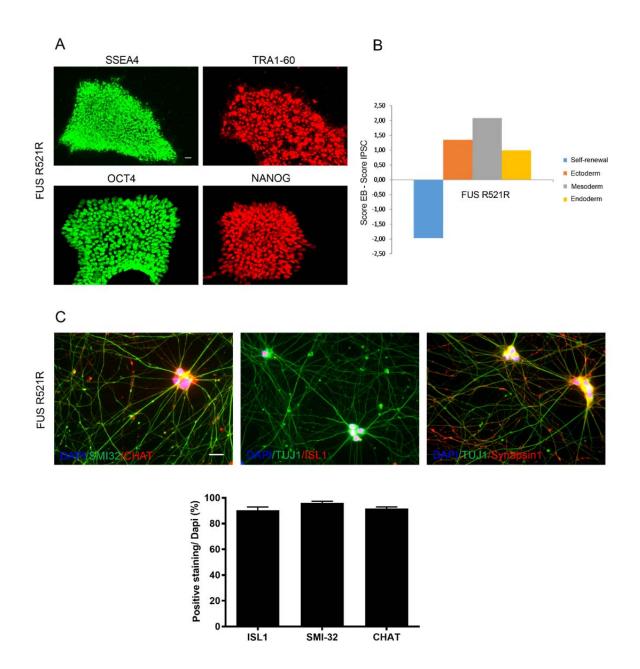

#### **Description of Supplementary Files**

File Name: Supplementary Information

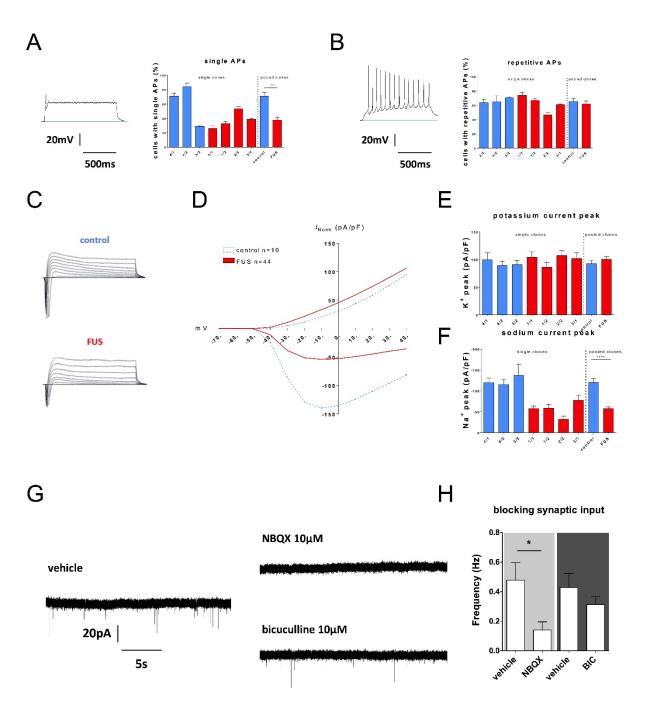

Description: Supplementary figures, supplementary tables

File Name: Peer Review File



Supplementary Figure 1: Sendai virus detection in iPSCs

qPCR showing mRNA expression levels of Sendai virus in ALS iPSCs (different iPSC lines marked with numbers as shown in Table S1), hESCs (H9 embryonic stem cell line; negative control), fibroblasts 5 days after Sendai virus transfection (P1, P2; positive control of Sendai virus transfection from different cell culture dishes).



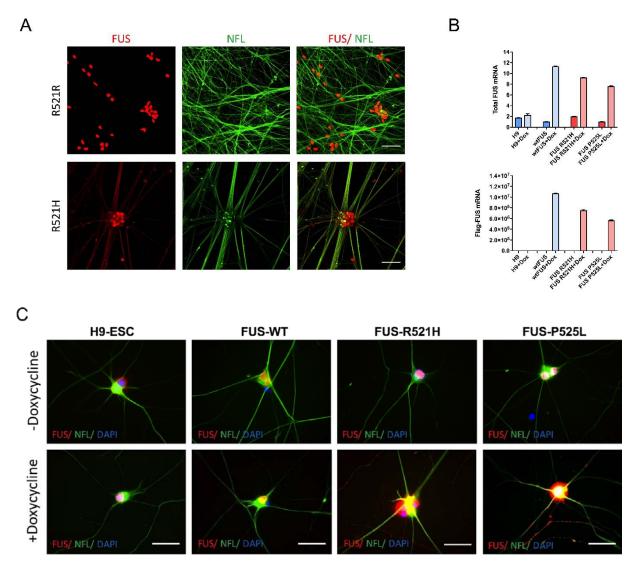

### Supplementary Figure 2: iPSC pluripotency and MN differentiation capability of the isogenic control line

(A) Immunocytochemical staining of the isogenic control iPSCs (R521R) for the pluripotency markers: SSEA4, Tra1-60, Oct-4 and Nanog.

(B) Embryonic body formation experiment showing the presence of the three germ layer markers using qPCR.

(C) Staining with different MN markers (Isl1, Chat, SMI-32, Synapsin1) at day 38 of cells differentiated from the isogenic control iPSC line and quantification of ISL1-positive cells, SMI-32-positive cells and CHAT-positive cells expressed relative to the total number of DAPI labeled cells. N=10 images per line. Data are represented as mean  $\pm$  SEM. Scale bar = 20 $\mu$ m.



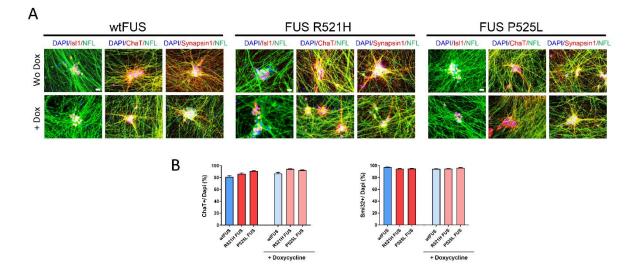

Supplementary Figure 3: Electrophysiological recordings of iPSC-derived MNs

(A-B) Representative current clamp recordings during ramp depolarization and quantification of single (A, n=110 and n=67 for control and patients, respectively; Mann-Whitney test, \*\*P values is 0.01) or repetitive (B, n=110 and n=67 for control and n=67 for control and patients respectively) action potentials (APs) in mutant FUS expressing MNs and controls indicating that both are similar.

(C-F) Voltage dependent  $Na^+$  and  $K^+$  currents elicited upon stepwise depolarization in increments of 10 mV from a holding potential of -70 mV to 40 mV (C, D, n=10 and n=44 for control and patients, respectively). The normalized maximal  $Na^+$  amplitudes (F, n=10 and n=44 for control and patients, respectively; Mann-Whitney test, \*\*\*\*P values is 0.0001) are

significantly lower in mutant FUS patients-derived motor neurons, but  $K^+$  amplitudes (E, n=110 and n=67 for control and patients, respectively) showed no change.

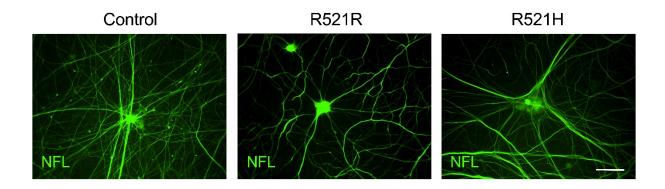
(G-H) The recorded post synaptic currents (PSCs) are blocked by the glutamatergic AMPA receptor antagonist NBQX (10 $\mu$ M), but not with the GABA<sub>A</sub> receptor antagonist bicuculline (10  $\mu$ M). n=7 for vehicle (left) and NBQX; n=5 for vehicle(right) and BIC. Mann-Whitney test,\*P values is 0.05.




#### Supplementary Figure 4: Expression of FUS in iPSCs and hESC

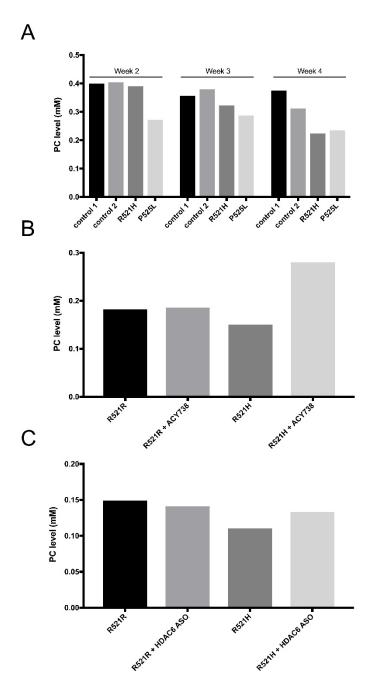
(A) Immunostainning of FUS (red) and Neurofilament light chain (green) in the R521H mutant line (2/2) and in the isogenic control (R521R). Scale bar =  $50 \mu m$ .

(B) Quantification using qPCR of the total amount of FUS or knocked-in FUS (with  $3 \times$  flag) mRNA in H9-hESC and in the different FUS overexpressing hESC lines before and after adding doxycycline (1µg/ml) from day 17 until day 38 of MN differentiation.


(C) Immunostaining of FUS and Neurofilament light chain in inducible hESC lines. Scale bar = 20  $\mu m.$ 



### Supplementary Figure 5: No effect of FUS expression on differentiation of hESCs into MNs

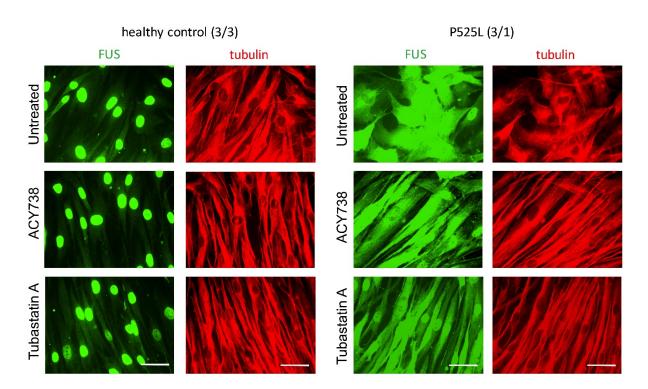

(A) Different hESCs containing inducible constructs expressing wild type (wt) FUS or two different mutant FUS constructs (R521H and P525L) integrated into the *AAVS1* locus were differentiated into MNs and were stained for choline acetyltransferase (ChaT), Isl1, NFL and Synapsin1in combination with a DAPI staining. In the '+Dox' condition, doxycycline  $(1\mu g/ml)$  was added from day 17 until day 38.

(B) Quantification of relative number of cells staining positive for the MN markers ChaT (left) and SMI32 (right) relative to the total number of DAPI-positive cells in the absence and presence of doxycycline. No effect of FUS expression was observed. N=10 images per condition, scale bar=  $20 \mu m$ .



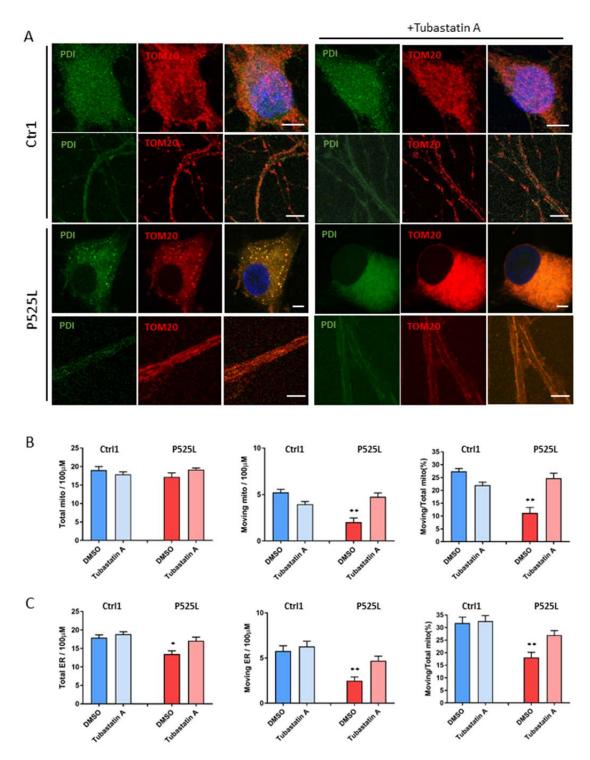
## Supplementary Figure 6: Neurofilament light chain (NFL) staining of MNs differentiated from iPSCs.

Immunostaining of NFL in MNs derived from iPSCs of a healthy control (3/2), an isogenic control (R521R) and a patient (2/2) line. MNs were stained at the 4<sup>th</sup> week of differentiation. Scale bar =  $20 \ \mu m$ .




## Supplementary Figure 7: ELISA detection of phosphatidylcholine levels as a function of differentiation

(A) Phosphatidylcholine levels in culture media of MNs show a decreased trend in patientderived cells. Medium samples were taken for ELISA assays after two days on the culture. Control lines (control 1: 3/2; control 2: 3/3) are shown in blue and patient lines (R521H: 2/2; P525L: 3/1-2) in red.


(B) Phosphatidylcholine level in culture medium of MNs derived from patient iPSCs and isogenic controls with or without an overnight treatment with ACY-738 ( $1\mu$ M).

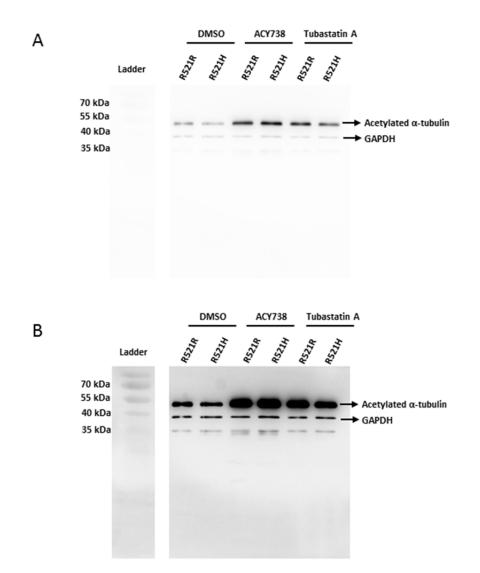
(C) Phosphatidylcholine level in cultured medium of patient and isogenic control MNs with or without HDAC6 knock down using an ASO.



Supplementary Figure 8: No effect of HDAC6 inhibition on FUS localization in human fibroblasts

Immunostaining for FUS in fibroblasts (3/1 patient carrying the P525L mutation and 3/3 is a healthy control) with or without a treatment with ACY-738 (1 $\mu$ M) or Tubastatin A (1 $\mu$ M). Scale bar= 40  $\mu$ m.




Supplementary Figure 9: Restoration of ER-mitochondrial overlay and axonal transport by Tubastatin A treatment

(A) Immunostaining for ER (using mouse PDI antibody) and mitochondria (using rabbit TOM-20 antibody) of MNs derived from iPSC from patients carrying the P525L mutation and healthy controls with and without an overnight treatment with Tubastatin A (1  $\mu$ M). The separate views show co-localized pixels in cell body and neurites. Scale bar = 5  $\mu$ m.

(B) Quantification of stationary mitochondria, moving mitochondria and ratio between moving to total mitochondria normalized to a neurite length of 100  $\mu$ m during 200 s from

MNs derived from patient and healthy control iPSC lines at the 4<sup>th</sup> week after plating with and without a Tubastatin A treatment. (n=10, n=14, n=11, n=13 for Ctr1+DMSO, Ctr1+Tubastatin A, P525L+DMSO and P525L+Tubastatin A respectively. Data are plotted as mean  $\pm$  SEM; One-way ANOVA with post-hoc Tukey's test; \*\*P values of 0.01 for t-test).

(C) Quantification of stationary ER vesicles, moving ER vesicles and ratio between moving to total vesicles normalized to a neurite length of 100  $\mu$ m during 200 s from MNs derived from patient and healthy control iPSC lines at the 4<sup>th</sup> week after plating before and after Tubastatin A treatment. (n=10, n=16, n=12, n=14 for Ctr1+DMSO, Ctr1+Tubastatin A, P525L+DMSO and P525L+Tubastatin A respectively. Data are plotted as mean ± SEM; One-way ANOVA with post-hoc Tukey's test; \*, \*\*P values of 0.05 and 0.01 for t-test, respectively).



#### Supplementary Figure 10: Effect of HDAC6 inhibitors on acetylated α-tubulin

(A) Full version of the Western blot shown in Fig. 6D with the exposure used for acetylated  $\alpha$ -tubulin

(B) Higher exposure of the same blot used for GAPDH in Fig. 6D.

| Code | Diagnosis        | Gender | Mutant | Age at biopsy | iPSC lines |
|------|------------------|--------|--------|---------------|------------|
| 1/1  | FALS             | F      | R521H  | 33            | 1          |
| 1/2  | FALS             | М      | R521H  | presymptomati | 1          |
|      |                  |        |        | с             |            |
| 2/2  | FALS             | F      | R521H  | 71            | 1          |
| 3/1  | FALS             | М      | P525L  | 17            | 2          |
| 3/2  | Healthy control1 | F      | No     |               | 1          |
| 3/3  | Healthy control2 | М      | No     |               | 1          |
| 4/1  | Healthy control3 | М      | No     |               | 1          |
| 4/2  | Healthy control4 | F      | No     |               | 1          |

### Supplementary Table 1: Clinical information of patients and controls

#### Supplementary Table 2: SNP analysis of iPSC

|               | fibroblasts         | iPSC                |
|---------------|---------------------|---------------------|
| SNP label     | 3/2 healthy control | 3/2 healthy control |
|               | allele1/allele2     | allele1/allele2     |
| C1563023_10   | FAM/FAM             | FAM/FAM             |
| C1801627_20   | VIC/VIC             | VIC/VIC             |
| C2728408_10   | FAM/FAM             | FAM/FAM             |
| C1250735_20   | VIC/VIC             | VIC/VIC             |
| C_15935210_10 | VIC/FAM             | VIC/FAM             |
| C7431888_10   | VIC/FAM             | VIC/FAM             |
| C3227711_10   | VIC/VIC             | VIC/VIC             |
| C1902433_10   | VIC/VIC             | VIC/VIC             |
| C30044763_10  | FAM/FAM             | FAM/FAM             |
| C31386842_10  | FAM/FAM             | FAM/FAM             |
| C33211212_10  | VIC/FAM             | VIC/FAM             |
| C26524789_10  | FAM/FAM             | FAM/FAM             |
| C11821218_10  | FAM/FAM             | FAM/FAM             |
| C43852_10     | VIC/VIC             | VIC/VIC             |
| C1670459_10   | FAM/FAM             | FAM/FAM             |
| C8924366_10   | VIC/VIC             | VIC/VIC             |
| C1007630_10   | VIC/VIC             | VIC/VIC             |
| C11522992_10  | FAM/FAM             | FAM/FAM             |
| C7421900_10   | VIC/FAM             | VIC/FAM             |
| C_10076371_10 | VIC/FAM             | VIC/FAM             |
| C26546714_10  | VIC/FAM             | VIC/FAM             |
| C1122315_10   | VIC/VIC             | VIC/VIC             |
| C_27402849_10 | VIC/FAM             | VIC/FAM             |
| C7457509_10   | VIC/FAM             | VIC/FAM             |
| C29619553_10  | VIC/VIC             | VIC/VIC             |
| C_11710129_10 | FAM/FAM             | FAM/FAM             |
| C2953330_10   | VIC/FAM             | VIC/FAM             |
| C1027548_20   | NOAMP               | UND                 |
| C8850710_10   | VIC/VIC             | VIC/VIC             |
| C1083232_10   | NOAMP               | NOAMP               |
| C16205730_10  | VIC/FAM             | VIC/FAM             |
| C8938211_20   | NOAMP               | NOAMP               |

|               | fibroblasts         | iPSC                |  |
|---------------|---------------------|---------------------|--|
| SNP label     | 3/3 healthy control | 3/3 healthy control |  |
|               | allele1/allele2     | allele1/allele2     |  |
| C1563023_10   | VIC/FAM             | VIC/FAM             |  |
| C1801627_20   | VIC/FAM             | VIC/FAM             |  |
| C2728408_10   | VIC/FAM             | VIC/FAM             |  |
| C1250735_20   | FAM/FAM             | FAM/FAM             |  |
| C15935210_10  | VIC/FAM             | VIC/FAM             |  |
| C7431888_10   | VIC/FAM             | VIC/FAM             |  |
| C3227711_10   | VIC/FAM             | VIC/FAM             |  |
| C1902433_10   | VIC/FAM             | VIC/FAM             |  |
| C30044763_10  | FAM/FAM             | FAM/FAM             |  |
| C31386842_10  | FAM/FAM             | FAM/FAM             |  |
| C_33211212_10 | FAM/FAM             | FAM/FAM             |  |
| C26524789_10  | FAM/FAM             | FAM/FAM             |  |
| C_11821218_10 | VIC/VIC             | VIC/VIC             |  |
| C43852_10     | FAM/FAM             | FAM/FAM             |  |
| C1670459_10   | VIC/FAM             | VIC/FAM             |  |
| C8924366_10   | VIC/FAM             | VIC/FAM             |  |
| C1007630_10   | VIC/VIC             | VIC/VIC             |  |
| C11522992_10  | FAM/FAM             | FAM/FAM             |  |
| C7421900_10   | VIC/FAM             | VIC/FAM             |  |
| C_10076371_10 | VIC/VIC             | VIC/VIC             |  |
| C26546714_10  | VIC/VIC             | VIC/VIC             |  |
| C1122315_10   | VIC/FAM             | VIC/FAM             |  |
| C_27402849_10 | VIC/FAM             | VIC/FAM             |  |
| C7457509_10   | VIC/FAM             | VIC/FAM             |  |
| C29619553_10  | VIC/FAM             | VIC/FAM             |  |
| C_11710129_10 | VIC/FAM             | VIC/FAM             |  |
| C2953330_10   | VIC/FAM             | VIC/FAM             |  |
| C1027548_20   | VIC/VIC             | VIC/VIC             |  |
| C8850710_10   | VIC/FAM             | VIC/FAM             |  |
| C1083232_10   | VIC/VIC             | VIC/VIC             |  |
| C16205730_10  | FAM/FAM             | FAM/FAM             |  |
| C8938211_20   | FAM/FAM             | FAM/FAM             |  |

|               | fibroblasts        | iPSC               |  |
|---------------|--------------------|--------------------|--|
| SNP label     | 1/1 patient(R521H) | 1/1 patient(R521H) |  |
|               | allele1/allele2    | allele1/allele2    |  |
| C1563023_10   | VIC/FAM            | VIC/FAM            |  |
| C1801627_20   | VIC/FAM            | VIC/FAM            |  |
| C2728408_10   | VIC/FAM            | VIC/FAM            |  |
| C1250735_20   | FAM/FAM            | FAM/FAM            |  |
| C_15935210_10 | VIC/VIC            | VIC/VIC            |  |
| C7431888_10   | FAM/FAM            | FAM/FAM            |  |
| C3227711_10   | VIC/FAM            | VIC/FAM            |  |
| C1902433_10   | VIC/FAM            | VIC/FAM            |  |
| C30044763_10  | VIC/FAM            | VIC/FAM            |  |
| C31386842_10  | VIC/FAM            | VIC/FAM            |  |
| C_33211212_10 | VIC/FAM            | VIC/FAM            |  |
| C26524789_10  | VIC/FAM            | VIC/FAM            |  |
| C_11821218_10 | VIC/FAM            | VIC/FAM            |  |
| C43852_10     | VIC/FAM            | VIC/FAM            |  |
| C1670459_10   | VIC/FAM            | VIC/FAM            |  |
| C8924366_10   | VIC/FAM            | VIC/FAM            |  |
| C1007630_10   | VIC/FAM            | VIC/FAM            |  |
| C11522992_10  | VIC/FAM            | VIC/FAM            |  |
| C7421900_10   | FAM/FAM            | FAM/FAM            |  |
| C_10076371_10 | VIC/VIC            | VIC/VIC            |  |
| C_26546714_10 | FAM/FAM            | FAM/FAM            |  |
| C1122315_10   | VIC/VIC            | VIC/VIC            |  |
| C_27402849_10 | VIC/FAM            | VIC/FAM            |  |
| C7457509_10   | VIC/FAM            | VIC/FAM            |  |
| C29619553_10  | VIC/VIC            | VIC/VIC            |  |
| C11710129_10  | VIC/VIC            | VIC/VIC            |  |
| C2953330_10   | VIC/FAM            | VIC/VIC            |  |
| C1027548_20   | UND                | UND                |  |
| C8850710_10   | FAM/FAM            | FAM/FAM            |  |
| C1083232_10   | NOAMP              | NOAMP              |  |
| C16205730_10  | VIC/FAM            | VIC/FAM            |  |
| C8938211_20   | NOAMP              | NOAMP              |  |

|               | fibroblasts        | iPSC               |  |
|---------------|--------------------|--------------------|--|
| SNP label     | 2/1 patient(R521H) | 2/1 patient(R521H) |  |
|               | allele1/allele2    | allele1/allele2    |  |
| C1563023_10   | VIC/VIC            | VIC/VIC            |  |
| C1801627_20   | VIC/VIC            | VIC/VIC            |  |
| C2728408_10   | VIC/VIC            | VIC/VIC            |  |
| C1250735_20   | VIC/FAM            | VIC/FAM            |  |
| C_15935210_10 | VIC/VIC            | VIC/VIC            |  |
| C7431888_10   | FAM/FAM            | FAM/FAM            |  |
| C3227711_10   | FAM/FAM            | FAM/FAM            |  |
| C1902433_10   | FAM/FAM            | FAM/FAM            |  |
| C30044763_10  | VIC/FAM            | VIC/FAM            |  |
| C31386842_10  | VIC/FAM            | VIC/FAM            |  |
| C33211212_10  | NOAMP              | VIC/FAM            |  |
| C_26524789_10 | VIC/FAM            | VIC/FAM            |  |
| C_11821218_10 | FAM/FAM            | FAM/FAM            |  |
| C43852_10     | VIC/FAM            | VIC/FAM            |  |
| C1670459_10   | VIC/FAM            | VIC/FAM            |  |
| C8924366_10   | VIC/FAM            | VIC/FAM            |  |
| C1007630_10   | FAM/FAM            | FAM/FAM            |  |
| C_11522992_10 | NOAMP              | VIC/FAM            |  |
| C7421900_10   | VIC/FAM            | VIC/FAM            |  |
| C_10076371_10 | VIC/VIC            | VIC/VIC            |  |
| C26546714_10  | NOAMP              | VIC/FAM            |  |
| C1122315_10   | VIC/VIC            | VIC/VIC            |  |
| C_27402849_10 | VIC/FAM            | VIC/FAM            |  |
| C7457509_10   | VIC/VIC            | VIC/VIC            |  |
| C29619553_10  | VIC/VIC            | VIC/VIC            |  |
| C_11710129_10 | VIC/FAM            | VIC/FAM            |  |
| C2953330_10   | VIC/FAM            | VIC/FAM            |  |
| C1027548_20   | UND                | VIC/VIC            |  |
| C8850710_10   | FAM/FAM            | FAM/FAM            |  |
| C1083232_10   | VIC/VIC            | VIC/VIC            |  |
| C16205730_10  | NOAMP              | VIC/FAM            |  |
| C8938211_20   | FAM/FAM            | FAM/FAM            |  |

| _             | fibroblasts        | iPSC               | isogenic control        |
|---------------|--------------------|--------------------|-------------------------|
| SNP label     | 2/2 patient(R521H) | 2/2 patient(R521H) | isogenic control(R521R) |
|               | allele1/allele2    | allele1/allele2    | allele1/allele2         |
| C1563023_10   | FAM/FAM            | FAM/FAM            | FAM/FAM                 |
| C1801627_20   | VIC/FAM            | VIC/VIC            | VIC/VIC                 |
| C2728408_10   | FAM/FAM            | FAM/FAM            | FAM/FAM                 |
| C1250735_20   | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C15935210_10  | FAM/FAM            | FAM/FAM            | FAM/FAM                 |
| C7431888_10   | FAM/FAM            | FAM/FAM            | FAM/FAM                 |
| C3227711_10   | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C1902433_10   | FAM/FAM            | FAM/FAM            | FAM/FAM                 |
| C30044763_10  | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C31386842_10  | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C_33211212_10 | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C_26524789_10 | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C_11821218_10 | VIC/VIC            | VIC/VIC            | VIC/VIC                 |
| C43852_10     | VIC/VIC            | VIC/VIC            | VIC/VIC                 |
| C1670459_10   | FAM/FAM            | FAM/FAM            | FAM/FAM                 |
| C8924366_10   | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C1007630_10   | VIC/VIC            | VIC/VIC            | VIC/VIC                 |
| C_11522992_10 | VIC/FAM            | VIC/FAM            | NOAMP                   |
| C7421900_10   | VIC/VIC            | VIC/VIC            | VIC/VIC                 |
| C_10076371_10 | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C26546714_10  | FAM/FAM            | FAM/FAM            | FAM/FAM                 |
| C1122315_10   | VIC/VIC            | VIC/VIC            | VIC/VIC                 |
| C_27402849_10 | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C7457509_10   | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C29619553_10  | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C_11710129_10 | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C2953330_10   | FAM/FAM            | FAM/FAM            | FAM/FAM                 |
| C1027548_20   | VIC/VIC            | VIC/FAM            | VIC/FAM                 |
| C8850710_10   | VIC/FAM            | VIC/FAM            | VIC/FAM                 |
| C1083232_10   | VIC/VIC            | VIC/VIC            | VIC/VIC                 |
| C16205730_10  | FAM/FAM            | FAM/FAM            | FAM/FAM                 |
| C8938211_20   | FAM/FAM            | FAM/FAM            | FAM/FAM                 |

| _             | fibroblasts        | iPSC               |
|---------------|--------------------|--------------------|
| SNP label     | 3/1 patient(P525L) | 3/1 patient(P525L) |
|               | allele1/allele2    | allele1/allele2    |
| C1563023_10   | VIC/FAM            | VIC/FAM            |
| C1801627_20   | VIC/FAM            | VIC/FAM            |
| C2728408_10   | FAM/FAM            | FAM/FAM            |
| C1250735_20   | VIC/FAM            | VIC/FAM            |
| C_15935210_10 | VIC/FAM            | VIC/FAM            |
| C7431888_10   | VIC/VIC            | VIC/VIC            |
| C3227711_10   | VIC/VIC            | VIC/VIC            |
| C1902433_10   | VIC/FAM            | VIC/FAM            |
| C30044763_10  | FAM/FAM            | FAM/FAM            |
| C31386842_10  | FAM/FAM            | FAM/FAM            |
| C33211212_10  | FAM/FAM            | FAM/FAM            |
| C_26524789_10 | FAM/FAM            | FAM/FAM            |
| C_11821218_10 | VIC/FAM            | VIC/FAM            |
| C43852_10     | VIC/FAM            | VIC/FAM            |
| C1670459_10   | FAM/FAM            | FAM/FAM            |
| C8924366_10   | VIC/VIC            | VIC/VIC            |
| C1007630_10   | VIC/VIC            | VIC/VIC            |
| C_11522992_10 | FAM/FAM            | FAM/FAM            |
| C7421900_10   | VIC/FAM            | VIC/FAM            |
| C_10076371_10 | VIC/VIC            | VIC/VIC            |
| C26546714_10  | VIC/FAM            | VIC/FAM            |
| C1122315_10   | VIC/VIC            | VIC/VIC            |
| C_27402849_10 | VIC/FAM            | VIC/FAM            |
| C7457509_10   | VIC/FAM            | VIC/FAM            |
| C29619553_10  | VIC/FAM            | VIC/FAM            |
| C_11710129_10 | VIC/FAM            | VIC/FAM            |
| C2953330_10   | VIC/FAM            | VIC/FAM            |
| C1027548_20   | VIC/FAM            | VIC/FAM            |
| C8850710_10   | VIC/FAM            | VIC/FAM            |
| C1083232_10   | VIC/VIC            | VIC/VIC            |
| C16205730_10  | FAM/FAM            | FAM/FAM            |
| C8938211_20   | FAM/FAM            | FAM/FAM            |

| Name                             | Forward (Fwd) Primer Sequence                   | Reverse (Rev) Primer Sequence                 |
|----------------------------------|-------------------------------------------------|-----------------------------------------------|
| Sendai                           | 5'TGCCCCAAGCAGACACCACCTG<br>GCA 3'              |                                               |
| Oct4                             | 5' GATGGCGTACTGTGGGCCC 3'                       | 5' TGGGACTCCTCCGGGTTTTG 3'                    |
| Nanog                            | 5' CAGCCCCGATTCTTCCAGTCCC<br>3'                 | 5'<br>CGGAAGATTCCCAGTCGGGTTCAC<br>C 3'        |
| Sox2                             | 5'<br>GGGAAATGGGAGGGGTGCAAAAG<br>AGG 3'         | 5'<br>TTGCGTGAGTGTGGATGGGATTGG<br>TG 3'       |
| Rex1                             | 5'<br>CAGATCCTAAACAGCTCGCAGAAT<br>3'            | 5'<br>GCGTACGCAAATTAAAGTCCAGA<br>3'           |
| GAPDH                            | 5' ACCAGGAAATGAGCTTGACAAA<br>3'                 | 5' TCAAGAAGGTGGTGAAGCAGG<br>3'                |
| Genomic <i>FUS</i><br>sequencing | 5' CATTTTGAGGGGCTAGGTGGA 3'                     | 5' AGTGAAAAGGGGGAAGAGGA 3                     |
| FUS cDNA                         | 5'<br>AGTGGTGGCTATGAACCCAGAGGT<br>3'            | 5'<br>AGTCATGACGTGATCCTTGGTCCC<br>3'          |
| 3xFlag-FUS                       | 5'<br>TGATTACAAGGATGACGATGACG<br>3'             | 5' TCCGTGGACTGGCTATAACC 3'                    |
| FUS ORF<br>Forward_AgeI          | 5'<br>ACCGACCGGTGGATGGCCTCAAAC<br>GATTATACCC 3' |                                               |
| Wt<br>FUS_Reverse_Mlu            |                                                 | 5'<br>GCGTACGCGTTTAATACGGCCTCT<br>CCCTGCGA 3' |
| R521H<br>FUS_Reverse_Mlu         |                                                 | 5'<br>GCGTACGCGTTTAATACGGCCTCT<br>CCCTGTGA 3' |
| P525L<br>FUS_Reverse_Mlu         |                                                 | 5'<br>GCGTACGCGTTTAATACAGCCTCT<br>CCCTGCGA 3' |
| FUS Colony PCR                   | 5' TGGCTATGGACAGCAGGAC 3'                       | 5' GGGTTCCTTCCGGTATTGT 3'                     |
| Plasmid<br>Sequencing1<br>(Fwd)  | 5' AGGATGGGGGCTTTTCTGTC 3'                      |                                               |
| Plasmid<br>Sequencing2<br>(Fwd)  | 5' TTTGATGACCCACCTTCAGC 3'                      |                                               |
| Plasmid<br>Sequencing3<br>(Rev)  |                                                 | 5' GCTGAAGGTGGGTCATCAAA 3'                    |
| Plasmid<br>Sequencing4<br>(Rev)  |                                                 | 5' GTCCTGCTGTCCATAGCCA 3'                     |

# Supplementary Table 3: Primers for qPCR, Semi-quantify PCR, sequencing, cloning related to Gene editing of hESCs by RMCE

| Antibody             | Isotype    | Dilution | Source        |
|----------------------|------------|----------|---------------|
| SSEA4                | Mouse IgG  | 1/200    | Santa Cruz    |
| Tra1-60              | Mouse IgG  | 1/1000   | MIllipore     |
| Oct4                 | Rabbit IgG | 1/400    | Santa Cruz    |
| Nanog                | Goat IgG   | 1/500    | R&D           |
| Hb9                  | Mouse IgG  | 1/100    | DSHB          |
| Smi32                | Rabbit IgG | 1/500    | Abcam         |
| Isl1                 | Rabbit IgG | 1/200    | MIllipore     |
| Tuj1                 | Mouse IgG  | 1/500    | Abcam         |
| ChaT                 | Rabbit IgG | 1/200    | MIllipore     |
| Synapsin1            | Rabbit IgG | 1/1000   | MIllipore     |
| FUS                  | Rabbit IgG | 1/50     | Proteintech   |
| NFL                  | Goat IgG   | 1/500    | Santa Cruz    |
| Tom20                | Rabbit IgG | 1/500    | Santa Cruz    |
| PDI                  | Goat IgG   | 1/50     | Santa Cruz    |
| Acetylated α-Tubulin | Mouse IgG  | 1/5000   | Sigma-Aldrich |
| α-Tubulin            | Mouse IgG  | 1/5000   | Sigma-Aldrich |
| GAPDH                | Mouse IgG  | 1/5000   | Ambion        |

Supplementary Table 4: List of antibodies, Related to Immunocytochemistry and Western blotting