# The autophagy scaffold protein ALFY is critical for the granulocytic differentiation of AML cells

Anna M. Schläfli<sup>1,2</sup>, Pauline Isakson<sup>3</sup>, E. Garattini<sup>4</sup>, Anne Simonsen<sup>5</sup>, and Mario P. Tschan<sup>1,2</sup>

<sup>1</sup>Division of Experimental Pathology, Institute of Pathology, University of Bern, Switzerland, <sup>2</sup>Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland, <sup>3</sup>Clinical immunology & transfusion medicine, Sahlgrenska University Hospital, Gothenburg, Sweden, <sup>4</sup>Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche 'Mario Negri', Milano, Italy, and <sup>5</sup>Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Norway.

|                |                     | Patient characteristics      |                      |       | FAB classification |       |       |    |       | Cytogenetics |             |          |       |       |
|----------------|---------------------|------------------------------|----------------------|-------|--------------------|-------|-------|----|-------|--------------|-------------|----------|-------|-------|
| Cohort         | Variables           | Age (y)                      | Sex<br>(female/male) | Total | M0                 | M1    | M2    | М3 | M4    | t(8;21)      | inv<br>(16) | t(15;17) | СК    | NK    |
| HOVON/<br>SAKK | Range               | 18-74                        |                      |       |                    |       |       |    |       |              |             |          |       |       |
|                | Mean/median<br>or % | 43.06/43.00<br>(mean/median) | 58.95/41.05          | 100   | 4.21               | 15.79 | 32.63 | 20 | 27.36 | 21.05        | 16.84       | 21.05    | 23.16 | 17.89 |
|                | No. of<br>patients  |                              | 56/39                | 95    | 4                  | 15    | 31    | 19 | 26    | 20           | 16          | 20       | 22    | 17    |

Table 1. AML patient characteristics from the HOVON/SAKK cohort where ALFY mRNA levels were determined

FAB, French-American-British; CK, complex karyotype; NK, normal karyotype

### Supplementary figure legends

Figure S1 Determination of knock-down efficiency and differentiation capacity of NB4 cells silenced for *PU.1* or *CEBPA* (a) Two different NB4 *PU.1* knock-down cell lines (#1 and #2) and control transduced cells were treated with 1  $\mu$ M ATRA for 4 days. Thereafter qPCR analysis of *PU.1* and *CEBPE* mRNA was performed. Raw Ct values were normalized to *HMBS* and to the untreated control of day 4 (2<sup>- $\Delta\Delta$ CT</sup> method). Mann-Whitney-U test: \*P<0.05. (b) Same experiment as in a for two NB4 *CEBPA* silenced cell lines and the corresponding control cells.

Figure S2 ALFY depleted HT93 APL cell lines are impaired in ATRA-dependent differentiation. HT93 ALFY knock-down cell lines (#1 and #2) and control transduced cells were treated with 1  $\mu$ M ATRA for 4 days. QPCR analysis of *ALFY*, *CEBPE* and *CSF3R* mRNA was performed and raw Ct values were normalized to *HMBS* and to the untreated control of day 4 (2<sup>- $\Delta\Delta$ CT</sup> method). Mann-Whitney-U test: \*P<0.05, \*\*P≤0.01, \*\*\*P≤0.001.

Figure S3 ALFY and ULK1 knock-down efficiency in siULK1 and siALFY treated HEK293T cells. HEK293T cells were transfected with control RNA, ULK1- or ALFY-targeted siRNA followed by transfection with PML-RARA cDNA. Knock-down efficiency of ULK1 and ALFY was determined by western blot.  $\alpha$ -Tubulin is shown as a loading control.



## Supplementary figure 2



## Supplementary figure 3

