
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

The manuscript explores a way to use machine learning (ML) to aid density functional theory (DFT) 

calculations. DFT is based on the theorem that the ground state energy of an interacting system of 

electrons in an external potential is a functional of just the total electron density, and the density 

corresponding to the ground state is in one to one correspondence with the external potential. 

However, important parts of this functional are not known (specifically, the correlation energy, 

kinetic energy). Nevertheless, good approximations for this functional have seen DFT gain 

widespread use. Given such an approximate functional, the energy is minimised over the allowable 

densities (or sometimes corresponding one-electron wavefunctions), a procedure that is still quite 

costly. A longstanding goal of some of the authors has been to use machine learning to bypass some 

of these calculations. In earlier work, they attempted to approximate the kinetic energy expression 

based on wave functions by one that is based on densities using a machine learning framework. In 

the present manuscript, they use machine learning to approximate the ground state density as a 

functional of the external potential. If successful, it would represent a key step in a larger 

programme of speeding up electronic structure calculations.  

 

In my view, the manuscript represents a modest trialling of its central idea. Its results are mildly 

encouraging, and will no doubt prompt further research by its authors to expand on the present 

results and possibly interest some others in the small community of researchers who are playing 

with machine learning ideas in the context of materials simulation.  

 

Some specific criticisms, in no particular order:  

 

1) Even if accurate densities were obtainable from external potentials in general using this method, 

there remains the problem of evaluating the energy given a density. The authors subtly acknowledge 

this on line 246, and mention in passing that they trained an energy model on densities to be able to 

benchmark their potential->density map. Scant details are given about this critical piece.  

 

2) The methods are tried on very small systems and very small training and test sets. Experience has 

shown that ML models are so powerful and flexible, that it is very easy to show good fits on very 

small datasets, that do not explore a wide range of input data. The presented results would not 

convince any practitioners that the method WILL work on a larger scale. It MIGHT work, and thus the 

manuscript represents the first successful foray into using this approach, but much more is required 

to call it a useful method.  

 

3) The method as presented has no transferability from one system to another. The map trained for 

a water molecule will only work for an isolated water molecule. This means that the elusive goal of 

training the potential->density map (or the density->energy map) is no closer, for each new system 

data will need to be generated. How much data? how does the required data scale with system size? 

No-one knows. Answers to these questions will make or break the method in practice. Only future 

work will tell.  

 



4) The manuscript is rather poorly written, and is difficult to follow. E.g. no details are given for the 

ML-KS method that is being used as reference. Equations are presented without explanation of their 

symbols. CI and CCSD(T) methods are mentioned in the methods section, but I found no use of them 

in the manuscript.  

 

In summary, the manuscript is of moderate interest to a small and specialised community, and falls 

far, far short of impact and importance to be published in Nature Comms.  

 

 

Reviewer #2 (Remarks to the Author):  

 

This paper proposes a method for efficiently predicting the DFT total energy from a given external 

potential, based on a machine learning (ML) potential-density map. This method is applied to 1-D 

model potential system and 3-D molecules modeled by artificial Gaussian potentials. Their method 

enables accelerating the geometry optimization and ab initio molecular dynamics significantly, which 

have been performed by so many researchers.  

 

The authors’ idea that the relationship between total energy and external potential is estimated via 

a direct potential-electron density map is very interesting. And it is a surprising result that the 

electron density can be well described by kernel ridge model made from the external potential. In 

addition, this paper is well-written and well-organized.  

 

On the other hand, this method can be regarded as a method for predicting potential energy 

surfaces (PES) or interatomic potentials in the referee’s understanding. Many studies on ML-PES or 

interatomic potentials in molecules and solids have been published so far. (For example, molecules: 

JCP 85, 911 (1986), JCP 126, 184108 (2007), CPL 395, 210 (2004). solids: PRL. 98, 146401 (2007), PRL. 

104, 136403 (2010), PRB 90, 024101 (2014)) Although the quality of this paper is no doubt high, the 

referee thinks that obtained results are too primitive, compared to those previous studies. So the 

referee suggests to include more practical applications to get an interest of a broad readership.  

 

Minor comments and questions are as follows.  

 

Descriptions on how to approximate E[n] and how to perform direct Kohn-Sham mapping are 

lacking, although the former is described in the supplements. The referee recommends to include a 

brief description on them in the main text.  

 

How to use the external potential in the Gaussian kernel? Is the external potential in a grid form 

used, and then is the difference of multi-dimensional vectors for the two external potentials 

considered in the Gaussian kernel?  



Dear	reviewers,	

First,	we	would	like	to	summarize	all	of	the	major	revisions	that	have	been	included	in	the	

new	ms.	Then	we	address	each	reviewer’s	comments	point-by-point.	

	

Energy	map	𝑬𝑴𝑳 𝒏 : 𝒏 → 𝑬	

Our	earlier	work	showed	that	it	is	relatively	easy	to	learn	the	energy	highly	accurately,	once	

the	density	is	known.	We	now	verify	this	also	for	3-D	molecules	by	training	all	energy	maps	

on	the	same	training	points	used	for	the	ML-HK	map.	We	completely	removed	all	energy	

maps	that	were	trained	on	more	training	points.	

	

We	further	updated	all	3-D	figures	to	display	the	combined	error	of	the	ML-HK	map	and	

energy	map.	

	

Density-driven	error	𝜟𝑬𝑫	and	𝜟𝑬𝑫𝑴𝑳	

We	updated	the	method	to	estimate	the	density-driven	error	of	our	ML-HK	map.	We	

previously	used	energy	maps	trained	on	significantly	more	training	points	(as	a	proxy	to	

ground	truth)	to	estimate	the	density-driven	error.	Answering	to	the	reviewers	concerns,	we	

removed	all	these	energy	maps	and	

• use	the	von	Weizsäcker	kinetic	energy	to	compute	the	exact	density-driven	error	

(𝛥𝐸,)	in	1-D	and	

• use	energy	maps	trained	on	the	same	training	points	as	the	ML-HK	map	to	estimate	

the	density-driven	error	(𝛥𝐸,./)	in	3-D.	

	

Experiments	

We	included	experiments	on	bigger	and	chemically	more	complex	molecules:	Benzene,	

Ethane,	and	Malonaldehyde.	

	

Sampling	strategy	

We	introduced	a	method	to	sample	the	configurational	space	in	order	to	reduce	the	amount	

of	DFT	calculations	that	are	necessary	as	training	points	for	machine	learning.	We	use	



molecular	dynamics	simulations	with	classical	force	fields	and	show	that	higher	temperature	

simulations	aid	in	representing	more	distorted	geometries.	

	

ML-KS	map,	external	potential,	and	the	Gaussian	kernel	

We	clarified	the	ML-KS	model	and	how	the	external	potential	𝑣(𝑟)	is	applied	in	the	Gaussian	

kernel.	

	

Density	predictions	

We	added	results	comparing	the	errors	made	by	our	ML-HK	map	to	differences	between	

LDA	and	PBE	densities.	We	also	extended	the	discussion	section	to	emphasize	that	the	

methodology	could	equally	be	applied	to	training	data	generated	by	more	accurate	

quantum	chemical	codes.	

	

	

(Point-by-point	comments	within.)	

	

Reviewer	#1	(Remarks	to	the	Author):	

	

The	manuscript	explores	a	way	to	use	machine	learning	(ML)	to	aid	density	functional	theory	

(DFT)	calculations.	DFT	is	based	on	the	theorem	that	the	ground	state	energy	of	an	

interacting	system	of	electrons	in	an	external	potential	is	a	functional	of	just	the	total	

electron	density,	and	the	density	corresponding	to	the	ground	state	is	in	one	to	one	

correspondence	with	the	external	potential.	However,	important	parts	of	this	functional	are	

not	known	(specifically,	the	correlation	energy,	kinetic	energy).	Nevertheless,	good	

approximations	for	this	functional	have	seen	DFT	gain	widespread	use.	Given	such	an	

approximate	functional,	the	energy	is	minimised	over	the	allowable	densities	(or	sometimes	

corresponding	one-electron	wavefunctions),	a	procedure	that	is	still	quite	costly.	A	

longstanding	goal	of	some	of	the	authors	has	been	to	use	machine	learning	to	bypass	some	

of	these	calculations.	In	earlier	work,	they	attempted	to	approximate	the	kinetic	energy	

expression	based	on	wave	

functions	by	one	that	is	based	on	densities	using	a	machine	learning	framework.	In	the	

present	manuscript,	they	use	machine	learning	to	approximate	the	ground	state	density	as	a	



functional	of	the	external	potential.	If	successful,	it	would	represent	a	key	step	in	a	larger	

programme	of	speeding	up	electronic	structure	calculations.		

	

In	my	view,	the	manuscript	represents	a	modest	trialling	of	its	central	idea.	Its	results	are	

mildly	encouraging,	and	will	no	doubt	prompt	further	research	by	its	authors	to	expand	on	

the	present	results	and	possibly	interest	some	others	in	the	small	community	of	researchers	

who	are	playing	with	machine	learning	ideas	in	the	context	of	materials	simulation.		

	

First	of	all,	we	would	like	to	thank	for	the	excellent	feedback	that	we	received	for	our	ms.	It	

allowed	us	to	improve	the	presentation	of	our	material	on	one	side	but	perhaps	even	more	

importantly,	we	have	added	novel	results	that	substantially	improve	and	extend	the	ms,	

hopefully	convincing	the	reviewer	of	its	broader	applicability	that	we	clearly	see	of	general	

interest.		

	

Some	specific	criticisms,	in	no	particular	order:	

	

1)	Even	if	accurate	densities	were	obtainable	from	external	potentials	in	general	using	this	

method,	there	remains	the	problem	of	evaluating	the	energy	given	a	density.	The	authors	

subtly	acknowledge	this	on	line	246,	and	mention	in	passing	that	they	trained	an	energy	

model	on	densities	to	be	able	to	benchmark	their	potential->density	map.	Scant	details	are	

given	about	this	critical	piece.		

	

Our	earlier	work	showed	that	it	is	relatively	easy	to	learn	the	energy	highly	accurately,	once	

the	density	is	known.			This	is	also	verified	by	table	1.		It	requires	less	data	than	for	learning	

the	density.		This	is	why	we	did	not	further	emphasize	this	aspect	in	the	current	manuscript,	

however	we	have	now	added	a	paragraph	clarifying	this	point	raised	and	hope	that	we	

could	make	this	substantially	clearer.	

	

In	the	revised	ms,	for	the	toy	model,	we	now	show	that,	when	the	same	number	of	data	

points	is	used	for	both	the	energy	and	density	maps,	the	functional-	and	density-driven	

errors	are	comparable,	so	that	one	does	not	need	a	very	highly-trained	energy	functional	for	

the	energy	evaluation.			In	the	revised	ms,	for	all	molecular	calculations,	we	now	use	the	



same	number	of	training	points	for	the	energy	and	density	evaluations,	and	get	accuracies	

very	similar	to	(but	slightly	worse	than)	previously.		So	this	problem	has	been	circumvented.		

We	also	note	that	we	discovered	our	previous	evaluation	of	the	density-driven	error	for	the	

toy	model	was	a	substantial	overestimate,	so	that	in	fact	our	density-driven	errors	appear	to	

be	significantly	smaller.	

	

2)	The	methods	are	tried	on	very	small	systems	and	very	small	training	and	test	sets.	

Experience	has	shown	that	ML	models	are	so	powerful	and	flexible,	that	it	is	very	easy	to	

show	good	fits	on	very	small	datasets,	that	do	not	explore	a	wide	range	of	input	data.	The	

presented	results	would	not	convince	any	practitioners	that	the	method	WILL	work	on	a	

larger	scale.	It	MIGHT	work,	and	thus	the	manuscript	represents	the	first	successful	foray	

into	using	this	approach,	but	much	more	is	required	to	call	it	a	useful	method.		

	

We	entirely	agree	that	the	current	implementation	is	limited	to	small	molecules,	as	is	stated	

in	the	manuscript.		But	our	new	material	on	MD	simulations	shows	that,	even	with	this	

limitation,	useful	science	can	be	done,	just	not	yet	on	bulk	materials.		So	the	reviewer	may	

forgive	us	that	we	strongly	disagree	with	the	statement	that	the	method	is	not	useful	in	its	

current	form.	

	

3)	The	method	as	presented	has	no	transferability	from	one	system	to	another.	The	map	

trained	for	a	water	molecule	will	only	work	for	an	isolated	water	molecule.	This	means	that	

the	elusive	goal	of	training	the	potential->density	map	(or	the	density->energy	map)	is	no	

closer,	for	each	new	system	data	will	need	to	be	generated.	How	much	data?	how	does	the	

required	data	scale	with	system	size?	No-one	knows.	Answers	to	these	questions	will	make	

or	break	the	method	in	practice.	Only	future	work	will	tell.	

	

While	it	is	true	that	the	ML	functional	does	not	transfer	to	the	full	chemical	compound	

space,	this	is	not	a	limitation	of	this	method	in	the	way	we	envision	it	being	used.			We	

imagine	that,	for	each	new	system,	one	trains	a	new	map,	and	then	applies	it	to	the	system	

under	study,	and	even	discards	it	at	the	end.		The	revised	manuscript	now	illustrates	this	

process	for	several	small	molecules.		Of	course,	training	costs	are	always	an	important	

determinant	of	whether	or	not	the	method	will	be	useful	for	a	particular	situation.	Generally	



speaking,	ML	training	costs	are	rather	negligible.	Clearly	we	have	so	far	not	entered	the	

realm	of	very	large	systems,	so	we	cannot	provide	quantitative	results	whether	training	

costs	may	eventually	become	an	issue.	Note	however,	that	the	novel	procedure	introduced	

which	uses	classical	trajectories	and	informed	sampling	to	cover	the	configurational	space	in	

an	intelligent	manner	already	shows	a	first	practical	path	for	larger	systems,	otherwise	the	

novel	studies	including	Benzene,	Ethane,	as	well	as	more	complex/chemically	interesting	

systems	Malonaldehyde	could	not	have	been	done.			

	

4)	The	manuscript	is	rather	poorly	written,	and	is	difficult	to	follow.	E.g.	no	details	are	given	

for	the	ML-KS	method	that	is	being	used	as	reference.	Equations	are	presented	without	

explanation	of	their	symbols.	CI	and	CCSD(T)	methods	are	mentioned	in	the	methods	section,	

but	I	found	no	use	of	them	in	the	manuscript.		

	

It	is	true	that	we	do	not	give	details	for	the	ML-KS	method	in	the	main	text,	because	that	

appears	in	earlier	publications,	and	space	is	limited.	All	symbols	are	defined	in	this	or	

previous	manuscripts,	or	are	in	common	use.		We	have	revised	and	extended	the	

manuscript	substantially.		We	added	Eq.	6	to	clarify	that	the	ML-KS	map	is	a	kernel	model	

and	significantly	extended	the	section	on	motivation	and	explanation	of	Kernel	Ridge	

Regression	in	the	supplement.		The	CI	and	CCSD(T)	calculations	were	only	used	to	make	the	

reference	curves	for	H2	and	the	benchmark	values	for	H2O,	as	is	now	made	clear.	

	

In	summary,	the	manuscript	is	of	moderate	interest	to	a	small	and	specialised	community,	

and	falls	far,	far	short	of	impact	and	importance	to	be	published	in	Nature	Comms.	

We	strongly	hope	that	our	improved	presentation	and	the	new	material	on	MD	simulations	

added	will	convince	the	skeptical	reviewer	that	useful	science	(even	more	interesting	

chemistry,	see	Malonaldehyde)	can	be	indeed	be	done,	and	that	there	is	a	clearer	path	to	

broader	applications.		

	

Reviewer	#2	(Remarks	to	the	Author):	

	

This	paper	proposes	a	method	for	efficiently	predicting	the	DFT	total	energy	from	a	given	

external	potential,	based	on	a	machine	learning	(ML)	potential-density	map.	This	method	is	



applied	to	1-D	model	potential	system	and	3-D	molecules	modeled	by	artificial	Gaussian	

potentials.	Their	method	enables	accelerating	the	geometry	optimization	and	ab	initio	

molecular	dynamics	significantly,	which	have	been	performed	by	so	many	researchers.		

	

The	authors’	idea	that	the	relationship	between	total	energy	and	external	potential	is	

estimated	via	a	direct	potential-electron	density	map	is	very	interesting.	And	it	is	a	surprising	

result	that	the	electron	density	can	be	well	described	by	kernel	ridge	model	made	from	the	

external	potential.	In	addition,	this	paper	is	well-written	and	well-organized.		

	

First	of	all,	we	would	like	to	thank	for	the	excellent	feedback	that	we	received	for	our	ms.	It	

allowed	us	to	improve	the	presentation	of	our	material	on	one	side	but	perhaps	even	more	

importantly,	we	have	added	novel	results	that	substantially	improve	and	extend	the	ms.		

	

On	the	other	hand,	this	method	can	be	regarded	as	a	method	for	predicting	potential	energy	

surfaces	(PES)	or	interatomic	potentials	in	the	referee’s	understanding.	Many	studies	on	ML-

PES	or	interatomic	potentials	in	molecules	and	solids	have	been	published	so	far.	(For	

example,	molecules:	JCP	85,	911	(1986),	JCP	126,	184108	(2007),	CPL	395,	210	(2004).	solids:	

PRL.	98,	146401	(2007),	PRL.	104,	136403	(2010),	PRB	90,	024101	(2014))	Although	the	

quality	of	this	paper	is	no	doubt	high,	the	referee	thinks	that	obtained	results	are	too	

primitive,	compared	to	those	previous	studies.	So	the	referee	suggests	to	include	more	

practical	applications	to	get	an	interest	of	a	broad	readership.	

	

We	include	a	selection	of	the	references	which	makes	the	ms	have	a	broader	appeal.	In	

addition,	answering	to	the	concern	of	practical	applicability,	we	added	substantial	novel	

material	on	larger	and	more	complex	systems,	i.e.	Benzene,	Ethane,	Malonaldehyde.		

We	would	however	also	like	to	clarify	that	what	we	propose	should	not	be	conceived	

primarily	as	a	method	for	finding	energies	and	forces.		We	see	it	instead	as	a	method	aimed	

at	providing	a	density	functional	approximation	that	can	be	applied	to	large	systems	with	

the	accuracy	of	present-day	DFT	calculations	(and	more	accurate	methods).			While	this	step	

has	not	yet	been	achieved,	the	current	work	shows	necessary	(and	we	modestly	think	

substantial)	progress	in	that	direction,	and	overcomes	difficulties	of	previous	methods	in	

finding	the	functional	derivative.			Once	the	method	is	generalized	to	larger	systems,	such	as	



bulk	water,	via	the	density,	then	it	can	be	applied	to	as	diverse	array	of	systems	as	are	

tackled	with	present	KS-DFT	calculations,	but	at	a	fraction	of	the	cost,	allowing	much	larger	

time	scales	to	be	explored,	whereas	most	force	field	methods	are	not	general	and	need	to	

be	rebuilt	for	different	elements	or	phases.		

	

We	also	now	emphasize	that	our	methodology	could	equally	be	applied	to	training	data	

generated	by	quantum	chemical	methods,	thereby	generating	density	functionals	of	much	

higher	accuracy	than	standard	DFT	approximations.		We	are	already	testing	this	idea	in	

further	work.	

	

Minor	comments	and	questions	are	as	follows.	

	

Descriptions	on	how	to	approximate	E[n]	and	how	to	perform	direct	Kohn-Sham	mapping	

are	lacking,	although	the	former	is	described	in	the	supplements.	The	referee	recommends	to	

include	a	brief	description	on	them	in	the	main	text.	

	

We	extended	the	main	text	of	our	ms	by	adding	Eq.	6	and	a	paragraph	that	explains	this	in	

more	detail.	

	

How	to	use	the	external	potential	in	the	Gaussian	kernel?	Is	the	external	potential	in	a	grid	

form	used,	and	then	is	the	difference	of	multi-dimensional	vectors	for	the	two	external	

potentials	considered	in	the	Gaussian	kernel?	

	

We	indeed	use	the	external	potential	exactly	as	the	reviewer	suspected,	but	have,	in	the	

interest	of	removing	any	ambiguity,	clarified	this	section	in	the	manuscript.	



Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have significantly extended the numerical experiments in their manuscript, and this is 

very commendable. The system sizes involved now offer a suggestion that their method is indeed 

useful for realistic systems of interest, and might be able to significantly speed up ab initio molecular 

dynamics simulations. In the authors' conception, the strategy would be to run molecular dynamics 

with a cheap model (or a short trajectory with DFT ), collect density and energy data, fit two models 

(potential->density and density->energy), and then use the ML model to run a much longer 

molecular dynamics trajectory which has ab initio quality but much much cheaper.  

 

All the required numerical tools have been assembled and demonstrated in the manuscript, so my 

question is: why have the authors actually not done this? What happens when the model of 

malonaldehyde is used to _generate_ the trajectory? Is it stable? is the ML model accurate when 

measured on samples generated by itself? (Fig 3 only shows their model is accurate when evaluated 

on samples from a _classical_ model trajectory.) If the MD trajectory based on the ML model is good 

(i.e. that the ML predictions are good on samples from this trajectory), I'm satisfied that the 

manuscript represents a significant and practical advance. If not, then more work is needed to 

identify what the problem is.  

 

It is conceivable that the gradients of the ML model with respect to atomic positions have not yet 

been implemented in code, and which are necessary to carry out MD. This should not pose a 

practical problem, since a simple finite difference approximation of the gradient can be effectively 

used for the purpose of this test, since the number of atoms is small, and the model is fast.  

 

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors have satisfactorily addressed my major comments as well as minor ones. They show 

more practical examples in the revised manuscript. Therefore, I think the manuscript is suitable for 

publication on Nature Communications.  



Dear reviewers, 

Thank you for reviewing our revised manuscript “By-passing the Kohn-Sham equations with 

machine learning”. Please refer to point-by-point comments within. 

 

Best regards, 

The Authors 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have significantly extended the numerical experiments in their manuscript, and 

this is very commendable. The system sizes involved now offer a suggestion that their 

method is indeed useful for realistic systems of interest, and might be able to significantly 

speed up ab initio molecular dynamics simulations. In the authors' conception, the strategy 

would be to run molecular dynamics with a cheap model (or a short trajectory with DFT ), 

collect density and energy data, fit two models (potential->density and density->energy), 

and then use the ML model to run a much longer molecular dynamics trajectory which has 

ab initio quality but much much cheaper.   

 

All the required numerical tools have been assembled and demonstrated in the manuscript, 

so my question is: why have the authors actually not done this? What happens when the 

model of malonaldehyde is used to _generate_ the trajectory? Is it stable? is the ML model 

accurate when measured on samples generated by itself? (Fig 3 only shows their model is 

accurate when evaluated on samples from a _classical_ model trajectory.) If the MD 

trajectory based on the ML model is good (i.e. that the ML predictions are good on samples 

from this trajectory), I'm satisfied that the manuscript represents a significant and practical 

advance. If not, then more work is needed to identify what the problem is.  

 

First, we would like to point out that the revised manuscript already included an evaluation 

of the ML-HK map performance on an ab initio trajectory of malonaldehyde in Fig. 3c. To 

clarify the presentation, we separated the trajectories generated via classical force fields 

from the trajectories generated via ab initio molecular dynamics and the previous Fig. 3c is 

now presented as Fig. 5a. 



In addition, we followed the reviewer’s suggestion and generated, as a proof of concept, a 

molecular dynamics trajectory using our ML-HK map (Fig. 5b). The trajectory is stable and 

accurate when measured on samples generated by itself, but typically underestimates the 

energy for out-of-plane molecular fluctuations at the extremes of the classical training set. 

Revised and/or adaptive sampling procedures could further improve the prediction results, 

but since the sampling procedure itself is not the focus of our current manuscript, we 

believe this aspect merits an independent treatment in future work. 

 

It is conceivable that the gradients of the ML model with respect to atomic positions have 

not yet been implemented in code, and which are necessary to carry out MD. This should not 

pose a practical problem, since a simple finite difference approximation of the gradient can 

be effectively used for the purpose of this test, since the number of atoms is small, and the 

model is fast.  

 

The gradients have been implemented as suggested, via central finite differences (see 

manuscript for details). 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have satisfactorily addressed my major comments as well as minor ones. They 

show more practical examples in the revised manuscript. Therefore, I think the manuscript is 

suitable for publication on Nature Communications. 

 

The authors are pleased to have addressed all concerns and thank the reviewer for the 

helpful comments. 



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have done significant extra work to address my comment, I am happy for the 

manuscript to be published. 



Dear reviewers, 

Thank you for reviewing our manuscript “By-passing the Kohn-Sham equations with 

machine learning”. 

Best regards, 

The Authors 

Reviewer #1 (Remarks to the Author): 

The authors have done significant extra work to address my comment, I am happy for the 
manuscript to be published. 

We thank the reviewer for his helpful comments that sparked significant improvements to 

our manuscript. 
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