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SUPPLEMENTARY METHODS

Kernel Ridge Regression

Kernel Ridge Regression[l, 2] (KRR) is a machine learning method for regression. We introduce the method for
abstract training points (x;,y;), i.e. features x;,...x); € R? and associated labels Y = (yq,... ,yM)T € RM and
describe the actual models used in the main text afterwards. We want to model a function f : R — R that maps
from features to labels. This model should not be ‘learned by heart’ but perform well on unseen data (i.e. generalize).
We first restrict the set of possible functions to the reproducing kernel Hilbert space (RKHS) H on the space of
discretized densities that is induced by the Gaussian kernel function

B x') = exp (—”X‘X') | 1)
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The restriction is very mild and rather technical; more interesting is the choice of the kernel function which determines
the scalar product (and thus the norm) of the RKHS. Leaving rigor aside, the Gaussian kernel induces an RKHS
norm ||f|| that is smaller for simpler, smoother functions and higher for more complicated, oscillating functions. We
minimize the empirical risk functional

M
C(H) =D lyi = FOa)P + A3, (2)

=1

that defines a trade-off between error on the training points and smoothness of the function controlled by the hyper-
parameter \.

The representer theorem|[3] allows us to assume that the solution to Eq. 2 is given by a linear combination of kernel
functions f = Zi\il o k(x;,-). It now suffices to solve
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where K;; = k(x;,x;) is the kernel matrix. The solution is given by

a=K+A)Y. (5)

Note that all model parameters and hyper-parameters are estimated on the training set; the hyper-parameter choice
makes use of standard cross-validation procedures (see Hansen et al. [4]). Once the model is fixed after training, it is
applied unchanged out-of-sample.

We use this method for various maps:

Non-interacting kinetic energy functional (TM"[n], 1-D). The training points are given by pairs of densities
and associated kinetic energies. We discretize the densities and use them in vectorial form, i.e. n € RY. Thus, the
functional £2 — R is modeled as a function R® — R

ML-OF map (1-D). The training points are given by pairs of discretized 1-D box potentials and associated
total energies.

ML-KS map (3-D). The training points are given by pairs of discretized Gaussians potentials (as described in
the main text) and total energies.

Total energy functional (EMY[n], 3-D). The training points are given by pairs of densities in basis function
representation (see below) and associated total energies. Just as for TMY| this functional is modeled as a function.



ML Hohenberg-Kohn map

The basis representation for the densities is given by

L

n(z) = ule(z), (6)

=1

where ¢; are the L basis functions. We introduce some notation and write the density in grid representation as n,
and its basis coefficients as u. We can then write the HK map model as

L
nMe[o](2) = Y uWo]gu(x), (7)
=1

where the L basis function coefficients are regular KRR models,

0) _M ® .
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of external potentials v with a Gaussian kernel function. The contribution of the error to the cost function can be
formulated as

M
e(B) = Y _lni — n™M[ui]|IZ, (9)
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with the £ norm. We write this cost function in terms of basis function coefficients. This can be viewed as projecting
the inside of the norm on each basis function. Assuming orthogonality of the basis functions yields
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where ugl) = (n;, ¢y) is the I-th basis function coefficient of the i-th training density, as defined in Eq. 6 if orthogonality
is satisfied. After reordering the sums over ¢ and [, we view each [ independently and solve analogously to regular

KRR

—1
30 = (K,m + >\<l>1> u®, 1=1,...L (12)

where, for each basis function [, A0 s a regularization parameter, K_ ) is a Gaussian kernel with kernel width oW,
The A®) and o® can be chosen individually for each basis function via independent cross-validation (see [4, 5]).



SUPPLEMENTARY NOTE 1: BASIS FUNCTIONS

Fourier basis. We define the basis as

_ Jeos{2mx(l —1)/2}, [odd B
o) = {sin{27rxl/2}, [ even t=1..,L.

We transform the density efficiently via the discrete Fourier transform

G
u = 3 (@) di(@m).

m=1

The back-projection is written as

L
nMl(z) = Z ul ey (z).
=1

KPCA basis. We define the basis as:

M
!
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The parameters p(l) are found by eigen-decomposition of the Kernel matrix. The KCPA basis coefficients are given

J

by
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with kernel map ®. The back-projection for KPCA is not trivial but several solutions exist. We follow Bakir et al.

[6] and learn the back-projection map.



SUPPLEMENTARY NOTE 2: GRADIENT DESCENT ISSUES

There are two ways to remedy problems of the gradient descent procedure: First, the gradient descent step can be
“de-noised” by projecting the gradient onto the data manifold and thus removing the noisy directions. Secondly, the
directions outside of the data manifold can be removed in a preprocessing step to get rid of the influence of the noisy
directions on the gradient completely. Both methods yield similar results.

Several approaches exist for describing and projecting onto the data manifold. Common to each approach is the
idea to find principle components and to project on those in which direction the densities have largest variance. Best
results are reported [7] by using Kernel Principle Component Analysis[8] (KPCA), a non-linear generalization of PCA.

There are three issues with the assumed gradient-based approaches: First, the correct choice of the number of
(K)PCA components K has to be made. It is generally possible to view it as a hyper-parameter and find the optimal
K via cross-validation. However, we can not choose fractional Ks. One K might be not enough and K + 1 too
much information. Second, the data points only lie in a bounded region of a manifold that can be described via PCA
components. It is still possible for the gradient descent to walk outside this bounded region toward a point where
the model has no information and thus the gradients become inaccurate. A (K)PCA method that only accesses the
scalar products between points in the data set can not solve this[9]. Third, it might not be possible to find a suitable
pre-image for a ground-state density given by (K)PCA coefficients[10].



SUPPLEMENTARY NOTE 3: MOLECULAR DATASETS

For our 3-D DFT calculations in Quantum Espresso[11], we center a water molecule in a cubic cell and converge
three variables: the kinetic energy cutoff for wavefunctions ecutwfc in steps of 10 Ry, the kinetic energy cutoff for
charge density and potential ecutrho in steps of 40 Ry, and the cell dimension celldm in steps of 1 bohr. We increase
parameters until increasing any parameter does not change the equilibrium position total energy by more than 0.01
kecal/mol for H,O. We end up with ecutwfc of 90 Ry, ecutrho of 360 Ry, and celldm of 20 bohr, which are used for
all other molecules in this work.

The extent of the dataset for H,O is visualized in Supplementary Fig. 1. In this case, conformers were generated
from random displacements from the optimized geometry.

For benzene and ethane, conformers were generated from isothermal molecular dynamics (MD) trajectories. The
range of atomic positions from combined 1 ns 300 K and 350 K trajectories is shown in Supplementary Fig. 2 for
benzene and Supplementary Fig. 3 for ethane after snapshots are aligned to a reference molecule.

For malonaldehyde, the classical MD trajectories include 0.5 ns for each tautomer at 300 K and 350 K. Resulting
conformers used to create the K-means sampled training set are shown as red points in Fig. 6 of the main text. The
test set to evaluate the energy error is taken from an ab initio MD trajectory at 300 K. The ML-HK model is also
used to generate an MD trajectory using a finite difference method to calculate atomic forces at each timestep. A
displacement of € = 0.001 A was chosen to maintain energy conservation during the MD simulation using the Atomistic
Simulation Environment (ASE) [12]. A Langevin thermostat with a friction coefficient of 0.01 atomic units (0.413
fs~1) was selected to reproduce the fluctuations in atomic coordinates observed for the trajectory generated using
DFT (see Supplementary Table 1). The ML-HK model generates a trajectory that visits molecular conformations
at the extremes of the classically-sampled training set, with predicted energies lower than those calculated using
DFT directly (see Supplementary Fig. 4). The largest predicted energy errors are observed for these high-energy
conformers. However, the calculated forces are sufficiently large to bring the atoms back toward their equilibrium
positions, resulting in a stable molecular trajectory.



SUPPLEMENTARY NOTE 4: SAMPLING

For Hs, since there is only one atomic distance to adjust, we take the M equi-distant points in the parameter range
and for each of these points select the training point that is closest.

For larger molecules with more parameters (H,O, Benzene, Ethane, Malonaldehyde) we also want to cover the
conformer space in a way that all conformers are relatively close to at least one training point.

Assuming p, are the parameters of conformer ¢ and ¢ € 15]- if and only if p; is closest to p;, we want to find p;,
7 =1... M that minimize

M

Z Z ||f)j_pi||2' (18)

i=1icP,

K-means[13] solves this problem for continuous p;. However, since K-means returns only locally optimal solutions,
we rerun the algorithm 50 times and select the solution which minimizes Eq. 18. We choose the points p; closest to
each p; as training points.



SUPPLEMENTARY NOTE 5: LOGIC OF DENSITY FUNCTIONAL THEORY (DFT)

Within the Born-Oppenheimer approximation in non-relativistic quantum mechanics, and using atomic units, the
Hohenberg-Kohn paper[14] laid the theoretical framework of all modern DFT. The first statement is that the mapping
v(r) +— n(r) (19)

is one-to-one, i.e., at most one potential can give rise to a given ground-state density, even in a quantum many-body

problem, for given interaction among particles and statistics (i.e., fermions or bosons). A follow-up claim is that the
ground-state energy of an electronic system can be found from

E[v] = min {F[n] + / dSrn(r)v(r)} (20)

where F[n] is a density functional containing all many-body effects. The minimizing density is the solution to the
Euler equation:

OF
on(r)

+ v(r) = const (21)

It is the direct map between densities and potentials that we machine-learn in this paper. We call it the HK density
map, n[v](r).

The KS scheme avoids direct approximation of F' by imagining a fictitious system of non-interacting electrons with
the same density as the real one[15]. The KS equations are:

{;VZ + vs(r)} ¢i(r) = €ii(r) (22)

where €; are the KS eigenvalues and ¢; the KS orbitals.

vs(r) = v(r) + v (r) + vxo(r) (23)

where vy (r) is the Hartree potential and vxc(r) is the exchange-correlation potential. The true energy of the system
is then reconstructed from the self-consistent density n(r) = ", |¢;(r)]? via

E[n] = Ty[n] + Uln] + /dsr n(r)v(r) + Exc[n] (24)

where Ti[n] is the kinetic energy of the non-interacting electrons and Uln] is the Hartree energy. FExc[n] is the
exchange-correlation (XC) energy and implicitly defined by Eq. 24. Most calculations[16] use simple approximations
that depend only on the density and its gradient to determine FExc, called generalized gradient approximations, or
replace a fixed fraction of the approximate exchange with the exact exchange from a Hartree-Fock calculation (called
a hybrid). Requiring the XC potential to be the functional derivative of Exc ensures that the self-consistent solution
of Eq. 22 minimizes the energy of Eq. 24 for the given v(r) and Exc[n].
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Supplementary Figure 1. The extent of the H,O dataset. The figure shows the atom coordinates in angstrom. Blue are
atoms from 15 training points, red from 50 test points.



Supplementary Figure 2. The extent of the benzene conformers. The conformers generated by MD are displayed in red.
K-means sampling is used to select 2,000 representative points. Test points from an independent trajectory are in blue and are
offset from the molecular plane for clarity.
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Supplementary Figure 3. The extent of the ethane conformers. The conformers generated by MD are displayed in red.
K-means sampling is used to select 2,000 representative points. Test points from an independent trajectory are in blue.
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Supplementary Figure 4. Total energy errors from ML-HK generated trajectory snapshots. The largest energy errors
are for high-energy conformations at the extremes of the classical training set coordinates.
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MD Trajectory‘ Atom Type
\ C 0 H (-CH) H (-OH)
DFT \ 0.052 0.076 0.166 0.289
ML-HK \ 0.051 0.094 0.171 0.242

Supplementary Table 1. Difference between DFT and ML-HK sampling of malonaldehyde configurations. Root
mean squared deviations (A) for malonaldehyde during 2 ps MD simulations relative to the average coordinates of the two

optimized enol tautomers.
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