Supporting Information

Synthesis of Azasilacyclopentenes and Silanols via Huisgen Cycloaddition-Initiated C-H Bond Insertion Cascades

Jiun-Le Shih^{a,b}, Santa Jansone-Popova^{a,b}, Christopher Huynh^b, and Jeremy A. May^b*

^aChemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6119, United States

^bDepartment of Chemistry, University of Houston, Fleming Building Room 112, 3585 Cullen Blvd, Houston, Texas 77204-5003, United States

TABLE OF CONTENTS

General Considerations	SI-1
Reaction Optimization	SI-2
The Identification of the Azasilacyclopentene	SI-2
Synthesis of Compounds	SI-3
Synthesis of Alkynylsilanes	SI-3
Synthesis of Propargyl Alcohols	SI-5
Synthesis of Carbonazidates	SI-13
Synthesis of Azasilacyclopentenes and Silanols	SI-21
Crystallographic Data	SI-36
Spectral Data	SI-37

General Considerations

All reactions were carried out in flame or oven-dried glassware. Hexanes, THF, toluene, dichloroethane, and CH₂Cl₂ were purged with argon and dried over activated alumina columns. Isopropyl acetate was dried over Na₂SO₄ before usage. Flash chromatography was performed on 60 Å silica gel (Sorbent Technologies). Analytical thin layer chromatography was performed on EMD silica gel/TLC plates with fluorescent indicator 254 nm. The ¹H and ¹³C NMR spectra were recorded on a JEOL ECA-500 or ECX-400P spectrometer using the residual solvent peak as an internal reference (CDCl₃: 7.24 ppm for ¹H NMR and 77.0 ppm for ¹³C NMR). NMR yields were determined by addition of 0.5 equivalents of methyl (4-nitrophenyl) carboxylate as an internal standard to the crude reaction mixture. IR spectra were obtained using a ThermoNicolet Avatar 370 FT-IR instrument. GCMS analyses were performed on a Shimadzu GCMS-QP2010S chromatographer equipped with a Shimadzu column (SHRXI-5MS, 0.25 mm x 0.25 u x 30 M). HRMS analyses were performed under contract by UT Austin's mass spectrometric facility via positive mode ESI or CI methods on a US10252005 instrument. Commercially available compounds were purchased from Aldrich Chemical Co., Acros Organics, Alfa Aesar or TCI America and were used without further purification.

Reaction Optimization

A 2 dram vial was charged with a magnetic spin bar, carbonazidate **20a** (30.9 mg, 0.1 mmol, 1 equiv), additive, and dry solvent (0.1M, 1 mL). The reaction vessel was sealed and heated in an oil bath at 90 °C (or 100 °C). (Warning: Pressure buildup may occur during the reaction.) The progress of the reaction was monitored by TLC. After the reaction was finished, the reaction vessel was cooled to room temperature and the mixture was concentrated under reduced pressure. To the crude product was added methyl-4-nitro-benzoate (9.1 mg, 0.05 mmol, 0.5 equiv) and CDCl₃ (0.7 mL). The yield of the azasilacyclopentene was calculated based on ¹H NMR peak integration relative to the methyl group of methyl-4-nitro-benzoate. NMR data was collected using a relaxation delay of 30 sec. (The experiments were conducted to show that RD = 30 sec was required to achieve quantitative information.) The crude product was purified by column chromatography on silica gel to give silanol **69a**.

Entry	/ Solvent	Additive	T, °C	Rxn time	c, M	NMR yield% of 21a (isolated of 69a)
1	<i>i</i> -PrOAc	-	90	18	0.1	48 (48)
2	PhMe	-	90	18	0.1	31
3	hexanes	-	90	18	0.1	53 (50)
4	MeCN	-	90	18	0.1	5
5	THF	-	90	18	0.1	48
6	CH ₂ Cl ₂	1 mol% Rh ₂ (esp) ₂	R.T.	48	0.1	-
7	hexanes	silica gel	100	6	0.1	-
8	hexanes	-	100	6	0.05	49
9	hexanes	-	100	6	0.2	47
10	acetone	-	90	12	0.1	18
11	hexanes	1 mol% Rh ₂ (oct) ₄	90	12	0.1	29
12	hexanes	1 mol% Rh ₂ (esp) ₂	90	18	0.1	43
13	hexanes 2	2 mol% Cp*RuCl(cod)	90	18	0.1	19
14	hexanes	0.5 equiv K ₂ CO ₃	90	18	0.1	38
15	heptane		90	18	0.1	31
16	cyclohexane	-	90	18	0.1	31

Figure 1. Optimization Table.

The Identification of the Azasilacyclopentene

Carbonazidate **20b** was synthesized from alcohol **SI-13** and Na¹⁵N₃ using General Procedure C. Azasilacyclopentene **21b** was synthesized from carbonazidate **20b** using General Procedure D1(**Figure 2**). The NMR signals of **21a** (the vinyl proton: 4.36 ppm; enamine carbons: 108.3, 150.2 ppm) matched those of oxasilacyclopentenes (**22** to **22b**)

In addition, the ¹⁵N NMR analysis of ¹⁵N enriched azasilacyclopentene **21b** (110.5 ppm, no signals from 305 to 375 ppm) suggested the nitrogen was involved in an enamine motif, which confirmed the assignment from ¹H and ¹³C NMR.

Figure 2. The Identification of the Azasilacyclopentene.

Synthesis of Compounds

Synthesis of Alkynylsilanes *General Procedure A*

$$R_{3}SICI \xrightarrow[]{0 to 25 °C} SIR_{3}$$

A flame-dried round-bottom flask was charged ethynylmagnesium bromide (1.2 equiv, 0.5 M) under an argon atmosphere. The reaction was cooled to 0 °C in an ice bath. The chlorosilane (1.0 equiv) was then added dropwise into the reaction, and the reaction mixture was allowed to warm up to 25 °C and stirred for 12 hours. Afterwards, the reaction was quenched with H₂O and saturated NH₄Cl_(aq), and the mixture was extracted with hexanes (3x). The organic phases were combined and washed with brine, dried over anhydrous MgSO₄, filtered through a short plug of silica gel and concentrated under reduced pressure to yield the product. No further purification was necessary.

ethynyltri-*n***-propylsilane (SI-2)** was synthesized from tri-*n*-propylsilyl chloride (2 mL, 1.764 g, 9.15 mmol) using General Procedure A. The product was obtained as a colorless

oil. (1.5221 g, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 1H), 1.49–1.33 (m, 6H), 0.96 (t, J = 7.3 Hz, 9H), 0.65–0.55 (m, 6H). ¹³C NMR (125.77 MHz, CDCl₃) δ 94.0, 88.3, 18.2, 17.4, 15.8. **IR(neat)** 3294, 2955, 2926, 2869, 2033, 1455, 1408, 1333, 1066, 1005, 710, 669 cm⁻¹. **HRMS** (CI) m/z: 182.1485 [(M)⁺; calculated for C₁₁H₂₂Si: 182.1491]. **R**_F: 0.79 in 5% EtOAc/Hex.

tri-*n*-**butyl(ethynyl)silane (SI-4)** was synthesized from tri-*n*-butylsilyl chloride (2 mL, 1.766 g, 7.52 mmol) using General Procedure A. The product was obtained as a colorless oil. (1.6663 g, 99% yield). ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 1H), 1.41–1.26 (m, 12H), 0.94-0.80 (m, 9H), 0.67–0.54 (m, 6H). ¹³C NMR (100.52 MHz, CDCl₃) δ 94.0, 88.3, 26.4, 26.0, 13.8, 12.8. **IR(neat)** 3294, 2956, 2921, 2872, 2857, 2033, 1464, 1408, 1377, 1192, 1081, 1028, 1000, 963, 885, 787, 758, 711, 669 cm⁻¹. **HRMS** (CI) *m/z*: 224.1957 [(M)⁺; calculated for C₁₄H₂₈Si: 224.1960]. **R**_F: 0.79 in 5% EtOAc/Hex.

ethynyltriisobutylsilane (SI-6) was synthesized from triisobutylsilyl chloride (0.8 mL, 0.7096 g, 3 mmol) using General Procedure A. The product was obtained as a colorless oil. (0.651 g, 90% yield). ¹H NMR (500 MHz, CDCl₃) δ 2.39 (s, 1H), 1.92–1.79 (m, 3H), 0.96 (d, J = 6.8 Hz, 18H), 0.63 (d, J = 6.9 Hz, 6H). ¹³C NMR (125.77 MHz, CDCl₃) δ 94.6, 89.5, 26.2, 25.0, 24.7. IR(neat) 3284, 2952, 2896, 2867, 2033, 1464, 1400, 1381, 1364, 1328, 1217, 1163, 1093, 1039, 950, 830, 762, 669 cm⁻¹. HRMS (CI) *m/z*: 223.1882 [(M-H)⁺; calculated for C₁₄H₂₇Si: 223.1882]. **R**_F: 0.8 in 5% EtOAc/Hex.

ethynyltri-*n*-hexylsilane (SI-8) was synthesized from tri-*n*-hexylsilyl chloride (2 mL, 1.7420 g, 5,3 mmol) using General Procedure A. The product was obtained as a colorless oil. (1.6460 g, 99% yield). ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 1H), 1.40–1.18 (m, 24H), 0.92-0.81 (m, 9H), 0.67–0.53 (m, 6H). ¹³C NMR (100.52 MHz, CDCl₃) δ 94.0, 88.4, 33.1, 31.5, 23.7, 22.6, 14.1, 13.0. IR(neat) 3294, 2956, 2920, 2872, 2854, 2033, 1466, 1408, 1377, 1340, 1182, 1101, 995, 961, 889, 846, 764, 710, 669 cm⁻¹. HRMS (CI) *m/z*: 308.2888 [(M)⁺; calculated for C₂₀H₄₀Si: 308.2899]. **R**_F: 0.8 in 5% EtOAc/Hex.

tert-butyl(ethynyl)diphenylsilane (SI-11)

A flame-dried round-bottom flask was charged with *n*-BuLi (2.5 M, 1.3 equiv, 39 mmol, 15.6 mL) under an argon atmosphere. Anhydrous THF (0.5 M, 50 mL) was added, and the mixture was cooled to -78 °C in a dry ice/acetone bath. Trimethylsilylacetylene (1.3 equiv, 39 mmol, 5.6 mL) was then added dropwise. After the reaction was stirring for 15 minutes at -78 °C, tert-butyl(chloro)diphenylsilane (7.8 mL, 30 mmol) was added dropwise. The reaction mixture was allowed to warm up to 25 °C and stirred for 2 hours. After completion, saturated NH₄Cl solution was added. The mixture was extracted with $Et_2O(3x)$, and the organic phases were combined and washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated to yield crude product. The crude product was subjected to the next step without further purification. The crude product was dissolved in MeCN (0.5 M, 60 mL) and water (10.0 M, 3 mL). Diazobicycloundecene (DBU, 1.0 equiv, 4.5 mL, 30 mmol) was added into the reaction. The progress of the reaction was monitored by TLC. After completion (5 h), the reaction was concentrated to yield crude product, and purification was done by column chromatography on silica gel using a gradient of 0 to 1 % EtOAc in hexanes as eluents. The product was obtained as a white solid. (4.4788 g, 56.5% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.83–7.78 (m, 4H), 7.45–7.33 (m, 6H), 2.71 (s, 1H), 1.11 (s, 9H). ¹³C NMR (125.77 MHz, CDCl₃) δ 135.5, 132.6, 129.6, 127.8, 97.2, 85.4, 26.9, 18.4. IR(neat) 3266, 3065, 2959, 2946, 2857, 2035, 1485, 1468, 1426, 1390, 1372, 1361, 1259, 1105, 1007, 820, 742, 691, 660 cm⁻¹. HRMS 264.1333 $[(M)^+$; calculated for C₁₈H₂₀Si: 264.1334]. **R**_F: 0.5 in 2% (CI) m/z: EtOAc/Hex. MP: 66-68 °C.

Synthesis of Propargyl Alcohols

General Procedure B

$$= -SiR_3 \qquad \xrightarrow{\begin{array}{c} 1. \ n-BuLi, \ THF \\ -78 \ °C \end{array}} R_3Si \xrightarrow{\begin{array}{c} OH \\ R_3Si \\ -78 \ to \ 25 \ °C \end{array}} R_3Si \xrightarrow{\begin{array}{c} OH \\ R_3Si \\ R_1 \end{array}}$$

A flame-dried round-bottom flask was charged with *n*-BuLi (2.5 M, 1.2 equiv, 4.8 mmol) under Argon atmosphere. Anhydrous THF (0.5 M, 8 mL) was added, and the reaction was cooled to -78 °C in a dry ice/acetone bath. The silyl acetylene (1.3 equiv, 5.2 mmol) was then added dropwise. The reaction was allowed to stir for 20 minutes at -78 °C. Then, ketone (1 equiv, 4 mmol) was added dropwise. The reaction mixture was allowed to warm to 25 °C and stirred for 2 hours. After completion, saturated NH₄Cl solution was added to quench the reaction. The mixture was extracted with Et₂O three times, and the organic phases were combined and washed with brine, dried over anhydrous MgSO₄, filtered through a celite pad, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel.

2-methyl-4-(triisopropylsilyl)but-3-yn-2-ol (SI-13) was synthesized from triisopropylsilylacetylene and acetone using General Procedure B. The crude product was purified by column chromatography on silica gel using 10% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (0.777 g, 88% yield). ¹H NMR (500 MHz, CDCl₃) δ 1.92 (s, 1H), 1.51 (s, 6H), 1.08–0.99 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 112.7, 82.1, 65.5, 31.6, 18.6, 11.1. **IR(neat)** 3343, 2942, 2892, 2865, 2167, 2032, 1463, 1364, 1220, 1164, 996, 968, 912, 881, 786, 674, 658 cm⁻¹. **HRMS** (CI) *m/z*: 240.1906 [(M)⁺; calculated for C₁₄H₂₈OSi: 240.1909]. **R**_F: 0.27 in 10% EtOAc/Hex.

2-methyl-4-(triethylsilyl)but-3-yn-2-ol (SI-15) was synthesized from triethylsilylacetylene and acetone using General Procedure B. The crude product was purified by column chromatography on silica gel using 10% Et₂O in pentane as an eluent. The product was obtained as a colorless oil. (0.7801 g, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.92 (s, 1H), 1.50 (s, 6H), 0.96 (t, *J* = 8.0 Hz, 9H), 0.56 (q, *J* = 8.0 Hz, 6H). ¹³C NMR (100.52 MHz, CDCl₃) δ 111.9, 83.2, 65.5, 31.5, 7.4, 4.3. IR(neat) 3340, 2955, 2912, 2875, 2168, 1457, 1362, 1220, 1164, 1005, 912, 789, 722, 701 cm⁻¹. HRMS (CI) *m/z*: 198.1441 [(M)⁺; calculated for C₁₁H₂₂OSi: 198.1440]. **R**_F: 0.15 in 10% Et₂O/pentane.

2-methyl-4-(tripropylsilyl)but-3-yn-2-ol (SI-16) was synthesized from tri-*n*-propylsilylacetylene and acetone using General Procedure B. The crude product was purified by column chromatography on silica gel using a gradient of 2 to 5% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.9908 g, 98% yield). ¹H **NMR** (500 MHz, CDCl₃) δ 1.89 (s, 1H), 1.49 (s, 6H), 1.43–1.31 (m, 6H), 0.95 (t, *J* = 7.2 Hz, 9H), 0.61–0.51 (m, 6H). ¹³C **NMR** (125.77 MHz, CDCl₃) δ 111.8, 84.1, 65.5, 31.4, 18.2, 17.4, 16.0. **IR(neat)** 3344, 2954, 2926, 2868, 2168, 1455, 1408, 1374, 1362, 1333, 1217, 1164, 1065, 1031, 1004, 912, 786, 814, 739, 699 cm⁻¹. **HRMS** (CI) *m/z*: 240.1905 [(M)⁺; calculated for C₁₄H₂₈OSi: 240.1909]. **R**_F: 0.36 in 10% EtOAc/Hex.

2-methyl-4-(tributylsilyl)but-3-yn-2-ol (SI-17) was synthesized from tri-*n*-butylsilylacetylene and acetone using General Procedure B. The crude product was purified by column chromatography on silica gel using a gradient of 2 to 5% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (1.0730 g, 95% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 1.88 (s, 1H), 1.49 (s, 6H), 1.40–1.19 (m, 12H), 0.94–0.77 (m, 9H), 0.66–0.47 (m, 6H). ¹³C **NMR** (100.52 MHz, CDCl₃) δ 111.7, 84.1, 76.9, 65.5, 31.4, 26.4, 26.1, 13.8, 12.9. **IR(neat)** 3295, 2951, 2895, 2867, 2168, 2033, 1463, 1400, 1380, 1163, 1093, 912, 793, 670 cm⁻¹. **HRMS** (CI) *m/z*: 282.2374 [(M)⁺; calculated for C₁₇H₃₄OSi: 282.2379]. **R**_F: 0.42 in 10% EtOAc/Hex.

2-methyl-4-(triisobutylsilyl)but-3-yn-2-ol (SI-18) was synthesized from triisobutylsilylacetylene and acetone using General Procedure B. The crude product was purified by column chromatography on silica gel using a gradient of 2 to 5% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (1.0730 g, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.90–1.72 (m, 3H), 1.48 (s, 6H), 0.95 (d, *J* = 6.5 Hz, 18H), 0.59 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (100.52 MHz, CDCl₃) δ 112.0, 9.5, 65.4, 31.2, 26.2, 25.0, 24.9. **IR(neat)** 3347, 2951, 2895, 2867, 2168, 1463, 1400, 1379, 1364, 1217, 1163, 1092, 912, 829, 793, 768 cm⁻¹. **HRMS** (CI) *m/z*: 282.2374 [(M)⁺; calculated for C₁₇H₃₄OSi: 282.2379]. **R**_F: 0.42 in 10% EtOAc/Hex.

2-methyl-4-(trihexylsilyl)but-3-yn-2-ol (SI-19) was synthesized from tri-*n*-hexylsilylacetylene and acetone using General Procedure B. The crude product was purified by column chromatography on silica gel using a gradient of 2 to 5% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (1.3544 g, 92% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.49 (s, 6H), 1.37–1.17 (m, 24H), 0.95–0.80 (m, 9H), 0.64–0.48 (m, 6H). ¹³C NMR (100.52 MHz, CDCl₃) δ 111.7, 84.2, 65.4, 33.1, 31.5, 31.4, 23.8, 22.6, 14.2, 13.2. **IR(neat)** 3345, 2956, 2920, 2872, 2854, 2167 1457, 1408, 1362, 1219,

1165 968, 913, 846, 791, 700 cm⁻¹. **HRMS** (CI) m/z: 367.3386 [(M+H)⁺; calculated for C₂₃H₄₇OSi: 367.3396]. **R**_F: 0.45 in 10% EtOAc/Hex.

3-methyl-1-(triisopropylsilyl)pent-1-yn-3-ol (SI-21) was synthesized from triisopropylsilylacetylene and 2-butanone using General Procedure B. The crude product was purified by column chromatography on silica gel using a gradient of 2 to 5% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.813 g, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.89 (s, 1H), 1.77–1.56 (m, 2H), 1.46 (s, 3H), 1.08–0.96 (m, 24H). ¹³C NMR (100.52 MHz, CDCl₃) δ 111.4, 83.4, 69.1, 36.6, 29.5, 18.6, 11.1, 9.1. **IR(neat)** 3360, 2941, 2891, 2865, 2165, 1462, 1382, 1366, 1323, 1288, 1157, 1126, 1073, 1053, 1034, 1012, 995, 930, 909, 881, 793, 766, 674, 658 cm⁻¹. **HRMS** (CI) *m/z*: 254.2065 [(M)⁺; calculated for C₁₅H₃₀OSi: 254.2066]. **R**_F: 0.42 in 10% EtOAc/Hex.

3-methyl-1-(triisopropylsilyl)hex-1-yn-3-ol (SI-23) was synthesized from triisopropylsilylacetylene and 2-pentanone using General Procedure B. The crude product was purified by column chromatography on silica gel using 5% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (0.902 g, 84% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.89 (s, 1H), 1.70–1.48 (m, 4H), 1.46 (s, 3H), 1.13–0.97 (m, 21H), 0.94 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100.52 MHz, CDCl₃) δ 111.7, 83.2, 68.6, 46.0, 30.0, 18.6, 18.1, 14.3, 11.1. IR(neat) 3373, 2958, 2941, 2892, 2865, 2165, 1463, 1366, 1382, 1284, 1253, 1159, 1131, 1073, 1051, 1017, 995, 934, 904, 882, 794, 674, 659 cm⁻¹. HRMS (CI) m/z: 268.2229 [(M)⁺; calculated for C₁₆H₃₂OSi: 268.2222]. **R**_F: 0.4 in 10% EtOAc/Hex.

3-methyl-1-(triisopropylsilyl)hept-1-yn-3-ol (SI-25) was synthesized from triisopropylsilylacetylene and 2-hexanone using General Procedure B. The crude product was purified by column chromatography on silica gel using a gradient of 2 to 5% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (904 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.88 (s, 1H), 1.67–1.45 (m, 4H), 1.46 (s, 3H), 1.41–1.26 (m, 2H), 1.11-0.97 (m, 21H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100.52 MHz, CDCl₃) δ 111.8, 83.3, 68.6, 43.4, 29.9, 27.0, 22.8, 18.6, 14.1, 11.1. IR(neat) 3374, 2941, 2864, 2164, 1463, 1129, 1087, 949, 909, 675, 659 cm⁻¹. HRMS (CI) *m/z*: 282.2386 [(M)⁺; calculated for C₁₇H₃₄OSi: 282.2379]. **R**_F: 0.3 in 5% EtOAc/Hex.

3,5-dimethyl-1-(triisopropylsilyl)hex-1-yn-3-ol (SI-27) was synthesized from triisopropylsilylacetylene and methyl isobutyl ketone using General Procedure B. The crude product was purified by column chromatography on silica gel using a gradient of 2 to 5% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (1.1075 g, 98% yield). ¹H NMR (500 MHz, CDCl₃) δ 2.04–1.88 (m, 1H), 1.85 (s, 1H), 1.57 (d, *J* = 6.2 Hz, 2H), 1.48 (s, 3H), 1.09–0.95 (m, 27H). ¹³C NMR (125.77 MHz, CDCl₃) δ 112.0, 94.7, 8.6, 68.5, 51.7, 31.3, 25.3, 24.3, 24.1, 18.5, 11.1. **IR(neat)** 3440, 2943, 2865, 2164, 2032, 1463, 1383, 1073, 1045, 1017, 944, 919, 881, 673, 660 cm⁻¹. **HRMS** (CI) m/z: 282.2381 [(M)⁺; calculated for C₁₇H₃₄OSi: 282.2379]. **R**_F: 0.42 in 10% EtOAc/Hex.

3-methyl-1-(triisopropylsilyl)hex-5-en-1-yn-3-ol (SI-30)

To a flame-dried round-bottom flask was added ynone **SI-28** (1.12 g, 5 mmol, 1 equiv) and THF (6 mL). The reaction was cooled to -78 °C. After stirring for 10 min at -78 °C, allylmagnesium bromide (1 M in Et₂O, 6 mL, 6 mmol, 1.2 equiv) was added to the reaction. The reaction was allowed to warm to 25 °C. After completion, saturated NH₄Cl solution was added to quench the reaction. The mixture was extracted with Et₂O three times, and the organic phases were combined and washed with brine, dried over anhydrous MgSO₄, filtered through a celite pad, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel with a gradient of 1 to 2% ethyl acetate in hexanes as eluents. The product was obtained as colorless oil. (1 g, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.02–5.91 (m, 1H), 5.24–5.11 (m, 2H), 2.47 (dd, *J* = 13.4, 6.5 Hz, 1H), 2.36 (dd, *J* = 13.5, 8.1 Hz, 1H), 1.48 (s, 3H), 1.10–0.98 (m, 21H). ¹³C NMR (101 MHz, CDCl₃) δ 133.4, 119.5, 111.1, 83.7, 67.3, 48.3, 29.5, 18.6, 11.1. **IR(neat)** 3373, 2942, 2892, 2865, 2166, 1642, 1463, 1382, 1367, 1260, 1110, 1073, 995, 942, 916, 882, 799, 675 cm⁻¹. **HRMS** (ESI) *m/z*: 289.1962 [(M+Na)⁺; calculated for C₁₆H₃₀OSi: 289.1958]. **R**_F: 0.21 in 5% EtOAc/Hex.

1-((triisopropylsilyl)ethynyl)cyclopentan-1-ol (SI-32) was synthesized from triisopropylsilylacetylene and cyclopentanone using General Procedure B. The crude product was purified by column chromatography on silica gel using 5% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (0.9167 g, 86% yield). ¹H NMR (500 MHz, CDCl₃) δ 2.06–1.62 (m, 8H), 1.09–0.98 (m, 21H). ¹³C NMR

(125.77 MHz, CDCl₃) δ 111.9, 83.1, 74.9, 42.7, 23.5, 18.6, 11.1. **IR(neat)** 3334, 2942, 2891, 2864, 2161, 1462, 1382, 1366, 1314, 1208, 1073, 994, 944, 918, 672 cm⁻¹. **HRMS** (CI) *m/z*: 266.2066 [(M)⁺; calculated for C₁₆H₃₀OSi: 266.2066]. **R**_F: 0.18 in 5% EtOAc/Hex.

1-((triisopropylsilyl)ethynyl)cyclohexan-1-ol (SI-34) was synthesized from triisopropylsilylacetylene and cyclohexanone using General Procedure B. The crude product was purified by column chromatography on silica gel using 5% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (0.9875 g, 88% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 2.18 (s, 1H), 1.96–1.83 (m, 2H), 1.72–1.62 (m, 2H), 1.60–1.45 (m, 6H), 1.11–0.92 (m, 21H). ¹³**C NMR** (125.77 MHz, CDCl₃) δ 111.5, 84.5, 69.2, 40.1, 25.2, 23.5, 18.6, 11.1. **IR(neat)** 3339, 2934, 2891, 2863, 2163, 1446, 1462, 1382, 1366, 1281, 1257, 1132, 1032, 995, 918, 881, 760, 658 cm⁻¹. **HRMS** (CI) *m/z*: 280.2217 [(M)⁺; calculated for C₁₇H₃₂OSi: 280.2222]. **R**_F: 0.2 in 5% EtOAc/Hex.

1-((triisopropylsilyl)ethynyl)cycloheptan-1-ol (SI-36) was synthesized from triisopropylsilylacetylene and cycloheptanone using General Procedure B. The crude product was purified by column chromatography on silica gel using 5% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (1.1546 g, 98% yield). ¹H NMR (500 MHz, CDCl₃) δ 2.06–1.89 (m, 2H), 1.86–1.72 (m, 2H), 1.72–1.46 (m, 8H), 1.12–0.87 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 112.5, 83.8, 72.3, 43.2, 27.7, 22.3, 18.6, 11.1. **IR(neat)** 2939, 2863, 2163, 2031, 1461, 1383, 1366, 1242, 1200, 1058, 1018, 995, 920, 882, 795, 750, 723, 673 cm⁻¹. **HRMS** (CI) *m/z*: 294.2369 [(M)⁺; calculated for C₁₈H₃₄OSi: 294.2379]. **R**_F: 0.36 in 10% EtOAc/Hex.

1-tosyl-3-((triisopropylsilyl)ethynyl)pyrrolidin-3-ol (SI-38) synthesized from triisopropylsilylacetylene and 1-tosylpyrrolidin-3-one using General Procedure B. The crude product was purified by column chromatography on silica gel using a gradient of 15 to 20% EtOAc in hexanes as eluents. The product was obtained as a white solid. (1.2800 g, 76% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 3.58–3.42 (m, 3H), 3.41–3.31 (m, 1H), 2.40 (s, 3H), 2.16–2.03 (m, 2H), 1.86 (s, 1H), 1.07–0.90 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 143.5, 133.9, 129.6,

127.5, 106.2, 86.7, 72.0, 61.1, 46.5, 40.9, 21.5, 18.5, 10.9. **IR(neat)** 3455, 2942, 2891, 2864, 2167, 1597, 1462, 1383, 1323, 1304, 1290, 1242, 1153, 1110, 1037, 1017, 997, 925, 881, 804, 756, 699 cm⁻¹. **HRMS** (ESI) *m/z*: 444.2004 [(M+Na)⁺; calculated for $C_{22}H_{35}NO_3SSiNa$: 444.1999]. **R**_F: 0.3 in 20% EtOAc/Hex. **MP**: 86-87 °C.

3-((triisopropylsilyl)ethynyl)tetrahydrothiophen-3-ol (SI-40) was synthesized from triisopropylsilylacetylene and dihydrothiophen-3(2*H*)-one using General Procedure B. The crude product was purified by column chromatography on silica gel using a gradient of 2 to 5% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.455 g, 40% yield). ¹H NMR (500 MHz, CDCl₃) δ 3.18 (d, *J* = 11.5 Hz, 1H), 3.06–2.86 (m, 3H), 2.40–2.29 (m, 1H), 2.27 (s, 1H), 2.21–2.09 (m, 1H), 1.15–0.88 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 107.4, 85.6, 75.6, 44.8, 44.5, 28.7, 18.5, 11.0. **IR(neat)** 3382, 2941, 2890, 2864, 2163, 1462, 1428, 1382, 1366, 1270, 1233, 1209, 1061, 1029, 950, 918, 881, 831, 781, 751, 671 cm⁻¹. **HRMS** (CI) *m/z*: 284.1629 [(M)⁺; calculated for C₁₅H₂₈OSSi: 284.1630]. **R**_F: 0.36 in 10% EtOAc/Hex.

(1*S*,3*R*)-3-methyl-1-((triisopropylsilyl)ethynyl)cyclohexan-1-ol (SI-42) was synthesized from triisopropylsilylacetylene and 3-methylcyclohexanone using General Procedure B. The crude product was purified by column chromatography on silica gel using a gradient of 1 to 2% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.685 g, 56% yield). ¹H NMR (500 MHz, CDCl₃) δ 2.12 (s, 1H), 1.98–1.87 (m, 2H), 1.79–1.50 (m, 4H), 1.42–1.29 (m, 1H), 1.20–0.95 (m, 22H), 0.90 (d, *J* = 6.8 Hz, 3H), 0.84–0.69 (m, 1H). ¹³C NMR (125.77 MHz, CDCl₃) δ 111.3, 84.9, 69.9, 48.7, 39.9, 34.0, 30.6, 23.7, 22.1, 18.6, 11.1. **IR(neat)** 3349, 2927, 2892, 2864, 2159, 1460, 1366, 1327, 1073, 1051, 1001, 953, 942, 918, 882, 854, 813, 762, 675 cm⁻¹. **HRMS** (CI) *m/z*: 294.2371 [(M)⁺; calculated for C₁₈H₃₄OSi: 294.2379]. **R**_F: 0.2 in 5% EtOAc/Hex.

1-tosyl-4-((triisopropylsilyl)ethynyl)piperidin-4-ol (SI-44) synthesized from triisopropylsilylacetylene and 1-tosylpiperdin-4-one using General Procedure B. The crude product was purified by column chromatography on silica gel using a gradient of

15 to 20% EtOAc in hexanes as eluents. The product was obtained as a white solid. (1.436 g, 72% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 3.63–3.40 (m, 2H), 2.83–2.64 (m, 2H), 2.42 (s, 3H), 2.08–1.80 (m, 5H), 0.99–0.84 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 143.5, 132.7, 129.6, 127.6, 108.6, 86.9, 66.6, 43.7, 38.6, 21.5, 18.5, 10.9. **IR(neat)** 3493, 2940, 2864, 2170, 1743, 1597, 1494, 1379, 1351, 1319, 1190, 1169, 1158, 1141, 1047, 1002, 955, 801, 766, 730, 706 cm⁻¹. **HRMS** (ESI) *m/z*: 458.2158 [(M+Na)⁺; calculated for C₂₃H₃₇NO₃SSiNa: 458.2156]. **R**_F: 0.24 in 20% EtOAc/Hex. **MP**: 153-154 °C.

4-((triisopropylsilyl)ethynyl)tetrahydro-2*H***-pyran-4-ol (SI-45) was synthesized from triisopropylsilylacetylene and tetrahydro-4***H***-pyran-4-one using General Procedure B. The crude product was purified by column chromatography on silica gel using 10% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (1.0396 g, 92% yield). ¹H NMR (500 MHz, CDCl₃) δ 3.99–3.82 (m, 2H), 3.73–3.55 (m, 2H), 2.28 (s, 1H), 1.98–1.84 (m, 2H), 1.84–1.74 (m, 2H), 1.13–0.88 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 109.9, 85.9, 66.4, 65.2, 40.2, 18.6, 11.1. IR(neat)** 3416, 2942, 2891, 2864, 2162, 1463, 1425, 1384, 1366, 1335, 1300, 1275, 1233, 1160, 1134, 1011, 987, 958, 882, 842, 768, 674 cm⁻¹. **HRMS** (CI) *m/z*: 282.2021 [(M)⁺; calculated for C₁₆H₃₀O₂Si: 282.2015]. **R**_F: 0.3 in 20% EtOAc/Hex.

1-((*tert***-butyldiphenylsilyl)ethynyl)cyclopentan-1-ol (SI-46)** was synthesized from *tert*butyl(ethynyl)diphenylsilane and cyclopentanone using General Procedure B. The crude product was purified by column chromatography on silica gel using 5% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (0.976 g, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.72 (m, 4H), 7.44–7.29 (m, 6H), 2.18–1.95 (m, 4H), 1.95–1.69 (m, 4H), 1.06 (s, 9H). ¹³C NMR (125.77 MHz, CDCl₃) δ 135.5, 133.2, 129.5, 127.7, 114.0, 82.4, 75.0, 42.6, 27.0, 23.5, 18.5. **IR(neat)** 3343, 3070, 2957, 2929, 2856, 2162, 1471, 1428, 1389, 1361, 1258, 1208, 1106, 997, 941, 914, 883, 819, 740 cm⁻¹. **HRMS** (CI) *m/z*: 348.1905 [(M)⁺; calculated for C₂₃H₂₈OSi: 348.1909]. **R**_F: 0.3 in 10% EtOAc/Hex.

Synthesis of Carbonazidates

General Procedure C

A flame-dried heavy wall pressure vessel was charged with the propargyl alcohol (1.0 equiv, 3 mmol), carbonyldiimidazole (CDI, 2.0 equiv, 6 mmol, 973 mg), and anhydrous Et₂O (0.5 M, 6 mL) under an argon atmosphere. The reaction vessel was sealed and heated to reflux in an oil bath (65 °C). (Warning: Pressure buildup may occur during the reaction.) The progress of the reaction was monitored by TLC. (The reaction vessel should only be opened when cooled to room temperature!) After the reaction was done, the reaction vessel was cooled to room temperature, and the solvent was evaporated under a stream of nitrogen gas. The residue was then dissolved in DMF (0.5 M, 6 mL), and NaN₃ (5.0 equiv, 15 mmol, 975 mg) was added in one portion. The reaction mixture was acidified with concentrated HCl until $pH \sim 6$ (monitored by pH paper). The progress of the reaction was monitored by TLC. After the reaction was finished, deionized water was added and the mixture was extracted with Et₂O three times. The organic phases were combined and washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel. No decomposition of the carbonazidates was observed at room temperature after more than a month, but it is recommended to keep them at -20 °C for long-term storage.

2-methyl-4-(triisopropylsilyl)but-3-yn-2-yl carbonazidate (20a) was synthesized from alcohol **SI-13** using General Procedure C. The crude product was purified by column chromatography on silica gel using a gradient of 0.5 to 1% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.680 g, 73% yield). ¹H NMR (500 MHz, CDCl₃) δ 1.70 (s, 6H), 1.09–0.94 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 154.8, 106.5, 86.6, 76.3, 28.9, 18.5, 11.0. **IR(neat)** 2942, 2866, 2174, 2129, 1735, 1463, 1383, 1366, 1231, 1193, 1120, 1072, 996, 947, 919, 878, 796, 775, 676 cm⁻¹. **HRMS** (ESI) *m/z*: 332.1764 [(M+Na)⁺; calculated for C₁₅H₂₇N₃O₂SiNa: 332.1765]. **R**_F**1** = 0.24 in 10% EtOAc/Hex. **R**_F**2** = 0.42 in 5% EtOAc/Hex.

2-methyl-4-(triethylsilyl)but-3-yn-2-yl carbonazidate (67b) was synthesized from alcohol SI-15 using General Procedure C. The crude product was purified by column

chromatography on silica gel using a gradient of 0.5 to 1% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.625 g, 78% yield). ¹H NMR (500 MHz, CDCl₃) δ 1.69 (s, 6H), 0.96 (t, J = 7.9 Hz, 9H), 0.57 (q, J = 8.0 Hz, 6H). ¹³C NMR (125.77 MHz, CDCl₃) δ 154.9, 105.8, 87.6, 76.3, 28.8, 7.36, 4.2. **IR(neat)** 2956, 2913, 2876, 2174, 2129, 1735, 1458, 1415, 1383, 1366, 1229, 1192, 1119, 1015, 947, 875, 775, 724 cm⁻¹. **HRMS** (CI) *m/z*: 268.1476 [(M+H)⁺; calculated for C₁₂H₂₂N₃O₂Si: 268.1481]. **R**_F**1** = 0.24 in 10% EtOAc/Hex. **R**_F**2** = 0.5 in 5% EtOAc/Hex.

2-methyl-4-(tripropylsilyl)but-3-yn-2-yl carbonazidate (67c) was synthesized from alcohol **SI-16** using General Procedure C. The crude product was purified by column chromatography on silica gel using 0.5% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (0.750 g, 80% yield). ¹H NMR (500 MHz, CDCl₃) δ 1.68 (s, 6H), 1.44–1.29 (m, 6H), 0.95 (t, J = 7.4 Hz, 9H), 0.62–0.53 (m, 6H). ¹³C NMR (125.77 MHz, CDCl₃) δ 154.9, 105.7, 88.4, 76.4, 28.8, 18.1, 17.4, 15.8. **IR(neat)** 2955, 2926, 2869, 2174, 2129, 1760, 1736, 1462, 1365, 1231, 1193, 1119, 1065, 1005, 947, 875, 801, 749 cm⁻¹. **HRMS** (CI) *m/z*: 310.1947 [(M+H)⁺; calculated for C₁₅H₂₈N₃O₂Si: 310.1951]. **R**_F**1** = 0.24 in 10% EtOAc/Hex. **R**_F**2** = 0.54 in 2% EtOAc/Hex.

2-methyl-4-(tributylsilyl)but-3-yn-2-yl carbonazidate (67d) was synthesized from alcohol **SI-17** using General Procedure C. The crude product was purified by column chromatography on silica gel using 0.5% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (0.824 g, 78% yield). ¹H NMR (500 MHz, CDCl₃) δ 1.69 (s, 6H), 1.38–1.22 (m, 12H), 0.93–0.80 (m, 9H), 0.65–0.50 (m, 6H). ¹³C NMR (125.77 MHz, CDCl₃) δ 154.9, 105.6, 88.5, 76.4, 28.8, 26.3, 26.0, 13.8, 12.7. **IR(neat)** 2956, 2922, 2872, 2174, 2129, 1736, 1465, 1408, 1378, 1365, 1232, 1192, 1120, 1081, 1028, 999, 947, 876, 799, 749 cm⁻¹. **HRMS** (CI) *m/z*: 352.2422 [(M+H)⁺; calculated for C₁₈H₃₄N₃O₂Si: 352.2420]. **R**_F**1** = 0.24 in 10% EtOAc/Hex. **R**_F**2** = 0.6 in 5% EtOAc/Hex.

2-methyl-4-(trihexylsilyl)but-3-yn-2-yl carbonazidate (67e) was synthesized from alcohol **SI-19** using General Procedure C. The crude product was purified by column chromatography on silica gel using a gradient of 0 to 2% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (1.0995 g, 84% yield). ¹H NMR (500 MHz, CDCl₃) δ 1.68 (s, 6H), 1.38–1.15 (m, 24H), 0.92–0.81 (m, 9H), 0.63–0.51 (m, 6H). ¹³C NMR (125.77 MHz, CDCl₃) δ 154.9, 105.6, 88.5, 76.3, 33.0, 31.5, 28.8, 23.8, 22.6, 14.1, 13.0. **IR(neat)** 2956, 2921, 285, 2175, 2129, 1737, 1466, 1381, 1365, 1232, 1192, 1121, 975, 875, 799, 749, 721 cm⁻¹. **HRMS** (CI) *m/z*: 436.3347 [(M+H)⁺; calculated for C₂₄H₄₆N₃O₂Si: 436.3359]. **R**_F**1** = 0.3 in 10% EtOAc/Hex. **R**_F**2** = 0.45 in 2% EtOAc/Hex.

2-methyl-4-(triisobutylsilyl)but-3-yn-2-yl carbonazidate (67f) was synthesized from alcohol **SI-18** using General Procedure C. The crude product was purified by column chromatography on silica gel using 0.5% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (0.990 g, 94% yield). ¹H NMR (500 MHz, CDCl₃) δ 1.89–1.74 (m, 3H), 1.67 (s, 6H), 1.00–0.90 (m, 18H), 0.60 (d, J = 7.0 Hz, 6H). ¹³C NMR (125.77 MHz, CDCl₃) δ 154.9, 105.9, 89.8, 76.4, 28.5, 26.2, 25.0, 24.7. **IR(neat)** 2952, 2895, 2867, 2174, 2130, 2070, 1737, 1531, 1464, 1233, 1193, 1163, 1120, 1093, 1039, 974, 947, 875, 829, 800, 749 cm⁻¹. **HRMS** (ESI) *m/z*: 374.2240 [(M+Na)⁺; calculated for C₁₈H₃₃N₃O₂SiNa: 374.2234]. **R**_F1 = 0.24 in 10% EtOAc/Hex. **R**_F2 = 0.6 in 5% EtOAc/Hex.

3-methyl-1-(triisopropylsilyl)pent-1-yn-3-yl carbonazidate (74a) was synthesized from alcohol **SI-21** using General Procedure C. The crude product was purified by column chromatography on silica gel using a gradient of 0.5 to 1% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.789 g, 81% yield). ¹H NMR (500 MHz, CDCl₃) δ 2.06–1.93 (m, 1H), 1.89–1.77 (m, 1H), 1.69 (s, 3H), 1.09–0.98 (m, 24H). ¹³C NMR (125.77 MHz, CDCl₃) δ 154.7, 105.3, 87.8, 80.2, 34.5, 26.0, 18.5, 11.0, 8.7.

IR(neat) 2942, 2865, 2180, 2129, 1741, 1463, 1382, 1299, 1227, 1185, 1152, 1120, 1056, 1032, 997, 951, 881, 786, 748, 676 cm⁻¹. **HRMS** (ESI) *m/z*: 346.1920 [(M+Na)⁺; calculated for $C_{16}H_{29}N_3O_2SiNa$: 346.1921]. **R**_F**1** = 0.24 in 5% EtOAc/Hex. **R**_F**2** = 0.63 in 5% EtOAc/Hex.

3-methyl-1-(triisopropylsilyl)hex-1-yn-3-yl carbonazidate (74b) was synthesized from alcohol **SI-23** using General Procedure C. The crude product was purified by column chromatography on silica gel using a gradient of 0.5 to 2% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.737 g, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.94 (ddd, J = 13.4, 10.8, 5.6 Hz, 1H), 1.78 (ddd, J = 13.6, 10.6, 5.9 Hz, 1H), 1.70 (s, 3H), 1.59–1.43 (m, 2H), 1.14–0.98 (m, 21H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (100.52 MHz, CDCl₃) δ 154.7, 105.6, 87.6, 79.7, 43.4, 26.5, 18.5, 17.6, 14.0, 11.0. **IR(neat)** 2942, 2866, 2182, 2131, 1736, 1463, 1375, 1225, 1181, 1151, 1111, 1078, 1048, 1018, 996, 967, 916, 881, 800, 773, 749, 676 cm⁻¹. **HRMS** (ESI) *m/z*: 360.2075 [(M+Na)⁺; calculated for C₁₇H₃₁N₃O₂SiNa: 360.2078]. **R**_F**1** = 0.3 in 10% EtOAc/Hex. **R**_F**2** = 0.45 in 5% EtOAc/Hex.

3-methyl-1-(triisopropylsilyl)hept-1-yn-3-yl carbonazidate (74c) was synthesized from alcohol **SI-25** using General Procedure C. The crude product was purified by column chromatography on silica gel using 0.5% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (0.739 g, 70% yield). ¹H NMR (500 MHz, CDCl₃) δ 1.96 (ddd, J = 13.7, 11.1, 5.3 Hz, 1H), 1.79 (ddd, J = 13.6, 11.1, 5.7 Hz, 1H), 1.70 (s, 3H), 1.52–1.39 (m, 2H), 1.39–1.26 (m, 2H), 1.11–0.97 (m, 21H), 0.89 (t, J = 7.3 Hz, 3H). ¹³C NMR (125.77 MHz, CDCl₃) δ 154.7, 105.6, 87.7, 79.8, 41.0, 26.4, 26.4, 22.6, 18.5, 14.0, 11.0. **IR(neat)** 2942, 2865, 2182, 2129, 1737, 1463, 1375, 1223, 1129, 1114, 1151, 1082, 1043, 996, 920, 881, 806, 774, 749, 676, 660 cm⁻¹. **HRMS** (ESI) *m/z*: 374.2232 [(M+Na)⁺; calculated for C₁₈H₃₃N₃O₂SiNa: 374.2234]. **R**_F**1** = 0.2 in 5% EtOAc/Hex.

3,5-dimethyl-1-(triisopropylsilyl)hex-1-yn-3-yl carbonazidate (74d) was synthesized from alcohol **SI-27** using General Procedure C. The crude product was purified by column chromatography on silica gel using 0.5% EtOAc in hexanes as an eluent. The

product was obtained as a colorless oil. (0.526 g, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 2.05–1.92 (m, 1H), 1.92–1.85 (m, 1H), 1.77–1.65 (m, 4H), 1.13–1.00 (m, 21H), 1.00–0.91 (m, 6H). ¹³C NMR (100.52 MHz, CDCl₃) δ 154.6, 105.6, 88.0, 79.8, 49.3, 27.3, 25.0, 24.1, 23.6, 18.5, 11.0. **IR(neat)** 2942, 2866, 2182, 2129, 1736, 1463, 1367, 1274, 1225, 1127, 1040, 996, 953, 903, 881, 802, 749, 676, 660 cm⁻¹. **HRMS** (CI) *m/z*: 352.2426 [(M+H)⁺; calculated for C₁₈H₃₄N₃O₂Si: 352.2420]. **R**_F**1** = 0.2 in 5% EtOAc/Hex. **R**_F**2** = 0.75 in 5% EtOAc/Hex.

3-methyl-1-(triisopropylsilyl)hex-5-en-1-yn-3-yl carbonazidate (74e) was synthesized from alcohol **SI-30** using General Procedure C. The crude product was purified by column chromatography on silica gel using a gradient of 0 to 0.5% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.5940 g, 59% yield). ¹H NMR (500 MHz, CDCl₃) δ 5.88–5.80 (m, 1H), 5.19–5.16 (m, 1H), 5.18–5.10 (m, 1H), 2.74 (dd, J = 13.8, 6.9 Hz, 1H), 2.62 (dd, J = 13.8, 7.5 Hz, 1H), 1.68 (s, 3H), 1.04 (s, 21H). ¹³C NMR (126 MHz, CDCl₃) δ 154.64, 131.66, 119.61, 105.20, 88.21, 78.44, 45.45, 26.17, 18.51, 11.02. **IR(neat)** 2943, 2865, 2183, 2130, 1737, 1463, 1224, 1143, 1089, 1061, 995, 920, 902, 881, 773, 749 cm⁻¹. **HRMS** (ESI) *m/z*: 358.1924 [(M+Na)⁺; calculated for C₁₇H₂₉N₃O₂Si: 358.1921]. **R**_F**1** = 0.3 in 10% EtOAc/Hex. **R**_F**2** = 0.6 in 5% EtOAc/Hex.

1-((triisopropylsilyl)ethynyl)cyclopentyl carbonazidate (74f) was synthesized from alcohol **SI-32** using General Procedure C. The crude product was purified by column chromatography on silica gel using 0.5% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (0.804 g, 80% yield). ¹H NMR (500 MHz, CDCl₃) δ 2.34–2.20 (m, 2H), 2.20–2.08 (m, 2H), 1.81–1.65 (m, 4H), 1.12–0.88 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 155.2, 105.9, 87.3, 84.8, 40.4, 23.2, 18.5, 11.0. IR(neat) 2943, 2865, 2173, 2128, 1737, 1463, 1383, 1329, 1228, 1170, 1071, 995, 919, 881, 749, 675 cm⁻¹. HRMS (ESI) *m/z*: 358.1921 [(M+Na)⁺; calculated for C₁₇H₂₉N₃O₂SiNa: 358.1921]. **R**_F**1** = 0.24 in 20% EtOAc/Hex. **R**_F**2** = 0.6 in 20% EtOAc/Hex.

1-((triisopropylsilyl)ethynyl)cyclohexyl carbonazidate (74g) was synthesized from alcohol SI-34 using General Procedure C. The crude product was purified by column

chromatography on silica gel using a gradient of 0.5 to 1% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.785 g, 75% yield). ¹H NMR (500 MHz, CDCl₃) δ 2.20 (dt, J = 11.5, 4.4 Hz, 2H), 1.79 (dt, J = 11.8, 3.8 Hz, 2H), 1.72–1.50 (m, 4H), 1.14–0.90 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 154.5, 105.2, 88.9, 80.2, 37.0, 25.0, 22.9, 18.5, 11.1. **IR(neat)** 2939, 2864, 2183, 2135, 1739, 1463, 1383, 1366, 1296, 1262, 1205, 1170, 1140, 1119, 1071, 941, 918, 881, 852, 839, 676 cm⁻¹. **HRMS** (ESI) *m/z*: 372.2069 [(M+Na)⁺; calculated for C₁₈H₃₁N₃O₂SiNa: 372.2078]. **R**_F**1** = 0.27 in 10% EtOAc/Hex.

1-((triisopropylsilyl)ethynyl)cycloheptyl carbonazidate (74h) was synthesized from alcohol **SI-36** using General Procedure C. The crude product was purified by column chromatography on silica gel using a gradient of 0.5 to 1% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.816 g, 75% yield). ¹H NMR (500 MHz, CDCl₃) δ 2.28 (ddd, J = 14.0, 7.4, 3.1 Hz, 2H), 2.06 (ddd, J = 14.3, 8.8, 3.1 Hz, 2H), 1.72–1.50 (m, 8H), 1.14–0.91 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 154.6, 106.2, 88.3, 83.6, 40.0, 27.9, 22.2, 18.5, 11.1. **IR(neat)** 2940, 2864, 2181, 2130, 2069, 1735, 1527, 1462, 1367, 1286, 1223, 1192, 1176, 1065, 996, 881, 802, 749, 676 cm⁻¹. **HRMS** (ESI) *m/z*: 386.2234 [(M+Na)⁺; calculated for C₁₉H₃₃N₃O₂SiNa: 386.2234]. **R**_F**1** = 0.3 in 10% EtOAc/Hex. **R**_F**2** = 0.67 in 10% EtOAc/Hex.

1-tosyl-3-((triisopropylsilyl)ethynyl)pyrrolidin-3-yl (74i) carbonazidate was synthesized from alcohol SI-38 using General Procedure C. The crude product was purified by column chromatography on silica gel using a gradient of 5 to 10% EtOAc in hexanes as eluents. The product was obtained as a white solid. (1.1762 g, 80% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.69 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 4.00 (dd, J= 12.8, 1.7 Hz, 1H), 3.64 (d, J = 12.7 Hz, 1H), 3.54 (ddd, J = 9.6, 8.1, 3.1 Hz, 1H), 3.29 (ddd, J = 9.8, 9.7, 6.6 Hz, 1H), 2.50-2.34 (m, 4H), 2.26 (ddd, J = 13.7, 10.0, 8.2 Hz, 1H),1.08-0.87 (m, 21H). ¹³C NMR (100.52 MHz, CDCl₃) δ 154.7, 143.8, 133.3, 129.7, 127.6, 100.4, 90.9, 80.1, 57.8, 46.1, 38.9, 21.5, 18.4, 10.8. IR(neat) 2942, 2891, 2865, 2174, 2129, 1731, 1463, 1384, 1222, 1174, 1086, 1029, 1016, 972, 944, 919, 848, 814, 708, 697, 678 cm⁻¹. **HRMS** (ESI) m/z: 513.1967 [(M+Na)⁺; calculated for $C_{23}H_{34}N_4O_4SSiNa: 513.1962$]. $R_F1 = 0.2$ in 25% EtOAc/Hex. $R_F2 = 0.6$ in 25% EtOAc/Hex. MP: 72-74 °C.

3-((triisopropylsilyl)ethynyl)tetrahydrothiophen-3-yl carbonazidate (74j) was synthesized from alcohol **SI-40** using General Procedure C. The crude product was purified by column chromatography on silica gel using 2% EtOAc in hexanes as an eluent. The product was obtained as a colorless oil. (0.773 g, 73% yield). ¹H NMR (500 MHz, CDCl₃) δ 3.47 (dd, J = 12.3, 1.2 Hz, 1H), 3.31 (d, J = 12.1 Hz, 1H), 3.05–2.87 (m, 2H), 2.73–2.62 (m, 1H), 2.44–2.24 (m, 1H), 1.12–0.97 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 155.1, 102.1, 89.6, 84.1, 42.9, 41.2, 28.1, 18.5, 11.0. **IR(neat)** 2942, 2891, 2865, 2177, 2132, 1763, 1734, 1463, 1384, 1247, 1228, 1199, 1176, 1072, 1004, 959, 910, 881, 848, 747, 669 cm⁻¹. **HRMS** (CI) *m/z*: 353.1590 [(M)⁺; calculated for C₁₆H₂₇N₃O₂SSi: 353.1593]. **R**_F**1** = 0.2 in 10% EtOAc/Hex. **R**_F**2** = 0.48 in 5% EtOAc/Hex.

3-methyl-1-((triisopropylsilyl)ethynyl)cyclohexyl carbonazidate (74k) was synthesized from alcohol **SI-42** using General Procedure C. The crude product was purified by column chromatography on silica gel using a gradient of 0.5 to 1% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (1.09 g, 92% yield). ¹H **NMR** (500 MHz, CDCl₃) δ 2.46–2.29 (m, 1H), 1.88–1.57 (m, 4H), 1.53–1.42 (m, 1H), 1.27–1.15 (m, 1H), 1.05 (s, 21H), 0.92 (d, *J* = 6.7 Hz, 3H), 0.89–0.74 (m, 1H). ¹³C **NMR** (125.77 MHz, CDCl₃) δ 154.5, 104.9, 89.5, 81.0, 45.1, 36.8, 33.9, 30.2, 23.1, 21.9, 18.6, 11.1. **IR(neat)** 2940, 2865, 2177, 2133, 1738, 1462, 1383, 1298, 1281, 1229, 1209, 1174, 1052, 1016, 974, 914, 881, 748, 675, 660 cm⁻¹. **HRMS** (ESI) *m/z*: 386.2232 [(M+Na)⁺; calculated for C₁₉H₃₃N₃O₂SiNa: 386.2234]. **R**_F**1** = 0.3 in 10% EtOAc/Hex. **R**_F**2** = 0.67 in 10% EtOAc/Hex.

1-tosyl-4-((triisopropylsilyl)ethynyl)piperidin-4-yl carbonazidate (74l) was synthesized from alcohol **SI-44** using General Procedure C. The crude product was purified by column chromatography on silica gel using a gradient of 5 to 10% EtOAc in hexanes as eluents. The product was obtained as a white solid. (1.089 g, 72% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.61 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 3.57 (ddd, J = 12.4, 4.2, 4.2 Hz, 2H), 2.73 (ddd, J = 11.4, 11.4, 2.8 Hz, 2H), 2.41 (s, 3H), 2.37–2.25 (m, 2H), 2.04 (ddd, J = 12.8, 11.0, 4.0 Hz, 2H), 1.00–0.77 (m, 21H). ¹³C NMR (100.52

MHz, CDCl₃) δ 154.8, 143.7, 132.4, 129.7, 127.6, 102.5, 91.4, 77.2, 43.3, 35.8, 21.5, 18.4, 10.8. **IR(neat)** 2941, 2864, 2159, 2128, 1736, 1494, 1382, 1302, 1260, 1231, 1211, 1200, 1154, 1109, 1094, 1062, 1032, 960, 800, 767, 746, 729, 709, 679 cm⁻¹. **HRMS** (ESI) *m/z*: 527.2112 [(M+Na)⁺; calculated for C₂₄H₃₆N₄O₄SSiNa: 527.2119]. **R**_F**1** = 0.2 in 25% EtOAc/Hex. **R**_F**2** = 0.6 in 25% EtOAc/Hex. **MP**: 107-108 °C.

4-((triisopropylsilyl)ethynyl)tetrahydro-2*H***-pyran-4-yl carbonazidate (18) was synthesized from alcohol SI-45 using General Procedure C. The crude product was purified by column chromatography on silica gel using a gradient of 2 to 5% EtOAc in hexanes as eluents. The product was obtained as a colorless oil. (0.815 g, 77% yield). ¹H NMR (500 MHz, CDCl₃) \delta 3.89 (ddd, J = 12.1, 4.1, 4.1 Hz, 2H), 3.70 (ddd, J = 12.6, 10.2, 2.4 Hz, 2H), 2.25 (ddd, J = 13.1, 2.2, 2.2 Hz, 2H), 2.00 (ddd, J = 13.8, 10.2, 4.2 Hz, 2H), 1.13–0.98 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) \delta 154.7, 103.7, 90.3, 76.9, 64.7, 37.5, 18.5, 11.0. IR(neat)** 2941, 2864, 2184, 2136, 2070, 1738, 1463, 1385, 1267, 1221, 1153, 1098, 988, 935, 881, 849, 748, 660 cm⁻¹. **HRMS** (CI) *m/z*: 352.2045 [(M+H)⁺; calculated for C₁₇H₃₀N₃O₃Si: 352.2056]. **R**_F**1** = 0.24 in 20% EtOAc/Hex. **R**_F**2** = 0.45 in 10% EtOAc/Hex.

1-((*tert***-butyldiphenylsilyl)ethynyl)cyclopentyl carbonazidate (23)** was synthesized from alcohol **SI-46** using General Procedure C. The crude product was purified by column chromatography on silica gel using 2% EtOAc in hexanes as an eluent. The product was obtained as a white solid. (0.806 g, 77% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.86–7.75 (m, 4H), 7.46–7.33 (m, 6H), 2.46–2.25 (m, 4H), 1.90–1.77 (m, 4H), 1.10 (s, 9H). ¹³C NMR (125.77 MHz, CDCl₃) δ 155.4, 135.5, 132.8, 129.5, 127.7, 108.1, 86.4, 84.6, 40.4, 26.9, 23.3, 18.6. **IR(neat)** 3069, 2954, 2931, 2856, 2180, 2129, 1737, 1470, 1444, 1427, 1361, 1329, 1239, 1177, 1107, 998, 964, 950, 899, 819, 701 cm⁻¹. **HRMS** (ESI) *m/z*: 440.1763 [(M+Na)⁺; calculated for C₂₄H₂₇N₃O₂SiNa: 440.1765]. **R**_F**1** = 0.2 in 10% EtOAc/Hex. **R**_F**2** = 0.2 in 2% EtOAc/Hex. **MP**: 44-45 °C.

4-((triisopropylsilyl)ethynyl)tetrahydro-2H-pyran-4-yl carbamate (13)

A flame-dried round-bottom flask was charged with chlorosulfonyl isocyanate (1.5 equiv) under an argon atmosphere. Anhydrous CH₂Cl₂ (0.1M) was added, and the mixture was cooled to 0 °C in an ice/H₂O bath. The propargyl alcohol SI-45 (0.31 g, 0.26 mmol, 1.0 equiv) dissolved in anhydrous CH₂Cl₂ (0.3M) was then added dropwise. The reaction mixture was allowed to warm to room temperature. After 30 minutes, H_2O (1/10 of the total volume of CH_2Cl_2 added) and THF (1/5 of the total volume) were added. The reaction mixture was refluxed (45 °C oil bath) for 30 minutes. Then saturated NaCl solution was added, and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2x), and the organic phases were combined, dried over anhydrous MgSO₄, filtered and concentrated to yield crude product. The crude product was purified by column chromatography on silica gel using 30% EtOAc in hexanes as an eluent. The product was obtained as a white solid. (0.24 g, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.70 (s, 2H), 3.86 (ddd, J = 11.9, 4.1, 4.1 Hz, 2H), 3.71 (ddd, J = 12.0, 10.3, 2.5 Hz, 2H), 2.23 (ddd, J = 13.4, 4.5, 2.2 Hz, 2H), 1.97 (ddd, J = 13.4, 10.3, 4.2 Hz, 2H), 1.16-0.93 (m, 21H). ¹³C NMR (100.52 MHz, CDCl₃) δ 154.6, 105.8, 88.1, 73.0, 64.7, 38.0, 18.6, 11.1. IR(neat) 3429, 3333, 3272, 2941, 2864, 2166, 1723, 1362, 1245, 1204, 1098, 1057, 1025, 972, 906, 845, 819, 780, 718, 680, 663 cm⁻¹. HRMS (ESI) m/z: 348.1966 $[(M+Na)^+;$ calculated for C₁₇H₃₁NO₃SiNa: 348.1965]. **R**_F: 0.36 in 30% EtOAc/Hex. **MP**: 82-84 °C.

Synthesis of Azasilacyclopentenes and Silanols

General Procedure D1

A 2 dram vial was charged with a magnetic spin bar, carbonazidate (0.1 mmol), and dry hexanes (0.1 M, 1 mL). The reaction vessel was sealed and heated in an oil bath at 90 °C. **(Warning: Pressure buildup may occur during the reaction.)** The progress of the reaction was monitored by TLC. After the reaction was finished (18 h), the reaction vessel was cooled to room temperature and the mixture was concentrated under reduced pressure. To the crude product was added methyl-4-nitro-benzoate (9.1 mg, 0.05 mmol, 0.5 equiv) and CDCl₃ (0.7 mL). The yield of the azasilacyclopentene was calculated based on ¹H NMR peak integration relative to the methyl group of methyl-4-nitrobenzoate. NMR data was collected using a relaxation delay of 30 sec. (The experiments were conducted to show that RD = 30 sec was required to achieve quantitative information.) The azasilacyclopentenes were identified by their correspondence to the ¹H NMR data of 21a and their mass as determined by GC/MS. The crude product was purified by column chromatography on silica gel to give silanol.

General Procedure D2

A 2 dram vial was charged with a magnetic spin bar, carbonazidate (0.1 mmol), and dry isopropylacetate (0.1 M, 1 mL). The reaction vessel was sealed and heated in an oil bath

at 100 °C. (Warning: Pressure buildup may occur during the reaction.) The progress of the reaction was monitored by TLC. After the reaction was finished (14 h), the reaction vessel was cooled to room temperature and the mixture was concentrated under reduced pressure. To the crude product was added methyl-4-nitro-benzoate (9.1 mg, 0.05 mmol, 0.5 equiv) and CDCl₃ (0.7 mL). The yield of the azasilacyclopentene was calculated based on ¹H NMR peak integration relative to the methyl group of methyl-4nitro-benzoate. NMR data was collected using a relaxation delay of 30 sec. (The experiments were conducted to show that RD = 30 sec was required to achieve quantitative information.) The azasilacyclopentenes were identified by their correspondence to the ¹H NMR data of 21a and their mass as determined by GC/MS. The crude product was purified by column chromatography on silica gel to give silanol.

(Z)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-5,5-dimethyloxazolidin-2one (69a) was synthesized from carbonazidate 20a using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 10 to 20% EtOAc in hexanes as eluents. The silanol 69a was obtained as an amorphous yellowish solid. (trial 1: 15.6 mg, 52% yield; trial 2: 15.0 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 4.52 (s, 1H), 4.22 (s, 1H), 1.44 (s, 6H), 1.13 (s, 6H), 1.10– 0.93 (m, 14H). ¹³C NMR (125.77 MHz, CDCl₃) δ 156.8, 139.4, 107.5, 84.9, 28.1, 25.6, 23.9, 18.4, 18.4, 13.3. IR(neat) 3351, 2944, 2866, 1739, 1718, 1690, 1463, 1386, 1207, 1171, 963, 917, 824, 673 cm⁻¹. HRMS (ESI) *m/z*: 322.1813 [(M+Na)⁺; calculated for C₁₅H₂₉NO₃SiNa: 322.1809]. **R**_F: 0.2 in 20% EtOAc/Hex.

1,1-diisopropyl-2,2,4,4-tetramethyl-2,4-dihydro-1*H*,6*H*-[**1,2**]**azasilolo**[**1,5-***c*]**oxazol-6-one (21a)** was observed in crude NMR (53% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.36 (s, 1H), 1.45 (s, 6H), 1.20–1.15 (m, 20H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 150.2, 108.3, 81.5, 27.7, 26.0, 17.9, 17.5, 11.7. MS (EI) *m*/*z*: 281 [(M+); calculated for C₁₅H₂₇NO₂Si: 281.18]

(Z)-4-(2-(diethyl(hydroxy)silyl)propylidene)-5,5-dimethyloxazolidin-2-one (69b) was synthesized from carbonazidate 67b using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 20 to 25% EtOAc in hexanes as eluents. The silanol 69b was obtained as an amorphous yellowish solid. (trial 1: 10.0 mg, 39% yield; trial 2: 9.8 mg, 38% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.75 (s, 1H), 4.17 (d, *J* = 9.9 Hz, 1H), 3.00 (s, 1H), 1.66 (dq, *J* = 10.2, 7.4 Hz, 1H), 1.47 (s, 6H), 1.06 (d, *J* = 7.4 Hz, 3H), 1.02–0.90 (m, 6H), 0.68–0.49 (m, 4H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.9, 138.1, 100.9, 85.0, 28.1, 28.0, 20.6, 15.0, 6.8, 6.5, 4.9, 4.3.

IR(neat) 3463, 3231, 2953, 2875, 1723, 1698, 1388, 1369, 1325, 1299, 1204, 1186, 1153, 1017, 912, 888, 850, 770, 715, 669 cm⁻¹. **HRMS** (ESI) m/z: 280.1342 [(M+Na)⁺; calculated for C₁₂H₂₃NO₃SiNa: 280.1339]. **R**_F: 0.2 in 25% EtOAc/Hex.

1,1-diethyl-2,4,4-trimethyl-2,4-dihydro-1*H***,6***H***-[1,2]azasilolo[1,5-***c***]oxazol-6-one** (68b) was observed in crude NMR (38% yield).¹**H** NMR (400 MHz, CDCl₃) δ 4.57 (d, *J* = 3.2 Hz, 1H, vinyl proton), MS (EI) *m/z*: 239 [(M+); calculated for C₁₂H₂₁NO₂Si: 239.13]

(*Z*)-4-(2-(hydroxydipropylsilyl)butylidene)-5,5-dimethyloxazolidin-2-one (69c) was synthesized from carbonazidate 67c using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 20 to 25% EtOAc in hexanes as eluents. The silanol 69c was obtained as a yellow oil. (trial 1: 12.5 mg, 42% yield; trial 2: 13.7 mg, 46% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 4.11 (d, *J* = 10.5 Hz, 1H), 2.64 (s, 1H), 1.68–1.56 (m, 1H), 1.49 (d, *J* = 3.4 Hz, 6H), 1.45–1.17 (m, 5H), 1.03–0.90 (m, 6H), 0.88 (t, *J* = 7.2 Hz, 3H), 0.65–0.50 (m, 4H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.6, 139.7, 98.8, 85.0, 29.9, 28.1, 28.0, 22.7, 18.4, 18.4, 16.7, 16.7, 16.5, 16.2, 14.3. **IR(neat)** 3248, 2954, 2927, 2867, 1744, 1699, 1385, 1305, 1178, 1150, 1130, 1008, 894, 838, 752, 675 cm⁻¹. **HRMS** (CI) *m/z*: 298.1835 [(M-H)⁺; calculated for C₁₅H₂₈NO₃Si:298.1838]. **R**_F: 0.15 in 20% EtOAc/Hex.

2-ethyl-4,4-dimethyl-1,1-dipropyl-2,4-dihydro-1*H*,6*H*-[**1,2**]**azasilolo**[**1,5-***c*]**oxazol-6-one (68c)** was observed in crude NMR (42% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 4.65 (d, *J* = 3.2 Hz, 1H, vinyl proton), MS (EI) *m/z*: 281 [(M+); calculated for C₁₅H₂₇NO₂Si: 281.18]

(Z)-4-(2-(dibutyl(hydroxy)silyl)pentylidene)-5,5-dimethyloxazolidin-2-one (69d) was synthesized from carbonazidate 67d using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 15 to 20% EtOAc in hexanes as eluents. The silanol 69d was obtained as an amorphous yellowish solid. (trial 1: 14.7 mg, 43% yield; trial 2: 14.3 mg, 42% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.59 (s, 1H), 4.11 (d, *J* = 10.4 Hz, 1H), 2.65 (s, 1H), 1.56 (td, *J* = 11.1, 2.9 Hz, 1H), 1.48 (s, 6H), 1.43–1.07 (m, 12H), 0.93–0.78 (m, 9H), 0.67–0.48 (m, 4H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.6, 139.2, 99.2, 85.0, 31.7, 28.1, 28.0, 27.6, 26.6, 26.6, 25.3, 25.1, 22.6, 13.9, 13.7, 13.5, 13.1. IR(neat) 3238, 2955, 2923, 2870, 1746, 1699, 1464, 1385, 1307, 1196, 1174, 1132, 1009, 887, 767, 731, 676 cm⁻¹. HRMS (ESI) *m/z*:

364.2274 $[(M+Na)^+$; calculated for C₁₈H₃₅NO₃SiNa: 364.2278]. **R**_F: 0.2 in 25% EtOAc/Hex.

1,1-dibutyl-4,4-dimethyl-2-propyl-2,4-dihydro-1*H***,6***H***-[1,2]azasilolo[1,5-***c***]oxazol-6-one (68d)** was observed in crude NMR (56% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.63 (d, *J* = 2.9 Hz, 1H, vinyl proton), **MS** (EI) *m/z*: 323 [(M+); calculated for C₁₈H₃₃NO₂Si: 323.22]

(*Z*)-4-(2-(dihexyl(hydroxy)silyl)heptylidene)-5,5-dimethyloxazolidin-2-one (69e) was synthesized from carbonazidate 67e using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 10 to 15% EtOAc in hexanes as eluents. The silanol 69e was obtained as an amorphous yellowish solid. (trial 1: 18.7 mg, 44% yield; trial 2: 19.1 mg, 45% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.58 (s, 1H), 4.11 (d, *J* = 10.6 Hz, 1H), 2.65 (s, 1H), 1.59–1.42 (m, 8H), 1.42–1.05 (m, 23H), 0.94–0.76 (m, 9H), 0.65–0.46 (m, 4H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.6, 139.2, 99.3, 85.0, 33.4, 33.3, 31.6, 31.5, 31.5, 29.4, 29.2, 28.1, 28.0, 27.8, 23.1, 22.8, 22.6, 22.6, 14.1, 14.1, 14.1, 13.9, 13.4. **IR(neat)** 3397, 3096, 2957, 2919, 2871, 2852, 1744, 1704, 1461, 1382, 1366, 1328, 1209, 1167, 1031, 1006, 953, 895, 845, 764, 722, 676 cm ¹. **HRMS** (ESI) *m/z*: 448.3221 [(M+Na)⁺; calculated for C₂₄H₄₇NO₃SiNa: 448.3217]. **R**_F: 0.15 in 10% EtOAc/Hex.

1,1-dihexyl-4,4-dimethyl-2-pentyl-2,4-dihydro-1*H***,6***H***-[1,2]azasilolo[1,5-***c***]oxazol-6one (48e) was observed in crude NMR (56% yield). ¹H NMR (400 MHz, CDCl₃) \delta 4.63 (d, J = 2.9 Hz, 1H, vinyl proton), MS (EI)** *m/z***: 407 [(M+); calculated for C₂₄H₄₅NO₂Si: 407.32]**

(Z)-4-(2-(hydroxydiisobutylsilyl)-3-methylbutylidene)-5,5-dimethyloxazolidin-2-one (69f) was synthesized from carbonazidate 67f using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 15 to 20% EtOAc in hexanes as eluents. The silanol 69f was obtained as an amorphous yellowish solid. (trial 1: 15.0 mg, 44% yield; trial 2: 14.0 mg, 41% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 4.25 (d, *J* = 11.4 Hz, 1H), 2.04–1.91 (m, 1H), 1.91–1.74 (m, 2H), 1.50 (s, 3H), 1.49 (s, 3H), 1.01–0.82 (m, 19H), 0.67–0.49 (m, 4H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.7, 140.4, 95.7, 85.0, 36.0, 28.4, 28.0, 28.0, 26.6, 26.5, 26.4,

26.3, 26.2, 25.8, 24.3, 24.2, 23.6, 20.4. **IR(neat)** 3241, 2952, 2866, 1743, 1697, 1464, 1384, 1316, 1218, 1184, 1089, 1009, 822, 797, 757, 744, 674 cm⁻¹. **HRMS** (ESI) *m/z*: 364.2282 [(M+Na)⁺; calculated for $C_{18}H_{35}NO_3SiNa$: 364.2278]. **R**_F: 0.2 in 25% EtOAc/Hex.

1,1-diisobutyl-2-isopropyl-4,4-dimethyl-2,4-dihydro-1*H*,6*H*-[**1,2**]azasilolo[**1,5***c*]oxazol-6-one (68f) was observed in crude NMR (55% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.71 (d, *J* = 3.2 Hz, 1H, vinyl proton), MS (EI) *m/z*: 323 [(M+); calculated for C₁₈H₃₃NO₂Si: 323.22]

methyloxazolidin-2-one (76a) was synthesized from carbonazidate 74a using General Procedure D1. The crude product was purified by column chromatography on silica gel using 10% EtOAc in hexanes as an eluent. The silanol 76a was obtained as an amorphous yellowish solid. (trial 1: 16.3 mg, 52% yield; trial 2: 15.9 mg, 51% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.19 (s, 1H), 4.28 (s, 1H), 4.17 (s, 1H), 1.76 (dq, J = 14.6, 7.3 Hz, 1H), 1.59 (dq, J = 14.5, 7.3 Hz, 1H), 1.41 (s, 3H), 1.14 (d, J = 6.2 Hz, 6H), 1.11–0.99 (m, 14H), 0.89 (t, J = 7.3 Hz, 3H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.6, 137.7, 108.1, 87.7, 33.9, 26.7, 26.0, 25.3, 24.0, 18.4, 18.4, 18.4, 18.3, 13.4, 13.4, 7.3. **IR(neat)** 3350, 2969, 2943, 2866, 1736, 1717, 1687, 1462, 1331, 1281, 1248, 1143, 1099, 1033, 1004, 957, 904, 882, 824, 673 cm⁻¹. **HRMS** (ESI) *m/z*: 336.1970 [(M+Na)⁺; calculated for C₁₆H₃₁NO₃SiNa: 336.1965]. **R**_F: 0.3 in 20% EtOAc/Hex.

4-ethyl-1,1-diisopropyl-2,2,4-trimethyl-2,4-dihydro-1*H*,6*H*-[1,2]azasilolo[1,5*c*]oxazol-6-one (75a) was observed in crude NMR (57% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.33 (s, 1H, vinyl proton), MS (EI) *m/z*: 295 [(M+); calculated for C₁₆H₂₉NO₂Si: 295.20]

(Z)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-5-methyl-5propyloxazolidin-2-one (76b) was synthesized from carbonazidate 74b using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 10 to 15% EtOAc in hexanes as eluents. The silanol 76b was obtained as an amorphous yellowish solid. (trial 1: 17.3 mg, 53% yield; trial 2: 17.7 mg, 54% yield;). ¹H NMR (500 MHz, CDCl₃) δ 9.17 (s, 1H), 4.31 (s, 1H), 4.17 (s, 1H), 1.77–1.61 (m, 1H), 1.58–1.46 (m, 1H), 1.40 (s, 3H), 1.39–1.29 (m, 2H), 1.13 (d, J = 2.4 Hz, 6H), 1.10–1.01 (m, 14H), 0.88 (t, J = 7.3 Hz, 3H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.5, 138.1, 108.1, 87.4, 43.3, 26.9, 26.0, 25.3, 24.0, 18.4, 18.4, 18.3, 16.3, 14.0, 13.5. IR(neat) 3207, 2941, 2863, 1747, 1687, 1463, 1366, 1332, 1291, 1231, 1146, 1078, 1006, 915, 880, 861, 837, 707, 666 cm⁻¹. **HRMS** (ESI) m/z: 350.2126 [(M+Na)⁺; calculated for C₁₇H₃₃NO₃SiNa: 350.2122]. **R**_F: 0.27 in 20% EtOAc/Hex.

1,1-diisopropyl-2,2,4-trimethyl-4-propyl-2,4-dihydro-1*H***,6***H***-[1,2]azasilolo[1,5-***c***]oxazol-6-one (75b)** was observed in crude NMR (55% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.33 (s, 1H, vinyl proton), **MS** (EI) *m/z*: 309 [(M+); calculated for C₁₇H₃₁NO₂Si: 309.21]

(Z)-5-butyl-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-5methyloxazolidin-2-one (76c) was synthesized from carbonazidate 74c using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 10 to 15% EtOAc in hexanes as eluents. The silanol 76c was obtained as a yellowish oil. (trial 1: 20.2 mg, 59% yield; trial 2: 20.1 mg, 59 % yield). ¹H NMR (500 MHz, CDCl₃) δ 9.29 (s, 1H), 4.64 (s, 1H), 4.18 (s, 1H), 1.80–1.65 (m, 1H), 1.59– 1.48 (m, 1H), 1.40 (s, 3H), 1.36–1.21 (m, 4H), 1.13 (d, *J* = 3.7 Hz, 6H), 1.09–1.03 (m, 14H), 0.85 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.7, 138.1, 108.2, 87.7, 40.8, 27.1, 25.9, 25.4, 25.1, 24.0, 22.6, 18.4, 18.4, 18.4, 18.3, 13.9, 13.5, 13.4. **IR(neat)** 3221, 2942, 2865, 1742, 1689, 1464, 1330, 1288, 1144, 1005, 961, 915, 829, 767, 731, 672 cm⁻¹. **HRMS** (ESI) *m/z*: 364.2282 [(M+Na)⁺; calculated for C₁₈H₃₅NO₃SiNa: 364.2278]. **R**_F: 0.3 in 20% EtOAc/Hex.

4-butyl-1,1-diisopropyl-2,2,4-trimethyl-2,4-dihydro-1*H***,6***H***-[1,2]azasilolo[1,5-***c***]oxazol-6-one (75c)** was observed in crude NMR (60% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.30 (s, 1H, vinyl proton), **MS** (EI) *m/z*: 323 [(M+); calculated for C₁₈H₃₃NO₂Si: 323.23]

(*Z*)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-5-isobutyl-5methyloxazolidin-2-one (76d) was synthesized from carbonazidate 74d using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 10 to 15% EtOAc in hexanes as eluents. The silanol 76d was obtained as a yellowish oil. (trial 1: 14.8 mg, 43% yield; trial 2: 15.4 mg, 45 % yield). ¹H NMR (500 MHz, CDCl₃) δ 9.25 (s, 1H), 4.46 (s, 1H), 4.16 (s, 1H), 1.85–1.72 (m, *J* = 6.5 Hz, 1H), 1.65 (dd, *J* = 14.7, 6.5 Hz, 1H), 1.52 (dd, *J* = 14.8, 5.6 Hz, 1H), 1.40 (s, 3H), 1.14 (d, *J* = 5.6 Hz, 6H), 1.10–0.98 (m, 14H), 0.91 (t, *J* = 6.6 Hz, 6H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.5, 138.6, 108.3, 87.8, 49.2, 27.7, 26.1, 25.1, 24.3, 24.3, 24.3, 24.0, 24.0, 18.5, 18.4, 18.4, 18.3, 13.4. **IR(neat)** 3221, 2947, 2866, 1742, 1689, 1464, 1376, 1314, 150, 1007, 915, 880, 829, 792, 767, 731, 672 cm⁻¹. **HRMS** (ESI) *m/z*: 364.2282 [(M+Na)⁺; calculated for C₁₈H₃₅NO₃SiNa: 364.2278]. **R**_F: 0.24 in 20% EtOAc/Hex. 4-isobutyl-1,1-diisopropyl-2,2,4-trimethyl-2,4-dihydro-1*H*,6*H*-[1,2]azasilolo[1,5*c*]oxazol-6-one (75d) was observed in crude NMR (49% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.32 (s, 1H, vinyl proton), MS (EI) *m/z*: 323 [(M+); calculated for C₁₈H₃₃NO₂Si: 323.23]

(*Z*)-5-allyl-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-5-methyloxazolidin-2-one (76e) was synthesized from carbonazidate 74e using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 10 to 15% EtOAc in hexanes as eluents. The silanol 76e was obtained as a yellowish oil. (trial 1: 16.3 mg, 50% yield; trial 2: 16.1 mg, 49 % yield). ¹H NMR (600 MHz, CDCl₃) δ 9.20 (s, 1H), 5.89–5.56 (m, 1H), 5.14–5.12 (m, 1H), 5.11 (d, *J* = 4.4 Hz, 1H), 4.32 (s, 1H), 4.22 (s, 1H), 2.43 (dd, *J* = 14.3, 7.7 Hz, 1H), 2.36 (dd, *J* = 14.2, 6.5 Hz, 1H), 1.42 (s, 3H), 1.13 (s, 6H), 1.10–1.00 (m, 14H). ¹³C NMR (151 MHz, CDCl₃) δ 157.3, 137.6, 131.1, 119.8, 108.7, 86.3, 45.4, 26.3, 26.0, 25.4, 24.1, 18.4, 18.4, 18.3, 13.4, 13.4. **IR(neat)** 3235, 2944, 2865, 1744, 1690, 1463, 1374, 1329, 1239, 1099, 1046, 1003, 918, 880, 829, 765, 672 cm⁻¹. **HRMS** (ESI) *m/z*: 348.1975 [(M+Na)⁺; calculated for C₁₇H₃₁NO₃Si: 348.1965]. **R**_F: 0.15 in 15% EtOAc/Hex.

4-allyl-1,1-diisopropyl-2,2,4-trimethyl-2,4-dihydro-1*H*,6*H*-[**1,2**]azasilolo[**1,5***c*]oxazol-6-one (75e) was observed in crude NMR (52% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.35 (s, 1H, vinyl proton), MS (EI) *m/z*: 307 [(M+); calculated for C₁₇H₂₉NO₂Si: 307.20]

(*Z*)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-1-oxa-3azaspiro[4.4]nonan-2-one (76f) was synthesized from carbonazidate 74f using General Procedure D1. The crude product was purified by column chromatography on silica gel using 10% EtOAc in hexanes as an eluent. The silanol 76f was obtained as an amorphous yellowish solid. (trial 1: 16.6 mg, 51% yield; trial 2: 14.6 mg, 45% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.30 (s, 1H), 4.76 (s, 1H), 4.26 (s, 1H), 2.17–2.03 (m, 2H), 1.92–1.66 (m, 6H), 1.13 (s, 6H), 1.09–1.01 (m, 14H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.4, 137.7, 107.9, 95.1, 41.1, 41.1, 25.6, 25.6, 24.2, 24.2, 24.0, 18.4, 18.4, 18.4, 18.4, 13.4, 13.4. IR(neat) 3350, 2941, 2864, 1746, 1692, 1464, 1432, 1340, 1311, 1247, 1080, 991, 880, 791, 765, 674 cm⁻¹. HRMS (ESI) *m/z*: 348.1970 [(M+Na)⁺; calculated for C₁₇H₃₁NO₃SiNa: 348.1965]. **R**_F: 0.2 in 20% EtOAc/Hex.

1',1'-diisopropyl-2',2'-dimethyl-1',2'-dihydro-6'H-spiro[cyclopentane-1,4'-

[1,2]azasilolo[1,5-c]oxazol]-6'-one (75f) was observed in crude NMR (52% yield). ¹H

NMR (400 MHz, CDCl₃) δ 4.39 (s, 1H, vinyl proton), **MS** (EI) *m/z*: 307 [(M+); calculated for C₁₇H₂₉NO₂Si: 307.20]

(Z)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-1-oxa-3azaspiro[4.5]decan-2-one (76g) was synthesized from carbonazidate 74g using General Procedure D1. The crude product was purified by column chromatography on silica gel using 10% EtOAc in hexanes as an eluent. The silanol 76g was obtained as a yellowish solid. (trial 1: 16.9 mg, 50% yield; trial 2: 16.2 mg, 48% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.15 (s, 1H), 4.44 (s, 1H), 4.20 (s, 1H), 1.94–1.81 (m, 2H), 1.78–1.54 (m, 6H), 1.53–1.33 (m, 2H), 1.12 (s, 6H), 1.09–0.90 (m, 14H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.6, 139.3, 108.3, 86.8, 37.1, 37.1, 25.7, 25.7, 24.7, 23.9, 21.7, 21.7, 18.4, 18.4, 13.4, 13.4. **IR(neat)** 3195, 2931, 2866, 1754, 1690, 1463, 1421, 1306, 1148, 1005, 945, 885, 867, 727, 699, 662 cm⁻¹. **HRMS** (ESI) *m/z*: 362.2127 [(M+Na)⁺; calculated for C₁₈H₃₃NO₃SiNa: 362.2122]. **R**_F: 0.24 in 20% EtOAc/Hex. **MP**: 123-125 °C. **1',1'diisopropyl-2',2'-dimethyl-1',2'-dihydro-6'***H***-spiro[cyclohexane-1,4'-**

[1,2]azasilolo[1,5-c]oxazol]-6'-one (75g) was observed in crude NMR (51% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.34 (s, 1H, vinyl proton), MS (EI) *m/z*: 321 [(M+); calculated for C₁₈H₃₁NO₂Si: 321.21]

(Z)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-1-oxa-3azaspiro[4.6]undecan-2-one (76h) was synthesized from carbonazidate 74h using General Procedure D1. The crude product was purified by column chromatography on silica gel using 10% EtOAc in hexanes as an eluent. The silanol 76h was obtained as an amorphous white solid. (trial 1: 16.5 mg, 47% yield; trial 2: 16.2 mg, 46% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.20 (s, 1H), 4.61 (s, 1H), 4.25 (s, 1H), 2.05–1.92 (m, 2H), 1.83–1.59 (m, 6H), 1.59–1.45 (m, 4H), 1.12 (s, 6H), 1.09–0.89 (m, 14H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.6, 140.9, 108.1, 90.1, 40.8, 28.8, 25.7, 21.9, 18.4, 18.4, 13.5. IR(neat) 3282, 2924, 2861, 1740, 1683, 1455, 1444, 1368, 1276, 1143, 1086, 1058, 1003, 952, 869, 849, 821, 786, 663 cm⁻¹. HRMS (ESI) *m/z*: 376.2282 [(M+Na)⁺; calculated for C₁₉H₃₅NO₃SiNa: 376.2278]. **R**_F: 0.27 in 20% EtOAc/Hex. 1',1'diisopropyl-2',2'-dimethyl-1',2'-dihydro-6'*H*-spiro[cycloheptane-1,4'-

[1,2]azasilolo[1,5-c]oxazol]-6'-one (75h) was observed in crude NMR (56% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.39 (s, 1H, vinyl proton), MS (EI) *m/z*: 335 [(M+); calculated for C₁₉H₃₃NO₂Si: 335.23]

(*Z*)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-7-tosyl-1-oxa-3,7diazaspiro[4.4]nonan-2-one (76i) was synthesized from carbonazidate 74i using General Procedure D2. The crude product was purified by column chromatography on silica gel using 25% EtOAc in hexanes as an eluent. The silanol 76i was obtained as a white solid. (trial 1: 23.5 mg, 49% yield; trial 2: 23.0 mg, 48% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.00 (s, 1H), 7.69 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.31 (s, 1H), 3.74–3.66 (m, 1H), 3.50 (q, *J* = 12.1 Hz, 2H), 3.36 (s, 1H), 3.23 (ddd, *J* = 11.2, 9.6, 6.1 Hz, 1H), 2.42 (s, 3H), 2.16 (dd, *J* = 13.6, 5.9 Hz, 1H), 2.04–1.89 (m, 1H), 1.11 (s, 6H), 1.09–0.86 (m, 14H). ¹³C NMR (125.77 MHz, CDCl₃) δ 155.6, 144.0, 133.4, 133.3, 129.9, 127.6, 110.3, 90.4, 59.5, 47.2, 39.8, 25.4, 25.2, 24.2, 21.6, 18.4, 18.4, 18.3, 18.3, 13.2, 13.2. **IR(neat)** 2943, 2865, 1747, 1699, 1597, 1494, 1462, 1360, 1342, 1239, 1167, 1149, 1039, 1017, 993, 949, 910, 815, 732, 764, 706, 660 cm⁻¹. **HRMS** (ESI) *m/z*: 503.2011 [(M+Na)⁺; calculated for C₂₃H₃₆N₂O₅SSiNa: 503.2006]. **R**_F: 0.24 in 30% EtOAc/Hex. **MP**: 150-152 °C.

1',1'-diisopropyl-2',2'-dimethyl-1-tosyl-1',2'-dihydro-6'*H*-spiro[pyrrolidine-3,4'-[1,2]azasilolo[1,5-*c*]oxazol]-6'-one (75i) was observed in crude NMR (50% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.41 (s, 1H, vinyl proton), MS (EI) *m/z*: 462 [(M+); calculated for C₂₃H₃₄N₂O₄SSi: 462.20]

(*Z*)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-1-oxa-7-thia-3azaspiro[4.4]nonan-2-one (76j) was synthesized from carbonazidate 74j using General Procedure D2. The crude product was purified by column chromatography on silica gel using 25% EtOAc in hexanes as an eluent. The silanol 76j was obtained as an amorphous white solid. (trial 1: 14.5 mg, 42% yield; trial 2: 14.0 mg, 41% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.36 (s, 1H), 4.48 (s, 1H), 4.45 (s, 1H), 3.16 (d, *J* = 12.1 Hz, 1H), 3.13– 3.04 (m, 1H), 3.00 (d, *J* = 12.3 Hz, 1H), 2.98–2.92 (m, 1H), 2.44–2.36 (m, 1H), 2.06– 1.95 (m, 1H), 1.14 (s, 6H), 1.10–0.99 (m, 14H). ¹³C NMR (125.77 MHz, CDCl₃) δ 156.6, 133.7, 109.9, 94.3, 43.2, 42.6, 29.3, 25.5, 25.4, 24.3, 18.4, 18.3, 13.3. IR(neat) 3391, 2945, 2864, 1749, 1690, 1623, 1462, 1385, 1371, 1334, 1297, 1278, 1246, 1067, 992, 881, 824, 755, 666 cm⁻¹. HRMS (ESI) *m/z*: 366.1534 [(M+Na)⁺; calculated for C₁₆H₂₉NO₃SSiNa: 366.1530]. **R**_F: 0.21 in 20% EtOAc/Hex.

1',1'-diisopropyl-2',2'-dimethyl-1',2',4,5-tetrahydro-2*H*,6'*H*-spiro[thiophene-3,4'-[1,2]azasilolo[1,5-*c*]oxazol]-6'-one (75j) was observed in crude NMR (45% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.58 (s, 1H, vinyl proton), MS (EI) *m/z*: 325 [(M+); calculated for C₁₆H₂₇NO₂SSi: 325.15]

(5*S*,7*R*,*Z*)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-7-methyl-1-oxa-3azaspiro[4.5]decan-2-one (76k) was synthesized from carbonazidate 74k using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 5 to 10% EtOAc in hexanes as eluents. The silanol 76k was obtained as an amorphous yellowish solid. (trial 1: 12.4 mg, 35% yield; trial 2: 12.3 mg, 35% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 4.60 (s, 1H), 4.43 (s, 1H), 2.00–1.41 (m, 9H), 1.14 (s, 6H), 1.05 (s, 14H), 0.98 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.4, 139.3, 109.8, 86.7, 43.4, 36.2, 32.0, 28.0, 25.8, 25.7, 24.2, 21.4, 19.8, 18.4, 18.4, 18.4, 18.3, 13.5, 13.5. **IR(neat)** 3088, 2926, 2863, 1745, 1678, 1463, 1367, 1323, 1286, 1250, 1206, 1155, 1134, 1058, 972, 935, 921, 826, 791, 668 cm⁻¹. **HRMS** (ESI) *m/z*: 376.2283 [(M+Na)⁺; calculated for C₁₉H₃₅NO₃SiNa: 376.2278]. **R**_F: 0.18 in 15% EtOAc/Hex.

(1*S*,3*R*)-1',1'-diisopropyl-2',2',3-trimethyl-1',2'-dihydro-6'*H*-spiro[cyclohexane-1,4'-[1,2]azasilolo[1,5-*c*]oxazol]-6'-one (75k) was observed in crude NMR (36% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.50 (s, 1H, vinyl proton), MS (EI) *m/z*: 335 [(M+); calculated for C₁₉H₃₃NO₂Si: 335.23]

(5S,8aS)-5-methyl-4-(triisopropylsilyl)-5,6,7,8-tetrahydro-5,8a-

methanocyclohepta[*d*]oxazol-2(*3H*)-one (77) was synthesized from carbonazidate 74k using General Procedure D1. The crude product was purified by column chromatography on silica gel using a gradient of 5 to 10% EtOAc in hexanes as eluents. The tricycle 77 was obtained as a white solid. (trial 1: 11.3 mg, 34% yield; trial 2: 11.8 mg, 35% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.66 (s, 1H), 2.15–2.01 (m, 1H), 1.86–1.68 (m, 3H), 1.65 (d, J = 9.1 Hz, 1H), 1.62–1.52 (m, 1H), 1.43 (d, 1H), 1.32–1.19 (m, 4H), 1.19–0.94 (m, 21H). ¹³C NMR (100.52 MHz, CDCl₃) δ 158.9, 152.4, 106.1, 92.7, 57.7, 53.7, 32.6, 28.8, 27.8, 20.8, 19.1, 19.1, 19.1, 19.1, 17.7, 12.5, 12.5, 12.2. **IR(neat)** 3230, 2938, 2864, 1756, 1629, 1465, 1321, 1277, 1229, 1008, 976, 944, 881, 846, 745, 712, 665 cm⁻¹. **HRMS** (ESI) *m/z*: 358.2177 [(M+Na)⁺; calculated for C₁₉H₃₃NO₂SiNa: 358.2173]. **R**_F: 0.39 in 15% EtOAc/Hex. **MP** 120-122 °C

(Z)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-8-tosyl-1-oxa-3,8diazaspiro[4.5]decan-2-one (76l) was synthesized from carbonazidate 74l using General Procedure D2. The crude product was purified by column chromatography on silica gel

using a gradient of 10 to 20% EtOAc in hexanes as eluents. The silanol **761** was obtained as a white solid. (trial 1: 25.7 mg, 52% yield; trial 2: 26.2 mg, 53% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.03 (s, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 4.25 (s, 1H), 3.84–3.67 (m, 3H), 3.35 (t, J = 6.1 Hz, 1H), 2.59–2.47 (m, 3H), 2.43 (s, 3H), 1.90–1.82 (m, 2H), 1.11 (s, 6H), 1.06–0.92 (m, 14H). ¹³C NMR (125.77 MHz, CDCl₃) δ 156.4, 143.9, 136.9, 132.7, 129.9, 127.6, 109.6, 82.9, 45.9, 42.34, 40.6, 36.1, 25.4, 24.0, 21.5, 18.4, 13.3. **IR(neat)** 3335, 2946, 2867, 1745, 1698, 1595, 1464, 1376, 1314, 1259, 1180, 1085, 1003, 944, 932, 913, 894, 877, 765, 742, 721, 675 cm⁻¹. **HRMS** (ESI) *m/z*: 517.2167 [(M+Na)⁺; calculated for C₂₄H₃₈N₂O₅SSiNa: 517.2163]. **R**_F: 0.24 in 30% EtOAc/Hex. **MP**: 201-202 °C.

(5S,8aS)-6-tosyl-4-(triisopropylsilyl)-5,6,7,8-tetrahydro-5,8a-methanooxazolo[4,5-

d]azepin-2(3*H*)-one (78) was synthesized from carbonazidate 74l using General Procedure D2. The crude product was purified by column chromatography on silica gel using a gradient of 10 to 20% EtOAc in hexanes as eluents. The tricycle 56 was obtained as a white solid. (trial 1: 9.5 mg, 20% yield; trial 2: 10.0 mg, 21% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 7.16 (s, 1H), 5.07 (d, *J* = 4.0 Hz, 1H), 3.91 (dd, *J* = 14.7, 6.8 Hz, 1H), 3.47 (ddd, *J* = 14.7, 11.9, 5.4 Hz, 1H), 2.42 (s, 3H), 2.09–2.02 (m, 1H), 1.97–1.86 (m, 1H), 1.65 (d, *J* = 9.7 Hz, 1H), 1.62–1.53 (m, 2H), 1.18–0.93 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 158.1, 156.3, 143.6, 137.5, 129.9, 127.1, 100.5, 91.6, 65.3, 48.2, 40.9, 30.8, 21.6, 18.5, 11.5. IR(neat) 3206, 2942, 2863, 1770, 1655, 1597, 1459, 1339, 1297, 1223, 1207, 1165, 1153, 1094, 1009, 959, 926, 902, 767, 729, 706, 661 cm⁻¹. HRMS (ESI) *m/z*: 499.2060 [(M+Na)⁺; calculated for C₂₄H₃₆N₂O₄SSiNa: 499.2057]. **R**_F: 0.42 in 30% EtOAc/Hex. MP: 199-200 °C.

2-(1-tosylpiperidin-4-ylidene)-2-(triisopropylsilyl)acetonitrile (78a) was synthesized from carbonazidate **74I** using General Procedure D2. The crude product was purified by column chromatography on silica gel using a gradient of 10 to 20% EtOAc in hexanes as an eluent. The nitrile **78a** was obtained as a white solid. (trial 1: 4.3 mg, 10% yield; trial 2: 4.8 mg, 11% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 3.15 (t, *J* = 5.9 Hz, 2H), 3.11 (t, *J* = 5.7 Hz, 2H), 2.86 (t, *J* = 5.9 Hz, 2H), 2.51 (t, *J* = 5.9 Hz, 2H), 2.42 (s, 3H), 1.37–1.24 (m, 3H), 1.11–0.90 (m, 18H). ¹³C NMR (100.52 MHz, CDCl₃) δ 170.4, 144.0, 133.2, 129.8, 127.5, 119.9, 106.3, 46.8, 46.5, 35.9, 34.4, 21.6, 18.5, 12.6. **IR(neat)** 2946, 2863, 2190, 1766, 1656, 1596, 1494, 1357, 1227, 1162, 1101, 1072, 954, 935, 903, 815, 800, 732, 712, 701, 676 cm⁻¹. **HRMS** (ESI) *m/z*: 455.2165 [(M+Na)⁺; calculated for C₂₃H₃₆N₂O₂SSiNa: 455.2159]. **R**_F: 0.6 in 30% EtOAc/Hex. **MP**: 96-98 °C.

2-(tetrahydro-4*H***-pyran-4-ylidene)-2-(triisopropylsilyl)acetonitrile** (17) was synthesized from carbonazidate **18** using General Procedure D2. The crude product was purified by column chromatography on silica gel using a gradient of 5 to 20% EtOAc in hexanes as an eluent. The nitrile **17** was obtained as a white solid. (trial 1: 1.4 mg, 5% yield; trial 2: 1.3 mg, 4% yield). ¹H NMR (500 MHz, CDCl₃) δ 3.80 (t, *J* = 5.7 Hz, 2H), 3.74 (t, *J* = 5.7 Hz, 2H), 2.82 (t, *J* = 5.7 Hz, 2H), 2.47 (t, *J* = 5.7 Hz, 2H), 1.41–1.31 (m, 3H), 1.11 (m, 18H). ¹³C NMR (125.77 MHz, CDCl₃) δ 172.4, 120.5, 104.2, 69.0, 68.5, 38.0, 36.6, 18.7, 13.0. **IR(neat)** 2941, 2889, 2863, 2846, 2195, 1756, 1574, 1459, 1430, 1374, 1318, 1288, 1222, 1264, 1172, 1021, 916, 882, 872, 709, 678 cm⁻¹. **HRMS** (CI) *m/z*: 280.2095 [(M+H)⁺; calculated for C₁₆H₃₀NOSi: 280.2097]. **R**_F: 0.51 in 20% EtOAc/Hex. **MP** 53-55 °C.

(Z)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-1,8-dioxa-3-

azaspiro[4.5]decan-2-one (19) was synthesized from carbonazidate 18 using General Procedure D2. The crude product was purified by column chromatography on silica gel using a gradient of 5 to 20% EtOAc in hexanes as eluents. The silanol 19 was obtained as a white solid. (trial 1: 15.6 mg, 46% yield; trial 2: 14.0 mg, 41% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.10 (s, 1H), 4.28 (s, 1H), 3.99 (s, 1H), 3.93–3.82 (m, 2H), 3.75 (ddd, J = 11.8, 11.9, 2.3 Hz, 2H), 1.91–1.65 (m, 4H), 1.14 (s, 6H), 1.05 (s, 14H). ¹³C NMR (125.77 MHz, CDCl₃) δ 156.8, 137.8, 109.2, 83.5, 63.8, 37.1, 25.6, 24.0, 18.4, 13.4. **IR(neat)** 3280, 3064, 2951, 2968, 2858, 1748, 1701, 1427, 1385, 1301, 1255, 1244, 1125, 1100, 1021, 1005, 947, 895, 843, 822, 778, 728, 677 cm⁻¹. **HRMS** (ESI) *m/z*: 364.1918 [(M+Na)⁺; calculated for C₁₇H₃₁NO₄SiNa: 364.1915]. **R**_F: 0.18 in 20% EtOAc/Hex. **MP**: 76-78 °C.

(5S,8aS)-4-(triisopropylsilyl)-3,5,7,8-tetrahydro-2H-5,8a-methanooxepino[4,5-

d]oxazol-2-one (14) was synthesized from carbonazidate 18 using General Procedure D2. The crude product was purified by column chromatography on silica gel using a gradient of 5 to 20% EtOAc in hexanes as eluents. The tricycle 14 was obtained as a white solid. (trial 1: 9.1 mg, 28% yield; trial 2: 10.1 mg, 31% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.06 (s, 1H), 4.98 (d, *J* = 2.9 Hz, 1H), 4.09–4.01 (m, 1H), 3.88 (dd, *J* = 10.9, 6.9 Hz, 1H), 2.34–2.26 (m, 2H), 2.18 (d, *J* = 9.2 Hz, 1H), 1.69–1.63 (m, 1H), 1.19–1.10 (m, 3H), 1.09–1.04 (m, 18H). ¹³C NMR (125.77 MHz, CDCl₃) δ 158.6, 156.5, 98.2, 91.9, 84.9, 60.6, 52.3, 32.6, 31.1, 18.8, 18.6, 11.8. **IR(neat)** 3204, 2942, 2864, 1752, 1690, 1651, 1337, 1316, 1248, 1219, 162, 1297, 1100, 1069, 1040, 968, 940, 914, 881, 855, 729, 700 cm⁻¹. **HRMS** (ESI) *m/z*: 346.1814 [(M+Na)⁺; calculated for C₁₇H₂₉NO₃SiNa: 346.1809]. **R**_F: 0.39 in 20% EtOAc/Hex. **MP**: 95-97 °C.

A 2 dram vial was charged with magnetic stir bar, alkynyl carbamate **13** (65 mg, 0.2 mmol, 1.0 equiv), $PhI(OAc)_2$ (77.3 mg, 0.24 mmol, 1.2 equiv) and $Rh_2(esp)_2$ (0.8 mg, 0.0001 mmol, 0.5 mol%). Isopropyl acetate (2 mL, 0.1 M) was added and the vial was sealed. The reaction mixture was heated at 80 °C for 21 hours. When cooled to room

temperature, solvents were removed via rotary evaporation and the residue was purified by flash column chromatography on silica gel using a gradient of 5 to 20% EtOAc in hexanes as eluents. **2-(tetrahydro-4H-pyran-4-ylidene)-2-**(triisopropylsilyl)acetonitrile (17) was obtained as a white solid. (9 mg, 16% yield). (5*S*,8a*S*)-4-(triisopropylsilyl)-3,5,7,8-tetrahydro-2*H*-5,8a-methanooxepino[4,5*d*]oxazol-2-one (14) was obtained as a white solid. (8 mg, 12% yield).

(3aR,6aR)-6-(triisopropylsilyl)-2,3-dihydro-4H-3a,6a-

(epoxymethanoimino)cyclopenta[b]furan-8-one (15) was obtained as a white solid. (17 mg, 27% yield). ¹H NMR (500 MHz, CDCl₃) δ 6.02 (t, J = 2.3 Hz, 1H), 5.54 (s, 1H), 4.10–4.05 (m, 1H), 3.98-3.91 (m, 1H), 2.97–2.80 (m, 2H), 2.52–2.45 (m, 1H), 1.98–1.88 (m, 1H), 1.19–1.01 (m, 21H). ¹³C NMR (125.77 MHz, CDCl₃) δ 157.8, 144.2, 139.8, 112.1, 97.4, 67.4, 45.1, 38.9, 18.8, 18.7, 18.7, 11.4. **IR(neat)** 3258, 2941, 2864, 1745, 1651, 1574, 1462, 1383, 1335, 1274, 1298, 1066, 1144, 999, 985, 959, 937, 922, 880, 818, 766, 710, 679 cm⁻¹. **HRMS** (ESI) *m/z*: 346.1814 [(M+Na)⁺; calculated for C₁₇H₂₉NO₃SiNa: 346.1809]. **R**_F: 0.3 in 20% EtOAc/Hex. **MP**: 95-97 °C.

A 2 dram vial was charged with a magnetic spin bar, carbonazidate **23** (0.3 mmol, 1 equiv), and distilled 1,2-dichloroethane (0.1 M, 3 mL). The reaction vessel was sealed and heated in an oil bath at 75 °C. The progress of the reaction was monitored by TLC. After 50 h, the reaction vessel was cooled to room temperature and the mixture was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using a gradient of 2 to 20% EtOAc in hexanes as eluents.

tert-butyl(cyclopent-1-en-1-ylethynyl)diphenylsilane (24) was obtained as a colorless oil. (19.8 mg, 20% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.85-7.75 (m, 4H), 7.44–7.31 (m, 6H), 6.26–6.20 (m, 1H), 2.62–2.51 (m, 2H), 2.50–2.40 (m, 2H), 2.03–1.88 (m, 2H), 1.08 (s, 9H). ¹³C NMR (125.77 MHz, CDCl₃) δ 139.9, 135.6, 133.6, 129.4, 127.6, 124.7, 106.7, 90.3, 36.4, 33.4, 27.1, 23.3, 18.6. **IR(neat)** 3069, 2956, 2928, 2891, 2855, 2143, 1470, 1427, 1389, 1360, 1259, 1157, 1107, 1008, 998, 875, 819, 741, 724, 697 cm⁻¹. **HRMS** (CI) *m/z*: 330.1800 [(M)⁺; calculated for C₂₃H₂₆Si: 330.1804]. **R**_F: 0.75 in 10% EtOAc/Hex.

2-(*tert***-butyldiphenylsilyl)-2-cyclopentylideneacetonitrile (27)** was obtained as a white solid. (15.4 mg, 15% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.72–7.66 (m, 4H), 7.45–7.34 (m, 6H), 2.84 (td, J = 7.4, 1.7 Hz, 2H), 1.70–1.58 (m, 4H), 1.50–1.39 (m, 2H), 1.12 (s, 9H). ¹³C NMR (125.77 MHz, CDCl₃) δ 189.7, 135.7, 132.4, 129.7, 128.0, 121.3, 98.4, 38.0, 35.9, 27.1, 26.9, 24.9, 18.7. **IR(neat)** 3048, 2955, 2861, 2194, 1751, 1576, 1450, 1427, 1391, 1362, 1336, 1105, 1011, 997, 941, 821, 742, 700, 686 cm⁻¹. **HRMS** (CI) *m/z*: 346.1995 [(M+H)⁺; calculated for C₂₃H₂₇NSi: 346.1991]. **R**_F: 0.51 in 10% EtOAc/Hex. **MP**: 103-105 °C.

4-((*tert***-butyldiphenylsilyl)(diazo)methyl)-1-oxa-3-azaspiro[4.4]non-3-en-2-one (25)** was obtained as a yellow solid. (18.8 mg, 15% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.55 (m, 4H), 7.49–7.41 (m, 2H), 7.41–7.34 (m, 4H), 2.21–2.06 (m, 4H), 2.06–1.90 (m, 2H), 1.89–1.70 (m, 2H), 1.25 (s, 9H). ¹³C NMR (100.52 MHz, CDCl₃) δ 195.0, 165.6, 136.5, 135.9, 130.9, 130.4, 128.3, 128.1, 96.6, 37.8, 37.0, 29.0, 27.7, 26.0, 23.4, 19.9. **IR(neat)** 3071, 2955, 2856, 2196, 1579, 1427, 1388, 1359, 1258, 1107, 998, 956, 819, 739, 698 cm⁻¹. **HRMS** (ESI) *m/z*: 440.1767 [(M+Na)⁺; calculated for C₂₄H₂₇N₃O₂SiNa: 440.1765]. **R**_F: 0.21 in 10% EtOAc/Hex. **MP**: 108-109 °C.

(Z)-4-((*tert*-butyl(hydroxy)(phenyl)silyl)(phenyl)methylene)-1-oxa-3azaspiro[4.4]nonan-2-one (28) was obtained as a white solid. (12.3 mg, 10% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 7.46–7.01 (m, 10H), 5.76 (s, 1H), 2.18–1.98 (m, 2H), 1.83–1.72 (m, 1H), 1.72–1.43 (m, 3H), 1.20–1.07 (m, 1H), 0.95 (s, 10H). ¹³C NMR (100.52 MHz, CDCl₃) δ 157.1, 149.6, 136.8, 134.7, 134.1, 129.5, 127.5, 127.4, 126.5, 107.1, 97.1, 40.7, 38.7, 26.6, 24.2, 20.7. **IR(neat)** 3074, 2949, 2862, 2196, 1980, 1741, 1579, 1428, 1390, 1363, 1262, 1108, 999, 823, 739, 699 cm⁻¹. **HRMS** (ESI) *m/z*: 430.1813 [(M+Na)⁺; calculated for C₂₄H₂₉NO₃SiNa: 430.1809]. **R**_F: 0.15 in 20% EtOAc/Hex. **MP**: 166-168 °C.

A 2 dram vial was charged with a magnetic spin bar, diazo **25** (62 mg, 0.15 mmol, 1 equiv), and distilled 1,2-dichloroethane (0.1 M, 1.5 mL). The reaction vessel was sealed and heated in an oil bath at 75 °C. The progress of the reaction was monitored by TLC. After 50 h, the reaction vessel was cooled to room temperature and the mixture was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using a gradient of 2 to 20% EtOAc in hexanes as eluents. Cyclopentanone **26** was observed on TLC (~30% yield). **Nitrile 27** was obtained as a white solid. (15.1 mg, 30% yield). Silanol **28** was obtained as a white solid. (15.0 mg, 25% yield).

(Z)-4-(2-(diisopropyl(methoxy)silyl)-2-methylpropylidene)-5,5-dimethyloxazolidin-2one (79) A 2 dram vial was charged with a magnetic stir bar, carbonazidate 20a (0.1 mmol), and dry hexanes (0.1 M, 1 mL). The reaction vessel was sealed and heated in an oil bath at 90 °C. (Warning: Pressure buildup may occur during the reaction.) The progress of the reaction was monitored by TLC. After the reaction was finished (18 h), the reaction vessel was cooled to room temperature and the mixture was concentrated under reduced pressure. The crude product was then dissolved in dry methanol (0.1M, 1 mL) in a 2 dram vial. The vial was sealed and the reaction was heated to 70 °C. The progress of the reaction was monitored by TLC. After 12 h, the reaction mixture was cooled and concentrated. The crude product was purified by column chromatography on silica gel using a gradient of 0 to 5% EtOAc in hexanes as eluents. Compound 79 was obtained as a colorless oil. (16.0 mg, 51% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.37 (s, 1H), 4.15 (s, 1H), 3.59 (s, 3H), 1.41 (s, 6H), 1.23–0.98 (m, 20H). ¹³C NMR (150.91 MHz, CDCl₃) & 156.1, 139.6, 107.0, 84.5, 51.8, 28.0, 25.9, 24.5, 18.6, 18.2, 12.8. IR(neat) 2945, 2866, 1757, 1688, 1464, 1384, 1297, 1171, 1104, 1067, 1002, 902, 885, 798, 731, 679 cm⁻¹. **HRMS** (ESI) m/z: 336.1969 [(M+Na)⁺; calculated for C₁₆H₂₁NO₃SiNa: 336.1965]. **R**_F: 0.36 in 20% EtOAc/Hex.

2,2-diisopropyl-3,3,9,9-tetramethyl-1,8-dioxa-6-aza-2-silaspiro[4.4]nonan-7-one (80) A 2 dram vial was charged with a magnetic stir bar, carbonazidate **20a** (0.2 mmol), and dry hexanes (0.1 M, 2 mL). The reaction vessel was sealed and heated in an oil bath at 90

°C. (Warning: Pressure buildup may occur during the reaction.) The progress of the reaction was monitored by TLC. After the reaction was finished (24 h), the reaction vessel was cooled to room temperature and the mixture was concentrated under reduced pressure. The crude product was then dissolved in dry dichloromethane (0.1 M, 2 mL). The mixture was cooled to 0 °C and stirred for 10 min. CuBr₂ (4.5 mg, 0.02 mmol, 0.1 equiv) was added in one portion. The progress of the reaction was monitored by TLC. After 12 h, the reaction mixture was filtered through a short celite pad and concentrated. The crude product was purified by column chromatography on silica gel using a gradient of 10 to 15% EtOAc in hexanes as eluents. Compound 80 was obtained as a white solid. (trial 1: 29.3 mg, 49% yield; trial 2: 28.7 mg, 48% yield). ¹H NMR (500 MHz, CDCl₃) δ 6.14 (s, 1H), 1.85 (d, J = 14.0 Hz, 1H), 1.71 (d, J = 13.9 Hz, 1H), 1.38 (s, 3H), 1.32 (s, 3H), 1.20 (s, 3H), 1.16 (s, 3H), 1.14–0.92 (m, 14H). ¹³C NMR (125.77 MHz, CDCl₃) δ 158.3, 95.3, 87.9, 48.8, 26.2, 26.2, 24.1, 23.6, 20.6, 17.9, 17.8, 17.6, 17.6, 13.4, 12.4. IR(neat) 3255, 2935, 2863, 1746, 1464, 1386, 1370, 1352, 1191, 1105, 1014, 989, 857, 907, 881, 846, 776, 683 cm⁻¹. **HRMS** (ESI) m/z: 322.1813 [(M+Na)⁺; calculated for C₁₅H₂₉NO₃SiNa: 322.1809]. **R**_F: 0.15 in 20% EtOAc/Hex. **MP**: 114-116 °C.

Crystallographic Data

(3a*R*,6a*R*)-6-(triisopropylsilyl)-2,3-dihydro-4*H*-3a,6a-(epoxymethanoimino)cyclopenta[*b*]furan-8-one (15)

The solved structure of **15** has been deposited in The Cambridge Crystallographic Data Centre. CCDC 1477662.

2-(tetrahydro-4H-pyran-4-ylidene)-2-(triisopropylsilyl)acetonitrile (17)

The solved structure of **17** has been deposited in The Cambridge Crystallographic Data Centre. CCDC 1477728.

4-((*tert*-butyldiphenylsilyl)(diazo)methyl)-1-oxa-3-azaspiro[4.4]non-3-en-2-one (25)

The solved structure of 25 has been deposited in The Cambridge Crystallographic Data
Centre. CCDC 1477664.

(Z)-4-((*tert*-butyl(hydroxy)(phenyl)silyl)(phenyl)methylene)-1-oxa-3azaspiro[4.4]nonan-2-one (28)

The solved structure of **28** has been deposited in The Cambridge Crystallographic Data Centre. CCDC 1477665.

(*Z*)-4-(2-(hydroxydiisopropylsilyl)-2-methylpropylidene)-1-oxa-3azaspiro[4.5]decan-2-one (76g)

The solved structure of **76g** has been deposited in The Cambridge Crystallographic Data Centre. CCDC 1477663.

2,2-diisopropyl-3,3,9,9-tetramethyl-1,8-dioxa-6-aza-2-silaspiro[4.4]nonan-7-one (80)

The solved structure of **58** has been deposited in The Cambridge Crystallographic Data Centre. CCDC 1477666.

Spectral Data

Line#:1 R.Time:10.466(Scan#:1164) MassPeaks:300 RawMode:Single 10.466(1164) BasePeak:114.05(52381) BG Mode:None Group 1 - Event 1

