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1 Strains

1.1 Plasmids

All plasmids used in this study are listed in Table S1.
The constructs were made using either isothermal assembly (ITA)37 or ‘round-the-horn’ site-

directed mutagenesis (http://openwetware.org/wiki/%27Round-the-horn_site-directed_
mutagenesis). Primers and gBlocks were ordered from Integrated DNA technologies (IDT)
and PCR were performed with Accuprime Pfx (Life technologies) or Phusion polymerase (New
England BioLabs) according to manufacturers’ protocols. All plasmids were verified by DNA
sequencing (Genewiz). In the text, laa is used as a shorthand for the native ssrA-(LAA) (AAN-
DENYALAA) and asv for the synthetic ssrA-(ASV) (AANDENYAASV) degradation tag.

pZE21-GFPasv refers to the original reporter38, while pZS1-lTlrLLtCL to the original repres-
silator plasmid. Both were kind gifts of M. Elowitz. The PLlacO-1 and PLtetO-1 are the hybrid
promoters orginally used by switching the binding sites of bacteriophage λ promoter PL with
lacO1 and tetO2 binding sequences, respectively39. They are abbreviated PLlac and PLtet in the
text for simplicity. PR refers to the native bacteriophage λ promoter.

pLPT20 was constructed by assembling mVenus (kind gift of the P. Cluzel, Ref.40 with A206K),
PRNA1 and cfp (kind gift of the P. Cluzel) into a temporary reporter plasmid (pZE21-GFPasv
derivative), PCR-amplified and inserted into pZS1-lTlrLLtCL plasmid digested at the unique
AatII site.

pLPT41, pLPT42, pLPT43 and pLPT57 were constructed by ‘round-the-horn’ PCR from
pZE21-GFPasv removing different part of the construct. For pLPT57, we merely removed the asv
degradation tag. The pep in pLPT43 refers to keeping a peptide consisting of the N-terminal 40
amino acids fragment of gfpmut3 (MRKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYG)
followed by the asv degradation tag. In pLPT41, we kept the promoter, ribosome binding site
(RBS) and terminator intact while removing the gfp. For pLPT42, we also removed the promoter.

pLPT47 was assembled from a synthesized gBlock and fragment of pLPT1. The Pconst refers
to a synthetic, intermediate strength and constitutive promoter from the iGEM Registry of stan-
dard biological parts (http://parts.igem.org/, BBa_J23107, tttacggctagctcagccctaggtattatgc-
tagc). We used a Y66L mutation on the GFP to make it non-fluorescent41 and therefore compatible
with the YFP reporter of the integrated repressilator.

pLPT107 was constructed by inserting synthesized gBlocks as well as PCR-amplified frag-
ments into pLPT20 backbone. PR-mKate2 was added and the PRNA1 promoter was changed to a
PLlac. The mKate2 was a gift from D. Landgraf and consists of the mCherry N-terminal 11 amino
acids followed by the mKate2 sequence (used to improve translational efficiency).

pLPT119 was assembled from PCR fragments of pLPT20, simply removing the degradation
tags on the repressors.

1.2 Bacterial strains

All E. coli strains used in this study are listed in Table S2. The wild-type strain was MC4100.
DHL708 was a kind gift of D. Landgraf42 and was built by deleting the clpPX operon with

lambda-Red mediated homologous recombination. The FRT-flanked Kan cassette was then
flipped out using the FLP recombinase (pCP20).

http://openwetware.org/wiki/%27Round-the-horn_site-directed_mutagenesis
http://openwetware.org/wiki/%27Round-the-horn_site-directed_mutagenesis
http://parts.igem.org/


Plasmid Parent Ori An-
tibi-
otic

Genotype

pDHL474 Gift of D.
Landgraf

ColE1 Kan PLtetO1-mCherry-asv

pDHL490 Gift of D.
Landgraf

ColE1 Kan PLtetO1-mCherry-laa

pZE21-GFPasv Gift of M.
Elowitz

ColE1 Kan Reporter, PLtetO1-gfpmut3-asv

pZS1-lTlrLLtCL Gift of M.
Elowitz

pSC101 Amp Repressilator, PLtetO1-cI-laa, PR-lacI-laa, PLlacO1-tetR-laa

pLPT20 pZS1-
lTlrLLtCL

pSC101 Amp Integrated repressilator, PLtetO1-cI-laa, PR-lacI-laa,
PLlacO1-tetR-laa, PLtetO1-venus, PRNA1-cfp

pLPT41 pZE21-
GFPasv

ColE1 Kan PLtetO1

pLPT42 pZE21-
GFPasv

ColE1 Kan empty

pLPT43 pZE21-
GFPasv

ColE1 Kan PLtetO1-pep-asv

pLPT47 pZE21-
GFPasv

ColE1 Kan Pconst-darkgfp-asv

pLPT57 pZE21-
GFPasv

ColE1 Kan PLtetO1-gfpmut3

pLPT107 pLPT20 pSC101 Amp Triple reporter repressilator, PLtetO1-cI-laa, PR-lacI-laa,
PLlacO1-tetR-laa, PLtetO1-venus, PLlacO1-cfp, PR-mKate2

pLPT119 pLPT20 pSC101 Amp Integrated repressilator no degradation tags, PLtetO1-cI,
PR-lacI, PLlacO1-tetR, PLtetO1-venus, PRNA1-cfp

pLPT144 LPT42 ColE1 Kan PLlacO1, PR

pLPT145 LPT41 ColE1 Kan PLtetO1, PLlacO1, PR

pLPT146 LPT42 ColE1 Kan PLlacO1

pLPT147 LPT42 ColE1 Kan PR

pLPT148 LPT41 ColE1 Kan PLlacO1, PLtetO1

pLPT149 LPT41 ColE1 Kan PLtetO1, PR

pLPT151 pDHL490 ColE1 Kan PLtetO1-mCherry-laa, Pconst-darkgfp-asv

Table S1: Plasmid list

NDL319 was constructed by inserting the PRNA1-mKate2 hybrid cassette close to (while pre-
serving) the neutral Tn7 insertion locus43.



Strain Parent Genotype Plasmids Period (gen) Correlation
after one
period

Generation
time (min)

DHL708 MC4100 ∆clpXP
LPT25 MC4100 pLPT20 5.6 0.18 26
LPT44 LPT25 pLPT20,

pLPT41
5 0.2 29

LPT45 LPT25 pLPT20,
pLPT42

5.5 0.14 27

LPT46 LPT25 pLPT20,
pLPT43

4.2 0.16 27

LPT53 LPT25 pLPT20,
pLPT47

2.3 0.09 27

LPT54 LPT25 pLPT20,
pDHL474

2.6 0.07 27

LPT55 LPT25 pLPT20,
pDHL490

5.7 0.2 28

LPT60 MC4100 pZS1-
lTlrLLtCL,
pLPT57

5 0.18 26

LPT61 DHL708 ∆clpXP pLPT20 10.4 0.09 25
LPT64 LPT61 ∆clpXP pLPT20,

pDHL474
13.9 0.5 27

LPT113 DHL708 ∆clpXP pLPT107 14 0.2 26
LPT117 LPT113 ∆clpXP pLPT107,

pLPT43
14.8 0.5 28

LPT118 LPT113 ∆clpXP pLPT107,
pDHL474

14.9 0.4 29

LPT120 MC4100 pLPT119 10 0.07 25
LPT124 LPT120 pLPT119

pLPT41
12.9 0.3 25

LPT125 LPT120 pLPT119
pLPT43

LPT127 DHL708 ∆clpXP pLPT107,
pLPT41

14.4 0.5 28

LPT143 LPT61 ∆clpXP pLPT20,
pLPT41

LPT150 MC4100 att::Tn7
PclpPX-clpP-
msfgfp

LPT152 LPT61 ∆clpXP pLPT20,
pLPT145

15.6 0.48 26

LPT153 LPT61 ∆clpXP pLPT20,
pLPT146

LPT154 LPT61 ∆clpXP pLPT20,
pLPT147

LPT155 LPT61 ∆clpXP pLPT20,
pLPT148

LPT156 LPT61 ∆clpXP pLPT20,
pLPT149

13.3 0.47 25

LPT157 LPT61 ∆clpXP pLPT20,
pLPT144

LPT158 MC4100 pDHL490

Table S2: Strain list and summary of experimental results



Strain Parent Genotype Plasmids Period (gen) Correlation
after one
period

Generation
time (min)

LPT159 LPT150 att::Tn7
PclpPX-clpP-
mgfpmut3

pLPT20 5.4 0.17 25

LPT165 LPT159 att::Tn7
PclpPX-clpP-
mgfpmut3

pLPT20,
pDHL474

2.8 0.1 26

LPT172 MC4100 pLPT151
MC4100
NDL319 MC4100 att::Tn7

PRNA1-mKate2
NDL332 NDL319 att::Tn7

PRNA1-mKate2
pZE21-
GFPasv,
pZS1-
lTlrLLtCL

2.4 0.15 25

Table S3: Strain list and summary of experimental results (continued)



2 Microfluidic master fabrication

Fabrication of the E. coli mother machine was carried out using standard UV photolithography
in a clean room environment. The device was designed using AutoCad, and quartz-chrome
photomasks were ordered from Toppan Inc. and from the Center for Nanoscale Systems at
Harvard University. We modified the fabrication procedure from the method described in the
original report on the mother machine. The fabrication requires three independent layers: an
Su8 ‘base’ coat, cell channels, and feeding channels. The process parameters below should be
regarded as useful starting points, and all feature dimensions must be empirically verified to
ensure that they meet experimental requirements. The tolerances for this device are stringent;
a difference of ±0.5 µm in the height or width of a cell channel will compromise function.
Note: for all spin coater steps described below, the following shorthand notation is used: speed
(rpm)/acceleration (rpm/sec)/time (sec).

2.1 First Layer: Su8 Base Coat

The first layer of the master contains no features. It consists of a thin, uniform layer of completely
cured Su8. This layer is intended to serve as an adhesive to improve the retention of the cell
channels deposited in the second layer. Without this base, the cell channels are easily removed
from the wafer surface during development.

1. Place a new 3′′ Si wafer (we used 380 µm TEST grade wafers from University Wafer) in a
dish of fresh acetone. Sonicate at high power for 5 minutes.

2. Sequentially rinse the wafer with streams of methyl alcohol (MeOH), isopropyl alcohol
(IPA) and H2O (∼ 10 seconds per solvent).

3. Place wafer on 2′′ spin chuck and spin seconds at 500 rpm.

4. While spinning, sequentially rinse the wafer with streams of MeOH, IPA and H2O.

5. Spin wafer 1 minute at 3,000 rpm to dry.

6. Dehydrate wafer for 15 minutes on a hot plate set to 150-200◦C.

7. Set spin program to: Step 1: 500/100/10, Step 2: 3000/300/60.

8. Place the dehydrated wafer onto the spin coater chuck and dispense a small (cover ∼2/3 of
the wafer surface) amount of Su8 2000.5 photoresist (Microchem) with a pipette. Run the
spin program. This should result in a coat of ∼0.5 µm.

9. Soft bake wafer (in order) for 1 minute at 65◦C, 1 minute at 95◦C, 1 minute at 65◦C.

10. Expose wafer for 5 seconds with no mask at 25 mW/cm2 (I-line).

11. Post exposure bake the wafer (in order) for 1 minute at 65◦C, 1 minute at 95◦C, 1 minute at
65◦C.

12. Do not develop or hard bake the wafer. Instead, proceed directly to the second layer
protocol.



2.2 Second Layer: Cell Channels

This set of steps lays down the channels that house the cells in the final device. The tolerances
for this layer are very stringent; the exposure dose and contact between mask and wafer must
be optimized. We recommend trying a range of exposure parameters to ensure that a useful
device is obtained. We also stress the importance of the very long post exposure bake time in
the process below. In our hands, this greatly improves the retention of the cell channels during
development.

1. Set spin program to: Step1: 500/100/10, Step 2: 2000/300/60.

2. Place the wafer onto the spin coater chuck and dispense a small (cover 2/3 of the wafer
surface) amount of Su8 2001 photoresist with a pipette. Run the spin program. This should
result in a coat of ∼1.5 µm.

3. Soft bake wafer (in order) for 1 minute at 65◦C, 3 minutes at 95◦C, 1 minute at 65◦C.

4. Expose wafer for 0.75 seconds (25 mW/cm2, I-line) through cell channel mask in vacuum
contact mode.

5. Bake wafer for 1 minute at 65◦C, 20 minutes at 95◦C, 1 minute at 65◦C.

6. Develop wafer for 30 seconds with very gentle agitation in Su8 developer.

7. Rinse wafer for 10 seconds with IPA.

8. Check completeness of development process. If undeveloped Su8 remains on the wafer
(other than the desired cell channels) repeat developer treatment for 10 seconds.

9. Hard bake wafer for 10 minutes at 150◦C.

10. Verify channel height using a profilometer. The expected height is 1.5 µm. If the channel
dimensions lie outside of your expected tolerance bounds, the process must be repeated
with modified spin coating parameters.

2.3 Third Layer: Feeding Channels

The final layer of the device forms the medium flow channels. The dimensions of these features
are not critical: we have used feeding channels of widely varying dimension to similar effect.
The alignment is sensitive to large errors, however. The alignment between feeding channels
and cell channels must be accurate (down to a couple of microns) in order to ensure that the cell
channels are of the desired final length.

1. Set spin program to: Step 1: 500/100/10, Step 2: 5000/300/60.

2. Place the wafer onto the spin coater chuck and dispense a small (cover ∼ 2/3 of the wafer
surface) amount of Su8 2025 photoresist with a pipette being careful not to introduce
bubbles. Run the spin program. This should result in a coat of ∼ 15 µm.



3. Soft bake the wafer (in order) for 1 minute at 65◦C, 4 minutes at 95◦C, 1 minute at 65◦C.

4. With an Su8-developer-soaked swab, clean the newly-deposited photoresist off of the align-
ment marks to make them visible for the alignment process.

5. Soft bake the wafer (in order) for 1 minute at 65◦C, 4 minutes at 95◦C, 1 minute at 65◦C.

6. Align feeding channel mask to the alignment marks on the wafer. Apply vacuum contact
and check alignment again. If the vacuum application skewed the alignment, repeat the
alignment process.

7. Expose wafer for 10 seconds (25 mW/cm2, I-line) through aligned feeding channel mask.

8. Bake wafer for 1 minute at 65◦C, 4 minutes at 95◦C, 1 minute at 65◦C.

9. Develop wafer for 1.5 minutes in Su8 Developer with mild agitation.

10. Rinse wafer for 10 seconds in IPA. Check to ensure that the development is finished. If
undesired photoresist remains, develop again for 20 seconds.

11. Hard bake wafer for 15 minutes at 150◦C.

12. Verify channel height using a profilometer. The expected height is 15 µm. If the channel
dimensions lie outside of your expected tolerance bounds, the process must be repeated
with modified spin coating parameters.



3 Supplementary results and discussion

3.1 Interference of the reporter plasmid

3.1.1 ASV-tagged molecules

The results for the period change due to the introduction of ASV-tagged molecules are summa-
rized in Extended Data Fig. 3. The addition of substrates tagged with the native LAA tag slowed
down the oscillations (compared to the titration sponge, Extended Data Fig. 3d), as expected if it
serves as a competitive substrate of ClpXP. Surprisingly, however, the ASV version of the degra-
dation tag made the periods faster, and the effect became more pronounced the more numerous
and stable the ASV tags were. The identity of the ASV-tagged substrate changed the magnitude
of the effect: expressing a small peptide-ASV, repressilator-controlled mCherry-ASV or consti-
tutive dark GFP (Y66L), reduced the period from 5.5 to 4.2, 2.6 and 2.4 generations, respectively.
Over-expressing a functional ClpP-mGFPmut3 fusion42 decreased the period slightly, but could
not compensate for the presence of ASV-tagged substrates.

To confirm that the proteolysis of the natural, ssrA-tagged molecules was faster in the presence
of ASV-tagged molecules, we expressed both in the absence of the repressilator (Extended Data
Fig. 3e). For the same production rate, the mean abundances of ssrA-tagged molecules was
reduced four-fold in the presence of ASV-tagged molecules. This response was not observed
in the ∆clpXP strain (Extended Data Fig. 3f-h): it did not make a significant difference if the
titration sponge – in the ∆clpXP strain – expressed an ASV-tagged protein or contained only
the promoter. Furthermore, the response was also not observed in the repressilator that did not
contain degradation tags on the repressors (Extended Data Fig. 6f).

3.1.2 Titration sponge

Addition of the titration sponge had only a minor effect on the fast and medium oscillators:
the period became slightly shorter (from 5.5 to 5 generations), and the oscillations slightly
better, with a phase drift of 24% per period (Extended Data Fig. 5) and a slight increase in
correlation (Extended Data Fig. 3a). This is consistent with expectations since many proteins
are not degraded, or degraded more slowly, when bound to DNA44. Thus in the strains without
repressor degradation, the proteins and repressor sites are diluted out and replaced on the same
time-scale, but when repressors are degraded, the repressors turn over after the titration sponges
fills up, and the abundance of the free component becomes almost independent of the titration
sites (see §4.3).

Trying all possible combinations of titration sponges for the different repressors (Extended
Data Fig. 7d) showed that only the sponges containing binding sites for the TetR repressor
displayed macroscopic oscillations, and that titration of the other repressors did not influence
greatly the oscillations. This suggests that the activity threshold is higher for these repressors,
as further supported by our observations of absolute abundances and the amount of dilution
required to trigger production in the next step.



3.2 Robustness of the oscillations

The phase of the repressilator oscillations were independent of the cell cycle progression (Ex-
tended Data Fig. 9a), as expected. The period of the modified repressilator with degradation
(LPT25) increased when grown at lower temperature (up to 10 generations at 25◦C). This was
expected since degradation of many components ceases during slow growth. The repressilator
without degradation (including the titration sponge) was remarkably robust (Fig. 3a). It oscil-
lated at 13.8±0.2 generations at three different temperatures, as well as with conditioned media
from early stationary phase culture (OD600 ∼2), where the cell physiology was radically different
(i.e. see Supplementary video 7). Over these conditions, the standard deviation in the average
period was ∼2%. This robustness across growth conditions is in fact expected for oscillators
relying only on dilution, for a combination of reasons.

First, though the total expression rates vary greatly between conditions, E. coli to a large
extent compensate with changes in size that keep concentrations more constant. For example,
under conditions where they make twice as much proteins, they also roughly have twice the
volume since much of the mass is in protein form. If this applies to the repressors that form the
repressilator, it means that the amplitude peaks may be twice as high, but so is the derepression
threshold which is set by the concentration. The number of generations required for dilution,
from the peak to the next derepresion, is then the same.

Second, the exponential nature of dilution means that there is a logarithmic dependence
between the fold-reduction (from the peak to the derepression threshold) and the time that
reduction takes. For example, a two-fold change in the required dilution factor only changes
the dilution time with one cell generation, which is much less than a two-fold change when
oscillations are slow. Likewise, since the build-up phase approaches a steady state, the height
of the peak is insensitive to further increases in the dilution time of the repressor controlling the
height of that peak.

Third, protein degradation changes greatly between growth conditions (without a compensat-
ing change in concentration because so few proteins are actively degraded), but the 14-generation
oscillator does not rely on protein degradation in any way.

3.3 Removing the degradation tags of the repressors

Removing the degradation tags from the repressors in cells that were wild-type for ClpXP
produced similar results to having degradation-tagged repressors in the∆clpXP strain (Extended
Data Fig. 6). The oscillations were again quite irregular, but the addition of the titration sponge
again made the oscillations much more regular, and e.g. enabled the bacterial colony to exhibit
ring patterns. Combining the repressilator without degradation tags on the repressors with the
∆clpXP strain also gave similar results.

3.4 Stability of the conditions in the microfluidics device

Characterization of the microfluidic device has shown that the conditions experienced by the
cells were very uniform both across the device and over time. Division times were stable over
multiple days, and growth distributions very similar across different experiments (Extended



Data Fig. 8a). The period of the oscillations was uniform spatially (different cells, position in the
field of view, distance to the inlet/outlet, media channel) and temporally (Extended Data Fig. 8b).

3.5 Characterization of the oscillations

3.5.1 Using binomial partitioning to estimate absolute protein abundances

To roughly estimate the average abundances of the repressor proteins in the strains without
repressor degradation, we considered the statistical partitioning error at cell division of the
corresponding fluorescent proteins, which are expressed under the same promoters from the
same plasmid. This allows to approximately convert fluorescence units into number of proteins,
as previously demonstrated45.

Specifically, we measured the root mean squared (RMS) errors between daughters at cell
division during the dilution phase of the repressilator oscillation, and confirmed that it scaled
binomially with total abundance (Extended Data Fig. 8f), as expected for fluorescent proteins
diffusing freely in the cytoplasm. We then used the magnitude of the error to identify the absolute
number of molecules. One caveat of this approach, in addition to the fact that the fluorescent
proteins are just a proxy for the actual repressors, is that any aggregation of the proteins could
increase the error but still produce binomial scaling. For example, if all proteins formed dimers
and these segregated independently of each other, the errors would still be binomial but the
average abundance would be off by a factor of two. Fluorescent proteins primarily multimerize
when tagged to native proteins that multimerize42 (increasing the local concentration), but since
all red fluorescent proteins that we know of have severe multimerization tendencies as well as
very slow maturation, including the mCherry used here, we only estimate a lower bound for the
abundance of this component.

The results suggest that the YFP and CFP transcriptional reporters peaked at around 2,000-
3,000 copies (Extended Data Fig. 8d,g) per cell, while for mCherry we can only say the levels are
higher than about 500 copies, which gives a rough estimate of the peak values of the repressors.
These numbers should only be seen as a very rough approximation, since some of the repressors
form dimers which affects the estimated numbers, but are at least consistent with the dilution
times observed, and the fact that the titration sponges had a substantial effect.

3.5.2 Repression by TetR occurs at very low levels

We attempted to measure input-output relations for the fast-maturing CFP and YFP transcrip-
tional reporters (CFP reports levels of TetR and YFP reports on CI), but not for mCherry due
to the longer maturation time. We established a detection limit of at least ∼ 50 FU for CFP in
our imaging conditions, due to combined contributions of auto-fluorescence and shot noise. As
shown in Extended Data Fig. 8c, the switch between induction and repression occurs below the
detection limit of our transcriptional reporter.

Even if the repression switch occurs below the detection limits, it is possible to get a rough
estimate for the location of the derepression threshold by using the protein number at the peak
and the duration of the dilution phase obtained from the triple reporter analysis. This suggests a
switching point of approximately 5 molecules for the oscillator without titration sponge (LPT61),
and approximately 20 molecules with titration sponge (LPT64). Note that the errors in estimation



of the dilution phase and the conversion of fluorescent units to molecules are exponentially
amplified, and thus again this should only be considered a rough estimate.

3.5.3 Peak amplitude heterogeneity and dampening

Even in the very precise oscillators, we observe significant peak amplitude heterogeneity, with
a CV of about 35% (Extended Data Fig. 8d). However, this heterogeneity is dampened by the
exponential dilution, which results in a dependence of the next period in the log of the peak
height (e.g. for a peak twice higher than average, the period will be only one generation longer).
Using the law of total variance, the fit to a log of the peak height explains 25% of the variance in
the period (Extended Data Fig. 8e).

4 Theory

Because key properties of the single-cell kinetics – like the cooperativity or the noise in plasmid
copy numbers – are unknown even for the repressilator, we use theory not to validate detailed
models, but to identify potential design challenges. First we show that a simple repressilator
model can behave either as a harmonic oscillator or a relaxation oscillator, depending on parame-
ters, and that the data show that it operates in the latter regime. The criteria for stable oscillations
are then very different, and we show that relaxation repressilators can display regular and sus-
tained oscillations with minimal phase lags or cooperativity. We then analyze how noise arises
in the accumulation and decay phases of the oscillations, and how titration sponges affect the
dynamics. Finally, in Appendix A we derive exact limits on the accuracy of repressilator-type
systems – regardless of control mechanisms – due to information loss and finite numbers of
control molecules.

4.1 Harmonic versus relaxation oscillators

We start by considering a minimal model of the repressilator:

pi

λ
Kn

Kn+pn
j−→ pi + 1

pi
pi−→ pi − 1

where (i, j) = (1, 3), (2, 1), (3, 2), λ is the production rate, K the protein level at half-repression, n
the Hill coefficient and pi the number of repressor proteins. We have set the protein degradation
rate constants to 1 without loss of generality, and thus express time in units of average protein
lifetimes. Note that the production rates are therefore in units of protein produced per protein
lifetime.

Depending on the parameters, this system can behave as a harmonic oscillator, where stability
properties are captured by linearizations, or as a relaxation oscillator46 (Extended Data Fig. 4a)
with self-sustained periodic repetitions of an aperiodic phenomenon with a period set by a
relaxation time. As opposed to sinusoidal/harmonic oscillators, relaxation oscillators exhibit
discontinuous jumps and all-or-none behavior. This well describes the repressilator dynamics



we observe: as shown in the three-color analysis, the production of a repressor starts abruptly
and remains constant until it suddenly turns off. In fact, even the seemingly gradual reduction in
expression before the turn-off observed for the 14 generation oscillator is a part of the relaxation
path rather than a result of control exerted: measuring the production rate and dilution rate
shows that the concentration only starts to level off because dilution effects become increasingly
important at high numbers. The strongly non-sinusoidal shape thus comes from thresholding,
where promoters spend most of their time in either a completely on-state or completely off-state.
The mathematical requirements for oscillations are then very different. Classical stability analysis
for harmonic oscillators emphasizes the importance of phase lags and high cooperativity, but
in the relaxation regime it is possible to oscillate without much of either – in fact for extreme
parameters, stochastic models show that oscillations are possible without any phase lag or
cooperativity (Extended Data Fig. 4d). Due to the clear separation of the two phases – a build-up
phase with constant production and a pure decay phase with no production (Extended Data
Fig. 4c) – we next analyze how much noise arises in each phase, with a particular focus on noise
in timing rather than in amplitude. The period can either be seen as the sum of three decay
phases, or as the sum of three production phases, since the beginning of a production phase of
one repressor marks the beginning of a decay phase of another. We find that a key architectural
feature of the repressilator – in the observed relaxation mode – is that variation in the build-up
occurs in a way has little effect on the overall timing, while timing noise from the decay phase
is hard to avoid given the low promoter derepression thresholds observed. Specifically we
iterate some known results about noise in gene expression to show how removing degradation
tags reduces the noise in the starting value of the decay phase, and then analyze the inherent
variation in the decay phase as a function of the starting value and the derepression threshold.
Finally we consider the propagation of noise between the build-up and decay phases, i.e., how
variation in peak amplitude affect the decay phase and how variation in the decay phase affects
the build-up phase.

4.2 Heterogeneity in the accumulation and decay phases

4.2.1 Accumulation phase

Motivated by the experimental observation that the oscillation cycle has a build-up phase with
almost constant production rate, we consider the variation in the number of proteins made during
a time window Ta during which gene expression is unrepressed. Most of the results presented
here are well known from the extensive literature on stochastic gene expression and are only
briefly repeated here for convenience.

First, consider a process in which proteins are made constitutively in bursts of size b:

pi
λ−→ pi + b

The CV (standard deviation over mean) in the number of proteins produced is then 1/
√
λTa, and

even if we further allow variation in b, the CV is still inversely proportional to the square root
of λTa. Statistical accuracy can thus be increased either by increasing the production rate, or by
integrating over longer time periods by increasing Ta. The latter can be achieved by eliminating
repressor degradation and thereby extending the periods.



If the build-up phase is short, so that dilution/degradation is negligible, the number of proteins
produced is similar to the peak amplitude (the troughs of the oscillations are virtually at zero
so proteins from the previous build-up phase contribute very little). However, for long enough
times Ta, decay and dilution eventually become non-negligible, and the system approaches a
steady-state (this was directly observed in the data for the slowest oscillator but is likely the case
also for the faster oscillator where the actively degraded repressors should approach a steady
state much faster than the stable reporter observed). Increasing Ta further thus does not reduce
the CV in peak amplitude. Specifically we consider:

pi
λz−→ pi + b

pi
pi/τp−→ pi − 1

where z is some extrinsic noise variable, b is a geometrically distributed burst size and τp the
lifetime of the protein. For simplicity, if we assume z is following its own birth-death Poisson
process, then at the end of the build-up phase47–49:

CV2
p = (1 + ⟨b⟩) 1⟨

pi
⟩ + 1
⟨z⟩

τz

τp + τz

where τz is the lifetime of z. Therefore, increasing the proteins’ lifetimes still reduces noise by
increasing the average protein abundance and time-averaging over extrinsic influences.

4.2.2 Decay phase

Motivated by the experimental observation that the decrease in repressor concentration is in-
distinguishable from exponential decay, we here model the variation expected in the time until
the repressor reaches low enough concentrations that expression of the next component in the
cycle is derepressed. Specifically, we are interested in the average and standard deviation of the
decay time Td, from an initial peak of N to a threshold S. This time contributes one third of the
period, and determines the build-up time of another repressor in the system. We ignore two
biological complications. First, for systems with actual degradation of proteins, fluctuations in
the proteolysis machinery could produce fluctuating degradation rate constants, i.e., essentially
contributing an extrinsic source of noise. However, this noise is unknown, and our primary pur-
pose with this theory is to explain the effects observed for the circuits without active degradation,
when molecules are diluted out during the cell cycle and then randomly partitioned between
daughters at cell division. For binomial partitioning (as we directly observe, see section 3.5.1),
this can be modeled by explicitly accounting for cell growth and division, as we and others have
done in other studies47. However, because our goal here is to produce insights into experimental
design rather than to capture the exact dynamics, we use a common approximation where bi-
nomial segregation and dilution are approximated with first order decay, i.e., where the protein
decays in individual random steps:

pi
pi−→ pi − 1

Here we again have set the degradation rate constant to one, to express time in units of average
protein lifetimes.



Each step is thus probabilistic with an exponentially distributed waiting time, and the total
time to decay from N to S molecules is a sum of the random variables for the individual steps.
For very high thresholds, where S is almost as high as N, the standard deviation in the total time
is substantial compared to the average total time, since few steps are summed. For very low
thresholds there are large numbers of steps, but the last few steps are rate limiting and dominate
the sum. For example, the average waiting time for going from N to N − 1 molecules is N
times shorter than the average waiting time for going from 1 to 0 molecules. If the derepression
threshold is reached when the last molecule is eliminated (S=0), the total variance in the time
equals

∑N
i=1 1/i2, which is 1 for N = 1 and quickly approaches π2/6 for higher N. The average time

is in turn
∑N

i=1 1/i, which is approximately log(N) + γ where γ = 0.57721 . . . is Euler’s constant.
More generally, for any threshold S < N, the variance is

∑N
k=S+1

1
k2 , which approaches 1

S+1 − 1
N for

large N and fixed S/N∗ (which in turn is approximately 1/(S + 1) if, in addition, the ratio N/S is
sufficiently large†.) The average follows

∑N
k=S+1

1
k ≈ log(N/(S + 1)) under the same conditions.

Thus, for a thresholding scheme of this type

CV ≈
√

1/(S + 1)
log(N/(S + 1))

If N/S is large the CV increases very slowly with N, because the logarithm becomes insensitive
to changes in N/S. For example, doubling N/S from 1, 000 to 2, 000 only increases log(N/S)
by about 10%. For any given N, there is also an optimal threshold that minimizes the CV at
(S + 1)/N = 1/e2 = 0.13534, giving a mean of 2 and a variance of e2/N. Therefore:

CV ≈
√

N/(S + 1)
log(N/(S + 1))

1√
N
≥ e/2√

N
=

1.359√
N

Extended Data Fig. 4e in turn shows the exact CV as a function of N for various values of S, which
closely follows these approximations since N ≫ 1 throughout. For any fixed S, the decrease in
CV with N is thus logarithmic, and it is necessary to increase S along with N in order to reduce
the CV effectively. However, the CV remains close to its minimum for a rather wide range of S/N
values (e.g. between 0.05 and 0.3, see Extended Data Fig. 4e). Thus if S is increased along with N,
it should be possible to decrease the CV by the inverse square root of N. These simple theoretical
findings could directly explain our experimental observations. The estimate of the TetR threshold
suggests that it was lower than optimal even before eliminating repressor degradation. Thus N/S
was already very high and we should only expect a very minor reduction in the heterogeneity
of the timing, as we indeed observed. However, when the threshold is also increased (Fig. 2b)
by adding a titration sponge, the variation in the timing should be more drastically reduced by
the increased N, as we also observed.

4.2.3 Transmission of noise between phases

Fluctuations in the decay time will also affect and be affected by fluctuations in amplitude. Here
we show how this noise propagation to some extent is naturally damped by the mechanisms of the

∗specifically N
∑N

k=S+1
1
k2 →

(
N

S+1 − 1
)

as N→∞.
†Note that we sometimes use the approximate N/S ratio (instead of N/(S + 1)) for simplicity as it is good

approximation for the S and N values considered.



system. First, a doubling in the peak amplitude will only result in an increase of one generation
of the decay phase, which is small given that the oscillator has a period of 14 generations and each
repressor thus spends 4-5 generations in the decay phase. More generally, the time it takes to
exponentially dilute out levels from N molecules to S molecules on average approximately equals
log(N/(S+1)). The additional variance in the decay period due to the variation in peak amplitude
can be estimated using the rule for error propagation for functions of random variables (a small
deviations approach), which immediately shows that for log(N/(S + 1)) the additional variance
in timing is given by σ2

N/⟨N⟩2, which equals 1/⟨N⟩ if the initial number of molecules is Poisson
distributed. If the repressor molecules are produced in geometrically distributed bursts of size
b this variance increases to (1 + ⟨b⟩)/⟨N⟩. In either case, as long as N/S is reasonably high this
term will be small in comparison to ⟨1/(S + 1) − 1/N⟩ ‡, the expected variance in the decay steps,
and so little noise is transferred from the peaks to the periods, as we also observe experimentally
(Extended Data Fig. 8e).

Noise is also transmitted from the decay phase to the accumulation phase, as the decay time
Td of one repressor determines the accumulation time Ta of another. In the parameter regime in
which the repressor in question does not have time to approach a steady-state before production
is turned off again, significant noise is propagated because a doubling in the accumulation
time will result approximately in a doubling of the amplitude peak. Even in this regime, little
noise propagates back to affect the next decay phase due to the logarithmic principle above.
Furthermore, in a regime where the repressor reaches a (quasi-)steady-state before production
stops, little noise is transmitted since fluctuations in the accumulation time then only change the
time the repressor spends around its steady-state value.

4.3 The role of the titration sponge

The theoretical analysis above shows that low repression thresholds S create large noise in the
decay phase of the oscillation even for perfect threshold mechanisms. This seems to explain why
titration sponges improve the regularity of oscillations so much. In the next section we include
titration in a simulation model, and here we first discuss non-trivial aspects of titration such
as the effect of fluctuating thresholds, changes in the effective cooperativity, and the impact of
titration when the repressors are degraded.

The perhaps most obvious complication is that the titration sponge not only raises the thresh-
old but also randomizes it because it is encoded on a plasmid that fluctuates in single cells. The
effect of such fluctuations is included in the simulation model where we also account for the fact
that only some of the sites will have repressor bound at any given time. However, for approxi-
mate but simpler results consider a situation where the threshold S varies around an average ⟨S⟩,
and fluctuations are so slow in time that S can be considered to be fixed during each derepression
window. This creates additional variance in the decay period due to variation in the conditional
average (in the sense of the Law of Total Variance). As for the discussion of uncertainty in N in the
previous section, the rule for error propagation for functions of random variables immediately
shows that for log(N/(S+1)) the additional variance in timing is approximately given by σ2

S/⟨S⟩2,
which equals 1/⟨S⟩ if the threshold is Poisson distributed. Fluctuations in S then contribute about

‡specifically N/(S + 1) >> 1 + b. If the first term is 10 times larger, there will then be a 10% contribution to the
variance.



as much to the variance in timing as the inherent randomness of the decay process (this is again
a small noise approximation since the ‘intrinsic’ noise due to random decay events is ⟨1/(S + 1)⟩
but not 1/⟨S⟩). The experimentally observed improvement of the oscillations with the addition
of the titration sponge still makes sense though, because it appears to raise the threshold by an
order of magnitude. Intuitively, it may randomize the threshold to some extent, but it also avoids
the extreme variation that comes from low thresholds, where the last few decay events greatly
randomize control.

The experimental data also shows that the titration sponge only has a small effect when
the repressors are degraded (§3.1.2). This is also easily explained by the model above. In
fact, none of the conditions for having an effective titration sponge seem satisfied when the
repressors are degraded. First, we showed above that there is an optimal threshold S for every
peak abundance N that minimizes the relative standard deviation in the decay window. With
repressor degradation, N is much lower because of the short repressor half-lives. Based on the
numbers observed (N ≈ 600), we believe that S is still too low to be optimal even under those
conditions, but raising S only has a large effect on the noise if S is far below the optimum for a
given N (Extended Data Fig. 4e). Second, it is unlikely that repressors are effectively titrated out
when the repressors are tagged for degradation. Many proteins appear not to be degraded, or
to be degraded much more slowly, when bound to DNA (see for example Ref.44). For example
imagine a threshold of 50. If there are 51 repressor molecules present but only one available for
degradation because the others are titrated out, then the noise in this step is the same as if there
were no titration and just one repressor molecule present. Another way of looking at this is that if
the repressors are degraded, taking out some of them by titration makes little difference, because
they quickly re-adjust to steady state. The fact that both repressor molecules and binding sites
are diluted at the same rate is key to ensure effective titration. Finally, for repressors that are
actively degraded, the noise in the time needed to decay below some threshold concentration
may not be dominated by the last few reaction steps, as in the model above, but by ‘extrinsic’
noise from fluctuating proteases. Raising the threshold to eliminate the last few steps may then
have a marginal impact.

As described above, given the experimental observations of the low TetR threshold, in this
context the main effect of the TetR titration sponge seems to be to simply increase the threshold.
Most previous models have instead emphasized that titration (and other schemes for zero-
order elimination of molecules) create ultra-sensitive switches similar to increasing the effective
cooperativity (see e.g. references50–54 ). It is possible that this also helps in this system, but several
system-specific features suggest it may not be the case. First, relaxation oscillators where the
independent relaxation path is long compared to the time-window for switching are less sensitive
to cooperativity – even if the decision to repress was gradual, it is still brief compared to the rest
of the dynamics. Indeed, we see that high cooperativity is not needed for the stochastic models to
oscillate with high regularity (Extended Data Fig. 4d). Second, we introduced the titration sites
on plasmids that fluctuate in copy numbers, and because the binding sites are no different from
the regular promoters, not all sites will be filled at the time of the derepression. Thus the titration
remove a variable number of molecules, and may not increase the effective cooperativity much.



4.3.1 Simple computational model

We will now show that a simple computational model combining these features can not merely
oscillate, but reproduce the amplitude, period and shape of the peaks for the estimated abun-
dances of proteins and plasmids. In fact, we found that many versions of the model and
parameter combinations can reproduce the data, and thus our purpose is not to promote one
such model over others but merely to demonstrate that the types of models we have in mind
are not inconsistent with the key known facts. For example, the absence of definitive data on
e.g. binding affinities, repressor dimerization, and repression kinetics, prevents us from usefully
modeling the switches in terms of elementary reactions. However, to make the models more
realistic than perfectly sharp thresholds we assume Hill functions with reasonably small Hill
coefficients (i.e. ∼ 1.5 − 2). We further account for translational bursting and for fluctuations in
both the repressilator plasmid and the plasmid for the titration sponge, to show that reasonably
accurate oscillations (e.g. correlation coefficient after one period > ∼0.2) are possible despite
these sources of randomness. Specifically we assume that

pTot,i

λNo
Kn

Kn+pn
Free,j−→ pTot,i + b

pTot,i
pTot,i−→ pTot,i − 1

where (i, j) = (1, 3), (2, 1), (3, 2). No is the number of promoters, pFree,j is the number of unbound
repressor molecules, pTot,j is the total number of repressor molecules and b is a geometrically
distributed random variable with mean ⟨b⟩, representing the number of proteins produced from
each mRNA, where the mRNA lifetime is assumed to be short compared to the protein lifetime,
which is the case for the oscillators with a ∼ 14 generation period. For the number of titration
sponge plasmids Nt and the number of repressilator plasmids No, we simply assume

No
⟨No⟩−→ No + 1, No

No−→ No − 1

Nt
⟨Nt⟩−→ Nt + 1, Nt

Nt−→ Nt − 1

This is in fact not so different from some specific plasmid models, where self-replication
and non-cooperative negative feedback combine into a constant production rate. The decay of
plasmids again approximates the dilution and segregation, and thus has the same ‘degradation’
rate constant of 1 as the proteins.

Titration effects are harder to model due to several complications. For example, simply
removing Nt copies from the pool of free proteins (which we found was enough to reproduce key
experimental observations) does not account for the fact that repressor binding is not complete,
or for the fact that the actual binding sites on the repressilator plasmid are of the same type as
on the decoy plasmid. Since we do not know the binding details and only use the Hill function
as a generic way to capture nonlinear effects, there is no straightforward way to model titration
through elementary reactions. However, motivated by the fact that the dynamics we model are
very slow, we assume that the number of proteins bound to promoter sites is in quasi-equilibrium
due to fast binding and unbinding. The fraction of promoters which are unbound is Kn

pn
Free,j+Kn . The



number of bound repressor molecules will then be proportional to

Npro

pn
Free,j

pn
Free,j + Kn

where Npro is the total number of promoters for the respective repressors

Npro =

No +Nt, j = 1
No, j = 2, 3

where TetR is repressor number 1. For integer n this is consistent with modeling a single elemen-
tary reaction of n repressors binding with the promoter in a reaction that comes to equilibrium

quickly, where the total number of repressor molecules would then be given as pFree,j+nNpro
pn

Free,j

pn
Free,j+Kn .

However, since we use the Hill function as a generic way to account for cooperativity we instead
consider

pTot,j = pFree,j + 2Npro

pn
Free,j

pn
Free,j + Kn

where the factor of two comes from the two binding sites per promoter. This equation is then
solved at each step of the Gillespie algorithm55 to update the free number of proteins. This is an
approximate scheme, but one that accounts for several of the important complications, and we
find that many ways of accounting for titration can explain the data.

For the simulation of Extended Data Fig. 4f, the parameters used are λ = 60, K = (5, 10, 10) for
the three repressors, n = 1.5 for all repressors, ⟨b⟩ = 10, ⟨No⟩ = 10 ⟨Nt⟩ = 40. The mean period for
this model is approximately 9 protein lifetimes, or 13 generations, and the CV of the cycle to cycle
variation in period (e.g. phase drift) is approximately 10%, which is similar to the experimental
data. Extended Data Fig. 4d in turn shows that oscillations are possible as described above,
without bursts, biochemical cooperativity (n=1) titration or phase lag contribution from mRNAs
(we consider infinitely fast mRNA dynamics). Deterministic linear theory would require a Hill
coefficient of over 3 in each component for oscillations in this case.
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Appendix A Fundamental limits on the accuracy of the repres-
silator

In this appendix, we will derive fundamental limits on the phase drift of oscillators that includes
a decay step such as the repressilator, where the time at which births are repressed and the
decay starts is encoded in the subsequent decay. By using notions from information theory, we
will focus on one decay step of the repressilator (e.g. see Extended Data Fig. 4c), and show that
there is a bound on the estimation of when this decay step started. Since the repressilator is
composed of three steps like this, this will limit the accuracy of the period, regardless of how
any switching mechanism might be implemented. Note that the bound is on the variance, not
the CV, as nothing is said about the mean period. Indeed, an arbitrarily complex switching
mechanism might implement a local timer to obtain a delay of any length. The bound we present
is a bound on the precision with which such a timer may be started. The only constraint is that
this local mechanism cannot remember anything from the previous period. It is striking that,
even allowing for such arbitrarily complex mechanisms between the decay steps, there is still a
limit on the phase drift.

We consider an arbitrary molecular species Y, which could be a protein, with exponentially
distributed lifetime 1 (i.e. we express time in units of species’ lifetime), which is produced with
rate N before t = T and then left to degrade from that time. That is

y u−→ y + 1

y
y−→ y − 1

where

uT(t) =

N t < T
0 otherwise

On average there will be N events in total after time T, with increasing (on average) inter-event
times and these can be regarded as encoding the time T.

In the specific models above, we simply considered the distribution of times before levels
reached some threshold value, and showed that the heterogeneity in the last few steps then can
dominate the error. That means the threshold must be set high but not too high (see section
4.2.2), which in turn means that the control system ignores the information in the part of the trace
that falls below the threshold. Here we instead consider the problem of estimating the time T,
at which births stop, from a knowledge of all the death events without limiting the controller
to threshold functions. We thus allow for control systems that can account for the fact that
the process slows down. Specifically we will use techniques from information theory (Poisson
communications theory56) to show that it is impossible to recover the time T with a mean square
error better than 1/N.

To turn this problem into a communications problem, first note that the death events them-
selves form a Poisson process. This is a result of a version of Burke’s theorem which holds for
the special case of an M/G/∞ queue with a time varying arrival rate (Ref.57 Theorem 2.5, part 3).
To see that the statement is true, consider sampling the death events as follows: throw points
onto the real line according to the birth rate uT above, one by one, and immediately shift each



point by an independent exponentially distributed amount. The probability of finding a point
in a small interval is then the convolution of the nonhomogenous birth rate and the exponential
waiting time distribution and is independent of the final resting place of other points. Therefore,
the corresponding process is the Poisson counting process

x
λT(t)−→ x + 1 (A-1)

where

λT(t) =
∫ t

−∞
uT(τ) exp(−(t − τ)) dτ =


∫ t

−∞
N exp(τ − t) dτ = N, t < T∫ T

−∞
N exp(τ − t) dτ = Ne−(t−T), t ≥ T

(A-2)

which has precisely the same statistics as the deaths of Y. The times at which Y molecules are
eliminated have the same statistics as the times at which x is incremented. An example is given
in Figure S1, where the upper diagram shows the birth death process whose deaths were used to
provide the Poisson points in the lower plot in Figure S1, with the red lines denoting the event
times.
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Figure S1: Birth death process (upper panel) with corresponding death events (lower panel). In
the upper plot, the birth rate is constant up to a time T (see text) at which point the birth process
is switched off and the number of Y molecules allowed to decay. The task is to estimate that time
knowing only the death events in the lower plot and the average number of molecules.

Consider now the problem of determining the unknown time T from these event times,
which we denote {τi}. In other words, we imagine that the task of an optimal control system is to



determine when the production was stopped knowing the death times of all molecules and the
expected number of molecules at the start of the decay phase (N). For this problem, an estimator
is a function f ({τi}) that maps the set of event times to an estimate of the time T at which the
decay started, for one sampling of the Poisson process (A-1). We will derive two estimators,
the maximum likelihood (ML) estimator ( fML), for asymptotic results, and the minimum mean
square error (MMSE) estimator ( fMMSE), for results for finite N. For any N, the MMSE estimator
is, by definition, optimal, in that it gives an estimate of the time T with minimum variance
about the true value. Calculating this optimal estimate, for a given set of event times {τi}, is
computationally intensive, but feasible for the discrete processes considered here as we shall
demonstrate. The ML estimator ( fML) simply returns the most likely T, that is the T for which
the probability of observing the given events is highest. The ML estimator for this problem has
a simple structure and, whilst it underperforms the optimal MMSE estimator for all values of
N, it does approach optimality asymptotically for large N and gives considerable insight into
the optimal solution in that limit. Both of these estimators are written in terms of the likelihood
function p({τi}|T) which is, roughly speaking, the probability of observing the events {τi} given
the time T.§

The λT() defined in (A-2) has an infinite area, since it is constant for all t < T. If instead we
replaced λT() in (A-2) with a pulse ν(t) of finite area Q =

∫ ∞
−∞ ν(t) dt then the likelihood p({τi}|T)

would be given by

p({τi}|T) = exp(−Q)
K∏

k=1

λT(τk),

with K the total number of events58. However, in our case, the area of λT is not bounded.
Nevertheless, we can regularise the problem, without changing the optimality properties, by
setting λT to 0 before t = −X, where X is a large constant, i.e.

λ̂T(t) =


0 t < −X
N −X ≤ t < T
Ne−(t−T) t ≥ T

Importantly, we shall see that the results do not depend on the choice of X as long as it is
sufficiently large. Intuitively, X should be large enough such that at t = T the distribution has
reached equilibrium. For this choice of λT, it follows that

Q =
∫ ∞

−∞
λ̂T(t) dt = N(T + X) +N

and hence, for T > −X, that the likelihood is given by

p({τi}|T) = e−N(T+X+1)NK
∏
τi>T

e−(τi−T)

∝ e−NT
∏
τi>T

e−(τi−T)

§Strictly speaking, it is the probability distribution function of the event times.



(since N, X and K are constants). Thus, the choice of X, when sufficiently large, only affects the
constant of proportionality, which doesn’t affect the results in any way.

The first estimator we consider is the ML estimator, fML({τi}) = arg maxT p({τi}|T), that is the
estimator that returns the value of T for which the observed sequence is most likely. Note that

log p({τi}|T) = const −NT +
∑
τi>T

(T − τi)

and so
d log p({τi}|T)

dT
= −N + # of events after T. (A-3)

Thus the gradient is zero and the likelihood function constant at its maximum value for any T
between the Nth last and (N + 1)th last event time. Thus fML is ill defined, as any T in that range
maximises the likelihood. Any estimator returning a T in that range will enjoy the asymptotic
optimality associated with the ML estimator. For convenience, we define as the ML estimator the
one that returns the Nth last event time, that is the T that results from counting up to N from the
last death event. No unbiased estimator can do better that the Cramér-Rao lower bound 1/I(T)
where I(T) is the Fisher information (Theorem 11.10.1, Ref.59). If we impose the constraint that
all estimators we consider are time invariant (i.e. simply the fact that if all the death events are
shifted by t, the estimate of T will also be shifted by t) , that is

f ({τi − t}) = f ({τi}) − t (A-4)

then any biased estimator can be improved by subtracting out the bias, which must necessarily
not depend on T. Consequently, the lower bound 1/I(T) is a bound on the mean squared error
of any estimator satisfying (A-4). The Fisher information can be calculated directly from its
definition as

I(T) = E

(d log p({τi}|T)
dT

)2∣∣∣∣∣∣T
 = N

using (A-3) and noting that the number of events after time T is Poisson distributed with mean
N. It follows that

E
(
( f ({τi}) − T)2|T

)
≥ 1

N
for any estimator f () satisfying (A-4). That is, any time-invariant estimator will have a variance
greater or equal to 1/N. Subject to certain regularity assumptions, the ML estimator is always
asymptotically efficient, in that for large N its variance approaches the Cramér-Rao lower bound.
In our case, it is relatively straightforward to show directly that the estimator described achieves
the bound 1/N, the utility of the lower bound being that it shows that this is optimal.¶

¶As described, The ML estimator described above returns the Nth last death event. This may have occurred before
or after time t = T. If before, then there will have been N − L subsequent death events, where L is the number of
molecules present at time T, and we need to count back over N−L events, each of which has mean 1/N and variance
1/N2. The resulting error would have mean (N − L)/N and variance EL

(
(N − L)/N2

)
. If the Nth event occurred after

t = T, we need to count forward over events which are occurring with a decreasing rate. However, the decrease in
rate becomes negligible as N increases and the events occur over a shorter and shorter time. In this case, the mean
of the error would be

∑L
k=N 1/k ≈ (L − N)/N and the variance

∑L
k=N 1/k2 ≈ (L − N)/N2. By the law of total variance,



To investigate how tight is the bound for finite N we now consider the MMSE estimator,
i.e. the estimator with the minimum resulting variance in the estimates of T, which is given by
the conditional mean E(T|{τi}). This has the form

fMMSE({τi}) = E(T|{τi}) =
∫

Tp({τi}|T)p(T) dT∫
p({τi}|T)p(T) dT

(A-5)

where p(T) is the prior distribution of T, which we shall set to be uniform on [−X,X], i.e.

p(T) =

 1
2X |T| < X
0 otherwise

(again, the precise value of X, which matches that in the definition of λT, is unimportant when
sufficiently large). For the example in Figure S1 the time T, at which the exponential decay in
rate commences, is actually 0.5. The optimal estimator (A-5) returns an estimate of 0.57.

From (A-3) it is clear that the logarithm of p({τi}) is piecewise linear, and so it is possible to do
the piecewise integrations in (A-5) analytically, resulting in a computationally efficient means of
calculating the MMSE estimator. Together with using the exact Gillespie algorithm55 for sampling
the event times, this provides an efficient means of determining E

(
( fMMSE({τi}) − T)2) using Monte

Carlo integration. Figure S2 shows the computed variance approaching its asymptotic value of
1/N. The upper curve is thus an achievable lower bound on the performance of any estimator.
For example, when N = 10 the variance is approximately 1.20/N and when N = 100 it is
approximately 1.06/N.

So, it is possible to quantify the amount of timing information encoded in the elimination
of this molecular species (or, indeed, any process coupled to this). As discussed above, the
minimum mean square estimate has a variance no lower than 1/N. That is, having encoded the
timing of the repression of birth events of Y into the deaths of Y, it is impossible to recover the
time at which that occurred with accuracy better than this. The repressilator involves 3 such
timing events per cycle. If we assume that the repressor distributions reach their equilibrium
values before commencing their decay then the variance in the period of the repressilator can be
no lower than 3/N. Any heterogeneity in the buildup phases would only make this worse. The
exact derivation above is limited to purely Poisson processes, which precludes the consideration
of bursting. Note though that the 1/N timing variance we describe, though fundamental, can
also be understood in terms of the initial uncertainty in the number of proteins when production
is turned off (as is clear from the derivation of the ML estimate and the Cramér-Rao lower bound
above). Indeed, the calculation of the variance of the ML estimator (footnote ¶ on page 25)
showed that, asymptotically, this approached σ2

L/N
2, where L is the number of molecules at

the time production is switched off, in agreement with the approximations in Section 4.2.3. As
stated there, for geometrically distributed bursts of size b the lower bound thus increases to
approximately (1 + ⟨b⟩)/N.

the variance of the error is then EL(|N − L|/N2) + EL

(
(N − L)2/N2

)
. Since L is Poisson, with mean and variance N

then the second term is 1/N. For large N, the first term approaches
√

2/π/N3/2 (from results on folded Gaussian
distributions) and is dominated by the second. Thus, asymptotically, the variance in fML is 1/N and, asymptotically,
no estimator can do better.
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Figure S2: Minimum Mean Square Error of optimal estimator, for given N, (red) vs Asymptotic
Lower Bound (blue), showing that the asymptotic bound remains reasonably tight for small N.

We have analysed this example because of its simplicity and its relevance to the repressilator.
However, the conclusions do not depend on detailed assumptions. In fact for any smooth∥ λ(t)
with finite support the asymptotic lower bound on the variance is inversely proportional to N
(Ref.58), and this result can be extended to more general λ(t) in the same manner as we have
proceeded above. For example, if the repression switch is not perfect, or if the protein decay rate
changes over time, a similar bound will apply, just differing in the constant of proportionality. It
is important to emphasise that this is a bound on the variance, not the CV. So it doesn’t preclude
the CV, or phase shift per cycle, being reduced by increasing the period without increasing N.
However, for any given period, the finite number of molecules will limit the accuracy of the
oscillations.

∥For a bounded pulse λ(t) = Na2(t) where
∫ ∞
−∞ a2(t) dt = 1, so the average number of events is N, then the lower

bound on the variance is 1
4N

∫ ∞
−∞( da(t)

dt )2 dt
(Ref.58). However, if λ is discontinuous (or, to be more precise, if the gradient

of λ fails to be square integrable, then the performance improves to 1/N2 (Refs.60, 61). If λ varies quickly, although
in a way that allows the integral above to be calculated, then the performance would look like 1/N2 for small N but
1/N for sufficiently large N, as the number of events during the time of the transition increases. We would argue,
though, that sharp changes in rate do not happen in biological circuits, and so these 1/N2 results, though interesting,
are not relevant here.
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