC MCC

F
u
ll 

a
lp

h
a
b
e
t 
(6

)

F
u
ll 

a
lp

h
a
b
e
t 
(1

0
)

F
u
ll 

a
lp

h
a
b
e
t 
(1

5
)

A
m

y
lo

G
ra

m
 (

6
)

A
m

y
lo

G
ra

m
 (

1
0
)

A
m

y
lo

G
ra

m
 (

1
5
)

a
p
p
n
n

F
o
ld

A
m

y
lo

id

P
A

S
T
A

 2
.0

F
u
ll 

a
lp

h
a
b
e
t 
(6

)

F
u
ll 

a
lp

h
a
b
e
t 
(1

0
)

F
u
ll 

a
lp

h
a
b
e
t 
(1

5
)

A
m

y
lo

G
ra

m
 (

6
)

A
m

y
lo

G
ra

m
 (

1
0
)

A
m

y
lo

G
ra

m
 (

1
5
)

a
p
p
n
n

F
o
ld

A
m

y
lo

id

P
A

S
T
A

 2
.0

0.45

0.50

0.55

0.60

0.6

0.7

0.8

0.9

0.75

0.80

0.85

0.90

0.4

0.6

0.8

V
a
lu

e

AmyloGram Full alphabet Other classifier

Figure 1: 0.95 bootstrap confidence intervals for benchmark results adjusted for multiple compar-
isons. 18



Table 3: The mean values of performance measures and their confidence intervals obtained in the
bootstrap.

Measure Classifier Mean Lower bound Upper bound
PASTA 2.0 0.8553 0.8568 0.8538
FoldAmyloid 0.7354 0.7371 0.7336
appnn 0.8343 0.8359 0.8327
AmyloGram (15) 0.8727 0.8741 0.8714
AmyloGram (10) 0.8971 0.8983 0.8959
AmyloGram (6) 0.8851 0.8864 0.8837
Full alphabet (15) 0.8616 0.8631 0.8602
Full alphabet (10) 0.8589 0.8603 0.8574

AUC

Full alphabet (6) 0.8416 0.8432 0.8400

PASTA 2.0 0.4296 0.4332 0.4261
FoldAmyloid 0.4531 0.4566 0.4497
appnn 0.5817 0.5847 0.5787
AmyloGram (15) 0.5420 0.5446 0.5394
AmyloGram (10) 0.6300 0.6330 0.6271
AmyloGram (6) 0.6037 0.6069 0.6004
Full alphabet (15) 0.5488 0.5519 0.5456
Full alphabet (10) 0.5716 0.5749 0.5683

MCC

Full alphabet (6) 0.5436 0.5467 0.5404

PASTA 2.0 0.3833 0.3863 0.3803
FoldAmyloid 0.7518 0.7545 0.7490
appnn 0.8864 0.8885 0.8843
AmyloGram (15) 0.9463 0.9477 0.9448
AmyloGram (10) 0.8647 0.8669 0.8626
AmyloGram (6) 0.6770 0.6800 0.6741
Full alphabet (15) 0.8175 0.8200 0.8151
Full alphabet (10) 0.7521 0.7549 0.7493

Sensitivity

Full alphabet (6) 0.4984 0.5016 0.4952

PASTA 2.0 0.9519 0.9530 0.9509
FoldAmyloid 0.7190 0.7211 0.7168
appnn 0.7211 0.7232 0.7190
AmyloGram (15) 0.6113 0.6136 0.6090
AmyloGram (10) 0.7890 0.7910 0.7871
AmyloGram (6) 0.9028 0.9042 0.9014
Full alphabet (15) 0.7527 0.7548 0.7506
Full alphabet (10) 0.8271 0.8290 0.8252

Specificity

Full alphabet (6) 0.9591 0.9600 0.9582
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S5 Pairwise sequence identity between training and bench-
mark data sets

For each peptide from the pep424 data set we computed its pairwise identity to peptides from the
benchmark data set. The pairwise sequence identity was defined as following (Raghava and Barton,
2006):

Pairwise identity =
I

A+G
. (1)

where:

• I: identical positions,

• A: aligned positions,

• G: internal gap positions.

We discovered that despite high pairwise identity, peptides may have different properties amy-
loidogenic properties. In case of 270 non-amyloidogenic sequences from pep424, over 295 amyloido-
genic peptides from the training data set have pairwise identity 100%. 149 amyloidogenic peptides
from the pep424 data set have pairwise identity 100% with only 69 sequences in the benchmark
data set that are amyloidogenic and 316 non-amyloidogenic sequences (2). Concluding, in case of
amyloid data high sequence similarity does not reflect likeness in their properties.
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Figure 2: Number of sequences from the benchmark data set with pairwise identity 100% with
sequences from the pep424 data set.
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S6 Jackknife test

To further estimate the bias of AmyloGram, we performed a jackknife procedure. Using the training
data created for the benchmark (269 positive sequences and 746 negative sequences) we trained 961
iterations of AmyloGram each time leaving one sequence out and then performing predictions on
the left sequence. The AUC=0.86 and MCC=0.52. We also trained an iteration of AmyloGram
on the full training data set and made predictions on all input sequences obtaining AUC=0.97 and
MCC=0.80.

S7 Amino acid flexibility/rigidity and size

In the light of recent studies, amyloid peptides could form ring-like structures in the core of aggre-
gating oligomers Dovidchenko et al. (2016). This may require a certain flexibility of amino acids
involved in the core. However, the flexibility/rigidity seems to depend on the size or volume of
amino acid residues. Therefore, we checked if the flexibility measure that stood out in our analysis
of amyloid regions can result from a correlation to any size-related feature of amino acids, especially
that which was not selected for the encodings. We evaluated the correlation of three size-related
properties from AAIndex database and the flexibility measure chosen by our algorithm (Tab. 4 and
Fig. 3). It turned out that only bulkiness is significantly correlated but moderately with the amino
acid flexibility (Tab. 4). Bulkiness was not in the set of 17 physicochemical properties used to create
the encodings.

Table 4: The correlation coefficient and its significance between the flexibility measure and three
parameters describing the size of amino acids.

Parameter Pearson’s correlation coefficient p-value
1 Size (Dawson, 1972) -0.27 0.24
2 Residue volume (Bigelow, 1967) -0.42 0.06
3 Bulkiness (Zimmerman et al., 1968) -0.49 0.03

We also computed the average values of flexibility and size-related measures of each peptide from
the AmyLoad database. The average size is very similar for amyloid and non-amyloid peptides, as
well as is not related to the visible differences in the flexibility. It can be seen on volcano plots, where
the distribution of flexibility differentiates the amyloid and non-amyloid peptides (Fig. 5)). The same
can be also observed on violin plots representing the distribution of mean values of all properties for
amyloids and non-amyloids (Fig. 4)). A slight difference can be observed in the volume of residues,
however this feature was explicitly selected for the encodings and is not correlated with the flexibility
measure that we used. Finally, the bulkiness behaves somehow differently. It may differentiate
amyloid and non-amyloid hot-spots and it is correlated with our flexibility measure. Therefore, we
cannot exclude that this size-related measure may contribute to the amyloid propensity.
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