Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Supporting Information

A Complementary Pair of Enantioselective Switchable Organocatalysts

Guillaume De Bo, David A. Leigh,^{*} Charlie T. McTernan, Shoufeng Wang

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom

Email: david.leigh@manchester.ac.uk

Table of contents

1.	General Methods	S3
2.	Synthesis	S4
3.	Catalytic tests	S14
4.	Optimization of light switching	S17
5.	Optimization of heat switching	S19
6.	Literature Catalysis Examples	S20
7.	in situ Switching experiments	S21
8.	HPLC traces	S22
9.	NMR Spectra	S26
10.	. References	S40

1. General Methods

Unless stated otherwise, reagents were obtained from commercial sources and used without purification. Anhydrous THF (HPLC grade, Fischer scientific), CH₂Cl₂ (HPLC grade, Fischer scientific), DMF (Peptide synthesis grade, Merck) and PhMe (> 99%, Fischer scientific) were obtained by passing the solvent through an activated alumina column on a Phoenix SDS (solvent drying system; JC Meyer Solvent Systems, CA, USA). ¹H NMR spectra were recorded on a Bruker Avance III instrument with an Oxford AS600 magnet equipped with a cryoprobe [5mm CPDCH ¹³C-¹H/D] (600 MHz). Chemical shifts are reported in parts per million (ppm) from high to low frequency using the residual solvent peak as the internal reference (CDCl₃ = 7.26 ppm, CD_2Cl_2 = 5.32 ppm, CD_3OD = 3.31 ppm, d_6 -Acetone = 2.05 ppm and d_6 -DMSO = 2.50 ppm). All ¹H resonances are reported to the nearest 0.01 ppm. The multiplicity of ¹H signals are indicated as: s = singlet; d = doublet; t = triplet; quint = quintet; m = multiplet; br = broad; or combinations of thereof. Coupling constants (J) are quoted in Hz and reported to the nearest 0.1 Hz. ¹³C NMR spectra were recorded on the same spectrometer with the central resonance of the solvent peak as the internal reference ($CDCI_3 = 77.16$ ppm, $CD_2CI_2 = 54.00 \text{ ppm}, CD_3OD = 49.00 \text{ ppm}, d_6\text{-Acetone} = 29.84 \text{ ppm} \text{ and } d_6\text{-DMSO} = 39.52 \text{ ppm}).$ NMR spectra were recorded on a Bruker Avance III instrument (376 MHz). DEPT, COSY, HSQC and HMBC experiments were used to aid structural determination and spectral assignment. Flash column chromatography was carried out using Silica 60 Å (particle size 40–63 μm, Sigma Aldrich, UK) as the stationary phase. Preparative TLC was performed using PLC 20 × 20 cm, 60 F254 Prep plates (Merck, of various thicknesses). TLC was performed on precoated silica gel plates (0.25 mm thick, 60 F254, Merck, Germany) and visualized using both short and long waved ultraviolet light in combination with standard laboratory stains (acidic potassium permanganate, acidic ammonium molybdate and ninhydrin). Low resolution ESI mass spectrometry was performed with a Thermo Scientific LCQ Fleet Ion Trap Mass Spectrometer or an Advion Compact Mass Spectrometer (CMS). High-resolution mass spectrometry was carried out by the EPSRC National Mass Spectrometry Service Centre (Swansea, UK) or by the departmental service. Enantiomeric ratios were determined by HPLC on an Agilent 1260 Infinity system with UV detection at 210, 250 or 254 nm. A Chiralpak IA or IC (5 μ m Particle size, 250×4.6 mm, Diacel Corporation) column with hexane/2-propanol (90/10) as eluent (1 ml/min flow-rate) was used for separations unless otherwise stated. Solutions were irradiated in 3.5 mL quartz cuvettes (10 × 10 mm) with a 395 nm LED source (FWHM = 15 nm, ThorLabs M395L4). Typically, solutions were irradiated for 20 minutes with an irradiance of 700 mW·cm⁻², as measured using a power meter (ThorLabs PM100D equipped with an S302C thermal sensor).

Abbreviations: DMF, dimethyl formamide. DMSO, dimethyl sulfoxide, Pd(dppf), {[1,1'bis(diphenylphosphino)ferrocene] dichloropalladium(II), complex with CH_2Cl_2 }. PE, petroleum ether. HRMS (ESI⁺), high resolution electrospray mass spectrometry. MS (ESI⁺), low resolution electrospray mass spectrometry. *p*TSA, *para*-toluenesulfonic acid. DIPEA, diisopropylethylamine. THF, tetrahydrofuran. Phenyl triflimide, *N*-Phenyl-bis(trifluoromethanesulfonimide). Boc₂O, Di-*tert*-butyl dicarbonate.

2. Synthesis of 1 and 2

Reagents and conditions. i) 1-Bromodecane, Cs₂CO₃, MeCN, reflux, 16 h. ii) BH₃.THF, THF, reflux, 16 h. iii) Boc₂O, CH₂Cl₂, DIPEA r.t., 1 h. iv) 4-Hydroxyphenylboronic acid, Pd(dppf), THF, 2 M Na₂CO₃, 16 h. v) Phenyl triflimide, DIPEA, DMF, r.t., 16 h. vi) Bispinocolatodiboron, Pd(dppf), KOAc, dioxane, 100 °C, 16 h.

Reagents and conditions: vii) 2-Bromo-6-(dimethoxymethyl)pyridine (**7**), Pd(PPh₃)₄, THF, 2 M Na₂CO₃, 60 °C, 4 d. viii) *p*TSA, THF, H₂O, 50 °C, 3 h. ix) 4-Nitrobenzohydrazide (**21**), aniline, CH₂Cl₂, r.t., 16 h. x) TFA, CH₂Cl₂, r.t., 1 h. xi) 3-Amino-4-(((*S*)-((1*S*,2*R*,4*S*,5*R*)-5-ethylquinuclidin-2-yl)(7-methoxynaphthalen-1-yl)methyl)amino)cyclobut-3-ene-1,2-dione (**4**), DMF, Et₃N, MeOH, r.t., 16 h.

xii) 3-Bromo-2-(dimethoxymethyl)pyridine (6), $Pd(PPh_3)_4$, THF, 2 M Na_2CO_3 , 60 °C, 4 d. xiii) 3-Nitrobenzohydrazide (22), aniline, CH_2Cl_2 , r.t., 16 h. xiv) 3-amino-4-(((*R*)-((1*S*,2*S*,4*S*,5*R*)-5-ethylquinuclidin-2-yl)(7-methoxynaphthalen-1-yl)methyl)amino)cyclobut-3-ene-1,2-dione (5), DMF, Et₃N, MeOH, r.t., 16 h.

7, ^{S1} **6**, ^{S2} **4**, ^{S3} **5**, ^{S3} **21**^{S4} and **22**^{S5} were synthesized according to literature procedures.

S1. tert-Butyl (3-bromo-4-(decyloxy)benzyl)carbamate

To a stirred suspension of 3-bromo-4-hydroxybenzonitrile (5.00 g, 25.2 mmol) and caesium carbonate (8.21 g, 25.2 mmol) in MeCN (100 ml) was added 1-bromodecane (5.53 g, 25.0 mmol). The suspension was then heated to reflux for 16 h then the reaction was cooled to r.t., and partitioned between Et₂O (500 ml) and 1 M NaOH_(aq) (500 ml). The organic phase was washed with 1 M NaOH_(ao) (500 ml), dried over MgSO₄, filtered and concentrated in vacuo to afford the crude product. The crude product was then dissolved in THF (50 ml) and cooled to 0 °C. To this stirred solution, BH₃.THF (1 M in THF, 40 ml) was added dropwise. The reaction was heated to reflux for 16 h then cooled to 0 °C and quenched with H_2O (2 ml) followed by 1 M NaOH_(aq) (2 ml). The solvent was removed in vacuo and the residue dissolved in CH₂Cl₂ (200 ml). This solution was then washed with 2 M NaOH_(aq) (200 ml), dried over MgSO₄, filtered and concentrated in vacuo to afford the crude product. The crude was then dissolved in CH_2Cl_2 (200 ml) and diisopropylethylamine (7.5 ml). To this was added di-tert-butyl dicarbonate (4.20 g, 19.2 mmol) all at once. The reaction was stirred at r.t. for 1 h and the solvent removed in vacuo. Imidazole (3.00 g, 44.0 mmol) was added to the residue, which was then dissolved in EtOH (75 ml), and stirred at r.t. for 5 min. The solvent removed in vacuo and the residue partitioned between CHCl₃ and 1 M HCl_(aq). The organic phase was dried over MgSO₄, filtered, and the solvent removed in vacuo to afford the crude product. Purification by flash column chromatography [EtOAc:PE 7:3] afforded S1 (5.51 g, 12.1 mmol, 50%) as a pale yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ: 7.45 (1H, s, H₂₀), 7.16 (1H, d, *J* = 7.9 Hz, H₁₃), 6.82 (1H, d, *J* = 8.2 Hz, H₁₂), 4.79 (1H, s, br, H₁₅), 4.20 (2H, d, *J* = 6.0 Hz, H₁₄), 4.00 (3H, t, *J* = 6.9 Hz, H₁₀), 1.85–1.72 (2H, m, H₉), 1.51–1.41 (11H, m, H₈ + H₁₈), 1.39–1.22 (12H, m, H₇–H₂), 0.88 (3H, t, *J* = 7.3 Hz, H₁); ¹³**C NMR** (150 MHz, CDCl₃) δ: 155.6, 154.8, 132.4, 132.3, 127.6, 113.2, 112.3, 79.6, 69.3, 43.7, 31.9, 29.6, 29.6, 29.3, 29.1, 28.4, 26.0, 22.7, 14.2; **MS** (ESI⁺): **m/z** = 442.2 [100, (M+H)⁺], 464.3 [35, (M+Na)⁺]; **HRMS** (ESI⁺): [C₂₂H₄₀BrN₂O₃]⁺ predicted 459.2217, found 459.2207 (Δ – 2.1 ppm).

S2. tert-Butyl ((6-(decyloxy)-4'-hydroxy-[1,1'-biphenyl]-3-yl)methyl)carbamate

Bromide **S1** (6.00 g, 13.6 mmol) was dissolved in DMF (60 ml) and 2 M Na₂CO_{3(aq)} (20 ml). The reaction was sparged with argon for 15 minutes, then 4-hydroxyphenylboronic acid (3.50 g, 25.4 mmol) and Pd(dppf) (800 mg, 0.980 mmol) were added. The reaction was heated under argon to 80 °C for 16 h then cooled to r.t. and the solvent removed *in vacuo*. The residue was partitioned between CH₂Cl₂ and NaCl_(sat), and the aqueous phase washed once with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography [EtOAc:PE 1:19 grading to 1:4] to furnish **S2** (5.97 g, 13.1 mmol, 96%) as a pale yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ: 7.41 (2H, d, *J* = 8.5 Hz, H₂₃), 7.20 (1H, s, H₂₀), 7.17 (1H, d, *J* = 8.1 Hz, H₁₃), 6.90 (1H, d, *J* = 8.4 Hz, H₁₂), 6.85 (2H, d, *J* = 8.5 Hz, H₂₄), 5.01 (1H, s, H₂₆), 4.80 (1H, s, br, H₁₅), 4.28 (2H, d, *J* = 4.9 Hz, H₁₄), 3.92 (3H, t, *J* = 6.7 Hz, H₁₀), 1.72–1.68 (2H, m, H₉), 1.46 (9H, s, H₁₈), 1.40–1.34 (2H, m, H₈), 1.31–1.20 (12H, m, H₇–H₂), 0.88 (3H, t, *J* = 7.1 Hz, H₁); ¹³**C NMR** (150 MHz, CDCl₃) δ: 156.0, 155.5, 154.8, 131.0, 131.0, 131.0, 130.7, 130.1, 129.8, 127.5, 114.9, 112.8, 79.6, 68.7, 44.4, 32.0, 29.7, 29.7, 29.5, 29.4, 28.6, 26.2, 22.8, 14.3; **MS** (ESI⁺): **m/z** = 456.3 [100, (M+H)⁺], 478.3 [25, (M+Na)⁺]; **HRMS** (ESI⁺): [C₂₈H₄₂NO₄]⁺ predicted 456.3108, found 456.3102 (Δ – 1.4 ppm).

S3. 5'-(((*tert*-Butoxycarbonyl)amino)methyl)-2'-(decyloxy)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate

To a stirred solution of **S2** (5.50 g, 12.1 mmol) in DMF (150 ml) and diisopropylethylamine (8 ml) was added *N*-phenyl-bis(trifluoromethanesulfonimide) (5.00 g, 14.0 mmol). The reaction was stirred at r.t. for 16 h before the solvent was removed *in vacuo*. The residue was partitioned between CH_2Cl_2 (200 ml) and 2 M HCl_(aq) (200 ml). The organic phase was washed with 2 M NaOH_(aq) (200 ml) then LiCl_(sat), dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude product was purified by flash column chromatography [EtOAc:PE 1:9] to furnish *S3* (6.72 g, 11.8 mmol, 97%) as a yellow oil.

¹**H NMR** (600 MHz, CD_2Cl_2) δ : 7.63 (2H, d, J = 8.8 Hz, H_{23}), 7.35 (2H, d, J = 8.4 Hz, H_{24}), 7.24 (1H, d, J = 8.6 Hz, H_{20}), 7.22 (1H, s, H_{13}), 6.96 (1H, d, J = 8.3 Hz, H_{12}), 4.94 (1H, s, br, H_{15}), 4.25 (2H, d, J = 5.2 Hz, H_{14}), 3.96 (3H, t, J = 7.2 Hz, H_{10}), 1.72–1.67 (2H, m, H_9), 1.43 (9H, s, H_{18}), 1.38–1.32 (2H, m, H_8), 1.31–1.21 (12H, m, H_7 – H_2), 0.88 (3H, t, J = 8.1 Hz, H_1); ¹³**C NMR** (150 MHz, CD_2Cl_2) δ : 155.1, 148.5, 139.1, 131.6, 131.4, 129.8, 128.6, 128.3, 123.9, 120.6, 118.8 (q, J = 320 Hz), 112.5, 79.1, 68.6, 43.9, 31.9, 29.6, 29.5, 29.3, 29.2, 29.1, 28.1, 26.1, 22.7, 13.9; ¹⁹**F NMR** (376 MHz, $CDCl_3$): -72.83;

MS (ESI⁺): **m/z** = 588.6 [100, (M+H)⁺], 610.7 [15, (M+Na)⁺]; **HRMS** (ESI⁺): $[C_{29}H_{44}N_2O_6S]^+$ predicted 605.2867, found 605.2861 (Δ – 0.9 ppm).

3. *tert*-Butyl ((6-(decyloxy)-4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'- biphenyl]-3-yl)methyl)carbamate

To a stirred solution of **S3** (270 mg, 0.459 mmol) in dioxane (12 ml) were added KOAc (200 mg, 2.02 mmol) and bis(pinocolato)diboron (270 mg, 1.06 mmol). The suspension was sparged with argon for 15 min, then {[1,1'-Bis(diphenylphosphino)ferrocene] dichloropalladium(II), complex with CH_2Cl_2 } (60 mg, 7.35 µmol) was added. The reaction was heated to 100 °C for 16 hours under argon, then cooled to r.t. and concentrated *in vacuo*. The residue was purified by flash column chromatography [on Al_2O_3 (Brockmann II), EtOAc:PE 1:99 to 1:2] to furnish **3** (209 mg, 0.370 mmol, 81%) as a colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ: 7.83 (2H, d, J = 8.3 Hz, H₂₃), 7.55 (2H, d, J = 8.1 Hz, H₂₄), 7.24 (1H, d, J = 1.9 Hz, H₁₃), 7.21 (1H, d, J = 8.6 Hz, H₂₀), 6.92 (1H, d, J = 8.6 Hz, H₁₂), 4.78 (1H, s, br, H₁₅), 4.29 (2H, d, J = 6.3 Hz, H₁₄), 3.92 (3H, t, J = 8.4 Hz, H₁₀), 1.72–1.65 (2H, m, H₉), 1.46 (9H, s, H₁₈), 1.39–1.34 (14H, m, H₈ + H₂₇), 1.31–1.21 (12H, m, H₇–H₂), 0.88 (3H, t, J = 8.1 Hz, H₁); ¹³**C NMR** (150 MHz, CDCl₃) δ: 155.9, 155.4, 141.3, 134.3, 131.0, 130.8, 130.2, 128.9, 128.0, 112.7, 83.7, 79.5, 68.7, 44.2, 31.9, 29.6, 29.6, 29.3, 29.3, 29.2, 29.1, 28.5, 26.0, 24.9, 22.7, 14.1; **MS** (ESI⁺): **m/z** = 565.4 [100, (M+H)⁺], 588.3 [35, (M+Na)⁺]; **HRMS** (ESI⁺): [C₃₄H₅₆N₂O₅B]⁺ predicted 582.4313, found 582.4306 (Δ – 1.2 ppm).

S4. *tert*-Butyl ((6-(decyloxy)-4'-(6-(dimethoxymethyl)pyridin-2-yl)-[1,1'-biphenyl]-3-yl)methyl)carbamate

To a stirred solution of **3** (170 mg, 0.301 mmol) in THF (5 ml) and 2 M Na₂CO_{3 (aq)} (2 ml) was added 2-Bromo-6-(dimethoxymethyl)pyridine (**7**) (160 mg, 0.689 mmol). The solution was sparged with argon for 15 min. Pd(PPh₃)₄ (120 mg, 0.104 mmol) was added, and the reaction heated to 60 °C under argon for 4 days. The reaction was cooled to r.t. and partitioned between EtOAc (50 ml) and 0.1 M EDTA_(aq) (50 ml). The organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash column chromatography [EtOAc:CH₂Cl₂ 1:99 grading to 1:24] to furnish **S4** (162 mg, 0.274 mmol, 91%) as a pale yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ: 8.06 (2H, d, J = 8.1 Hz, H₂₃), 7.83–7.80 (1H, m, H₂₈), 7.75 (1H, d, J = 8.2 Hz, H₂₉), 7.65 (2H, d, J = 7.8 Hz, H₂₄), 7.51 (1H, d, J = 7.8 Hz, H₂₇), 7.28 (1H, d, J = 2.6 Hz, H₂₀), 7.23 (1H, d, J = 8.4 Hz, H₁₃), 6.94 (1H, d, J = 8.4 Hz, H₁₂), 5.48 (1H, s, H₃₁), 4.81 (1H, s, br, H₁₅), 4.31 (2H, d, J = 5.4 Hz, H₁₄), 3.95 (3H, t, J = 6.9 Hz, H₁₀), 1.74–1.68 (2H, m, H₉), 1.46 (9H, s, H₁₈), 1.41–1.35 (2H, m, H₈), 1.31–1.19 (12H, m, H₇–H₂), 0.86 (3H, t, J = 7.2 Hz, H₁); ¹³**C NMR** (150 MHz, CDCl₃) δ: 157.3, 156.5, 155.9, 155.5, 139.2, 137.5, 134.5, 131.1, 130.5, 130.1, 129.9, 128.0, 126.6, 120.3, 119.3, 112.7, 104.9, 79.5, 68.7, 54.2, 44.2, 31.9, 29.6, 29.6, 29.3, 29.3, 29.2, 28.4, 28.1, 22.7, 14.1; **MS** (ESI⁺): **m/z =** 591.4 [100, (M+H)⁺], 613.4 [15, (M+Na)⁺]; **HRMS** (ESI⁺): [C₃₆H₅₁N₂O₅]⁺ predicted 591.3792, found 591.3779 (Δ – 2.3 ppm).

9. tert-Butyl ((6-(decyloxy)-4'-(6-formylpyridin-2-yl)-[1,1'-biphenyl]-3-yl)methyl)carbamate

To a stirred solution of **S4** (78.0 mg, 0.132 mmol) in THF (3 ml) was added H_2O (100 µl) and *p*-toluenesulfonic acid (78.0 mg, 0.411 mmol). The reaction was heated under argon to 50 °C for 3 h. The reaction was partitioned between CH_2Cl_2 (30 ml) and 2 M NaOH_(aq) (30 ml). The organic phase was dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash column chromatography [EtOAc:CH₂Cl₂ 1:99 grading to 1:24] to furnish **9** (72 mg, 0.132 mmol, quant.) as a pale yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ: 10.20 (1H, s, H₃₁), 8.13 (2H, d, *J* = 8.1 Hz, H₂₃), 8.01 (1H, dd, *J* = 7.6, 1.1 Hz, H₂₉), 7.95 (1H, t, *J* = 7.6 Hz, H₂₈), 7.91 (1H, dd, *J* = 7.6, 1.1 Hz, H₂₇), 7.70 (2H, d, *J* = 8.4 Hz, H₂₄), 7.30 (1H, d, *J* = 2.2 Hz, H₂₀), 7.26–7.22 (1H, d, *J* = 8.6 Hz, H₁₃), 6.95 (1H, d, *J* = 8.4 Hz, H₁₂), 4.82 (1H, s, br, H₁₅), 4.31 (2H, d, *J* = 5.2 Hz, H₁₄), 3.97 (3H, t, *J* = 6.2 Hz, H₁₀), 1.75–1.69 (2H, m, H₉), 1.47 (9H, s, H₁₈), 1.42–1.35 (2H, m, H₈), 1.31–1.18 (12H, m, H₇–H₂), 0.85 (3H, t, *J* = 6.9 Hz, H₁); ¹³**C NMR** (150 MHz, CDCl₃) δ: 194.1, 157.8, 155.9, 155.5, 152.7, 139.9, 137.8, 136.5, 131.1, 130.2, 130.2, 128.2, 126.5, 124.4, 119.7, 112.7, 79.5, 68.7, 44.2, 38.1, 31.9, 29.6, 29.5, 29.3, 29.3, 29.2, 28.4, 26.1, 22.7, 14.1; **MS** (ESI⁺): **m/z** = 545.3 [100, (M+H)⁺], 567.2 [45, (M+Na)⁺]; **HRMS** (ESI⁺): [C₃₄H₄₅N₂O₄]⁺ predicted 545.3374, found 545.3374 (Δ – 1.4 ppm).

11. *tert*-Butyl (*E*)-((6-(decyloxy)-4'-(6-((2-(4-nitrophenyl)hydrazono)methyl)pyridin-2-yl)-[1,1'-biphenyl]-3-yl)methyl)carbamate

To a stirred solution of **9** (740 mg, 1.36 mmol) in CH_2Cl_2 (100 ml) was added 4-nitrobenzohydrazide (296 mg, 1.63 mmol, **21**) and aniline (6.33 mg, 0.0680 mmol). The reaction was stirred for 16 h then concentrated *in vacuo*. The crude residue was purified by flash column chromatography [MeOH:CH₂Cl₂ 1:19 grading to 1:9] to furnish **11** (800 mg, 1.13 mmol, 83%) as a yellow oil.

¹**H NMR** (600 MHz, DMSO-*d*₆) δ: 15.39 (1H, s, H₃₂), 8.24–8.19 (3H, m, H₂₉+H₃₅), 8.09 (1H, d, *J* = 7.4 Hz, H₂₇), 8.06 (2H, d, *J* = 9.5 Hz, H₃₄), 7.89–7.84 (4H, m, H₂₄+H₂₈+H₃₁), 7.54 (2H, d, *J* = 7.4 Hz, H₂₃), 7.26–7.21 (2H, m, H₁₃ + H₂₀), 7.09 (1H, d, *J* = 7.4 Hz, H₁₂), 4.16 (2H, d, *J* = 5.0 Hz, H₁₄), 3.94 (2H, t, *J* = 5.0 Hz, H₁₀), 1.55–1.49 (2H, m, H₉), 1.39 (9H, s, H₁₈), 1.20–1.17 (2H, m, H₈), 1.12–1.06 (4H, m, H₇+H₆), 1.04–0.98 (8H, m, H₅–H₂), 0.83 (3H, t, *J* = 6.6 Hz, H₁); ¹³**C NMR** (150 MHz, DMSO-*d*₆) δ: 162.7, 156.5, 156.2, 155.0, 152.3, 149.8, 140.9, 140.3, 140.2, 139.5, 136.7, 132.9, 130.2, 129.7, 129.5, 129.1, 128.3, 127.3, 126.1, 124.4, 123.1, 113.4, 68.7, 41.8, 31.6, 29.4, 29.2, 29.2, 29.0, 29.0, 28.7, 28.7, 26.0, 22.5, 14.3; **MS** (ESI⁺): **m/z** = 708.1 [100, (M+H)⁺], 730.1 [15, (M+Na)⁺]; **HRMS** (ESI⁺): [C₄₁H₄₉N₅O₆]⁺ predicted 708.3756, found 708.3751 (Δ –0.7 ppm).

1. N'-((E)-(6-(2'-(Decyloxy)-5'-(((2-(((S)-((1S,2R,4S,5R)-5-ethylquinuclidin-2-yl)(6methoxyquinolin-4-yl)methyl)amino)-3,4-dioxocyclobutyl)amino)methyl)-[1,1'-biphenyl]-4-yl)pyridin-2-yl)methylene)-4-nitrobenzohydrazide

Hydrazide **11** (51.1 mg, 0.0721 mmol) was dissolved in CH_2Cl_2 (4 ml) and TFA (1 ml) was added. The reaction was stirred at r.t. for 1 h and concentrated *in vacuo* with the addition of toluene (5 ml). The residue was azeotroped 5 × with toluene: CH_2Cl_2 (1:1, 10 ml). The crude residue was dissolved in DMF (2 ml), MeOH (2 ml) and Et₃N (0.5 ml), then **4** (85.2 mg, 0.195 mmol) was added. The reaction was stirred at r.t. for 16 h, concentrated *in vacuo*, and purified by preparatory thin layer chromatography (4 × 500 µm, eluted with Et₃N:MeOH: CH_2Cl_2 0.1:1:10) to afford **1** (46 mg, 0.0455 mmol, 63%) as a yellow powder.

¹**H NMR** (600 MHz, DMSO- d_6) δ : 12.40 (1H, s, H₅₅), 8.75 (1H, s, H₂₄), 8.61 (1H, s, H₅₄), 8.41 $(2H, d, J = 9.3 Hz, H_{59}),$ 8.20 $(2H, d, J = 9.3 Hz, H_{58}),$ 8.16-8.10 $(1H, m, H_{51}),$ 8.06-7.93 $(5H, m, H_{27} + H_{47} + H_{50} + H_{52}), 7.63 - 7.54 (3H, m, H_{23} + H_{46}), 7.42 (1H, dd, J = 9.3, 2.3 Hz, H_{13}), 7.34 - 7.31$ (2H, m, H₂₈ + H₃₁), 7.29–7.23 (1H, m, H₄₃), 7.11–7.05 (1H, m, H₁₂), 5.94 (2H, br, H₁₅ + H₂₀), 4.74–4.70 (2H, m, H₁₄), 3.99–3.87 (5H, m, H₁₀ + H₃₀), 3.15–3.07 (1H, m, H₂₁), 2.42–2.35 (1H, m, H₃₃), 1.65–1.58 $(2H, m, H_9)$, 1.56-1.44 $(3H, m, H_8 + H_{35a})$, 1.12-1.06 $(4H, m, H_7 + H_6)$, 1.42-1.10 $(23H, m, H_2-1.10)$ (6H, m, H₁ + H₃₈); ¹³C NMR $H_7 + H_{34} + H_{35b} + H_{36} + H_{37} + H_{39} + H_{40} + H_{41}),$ 0.81-0.74 (150 MHz, DMSO-*d*₆) δ: 182.8, 182.5, 162.3, 156.2, 155.6, 153.4, 149.9, 149.8, 148.2, 144.8, 140.9, 140.2, 139.4, 139.3, 138.5, 137.0, 132.0, 131.3, 130.5, 130.0, 129.8, 129.5, 129.4, 129.2, 128.7, 127.3, 126.6, 125.8, 124.2, 123.4, 121.4, 119.3, 113.6, 101.9, 68.6, 59.1, 56.2, 48.6, 40.7, 31.7, 31.6, 29.4, 29.3, 29.2, 29.2, 29.1, 29.1, 29.0, 29.0, 28.9, 25.9, 25.9, 22.5, 22.5, 14.4, 14.3; MS (ESI⁺): m/z = 1011.1 [100, $(M+H)^{\dagger}$], 1033.2 [5, $(M+Na)^{\dagger}$]; **HRMS** (ESI⁺): $[C_{60}H_{67}N_8O_7]^{\dagger}$ predicted 1011.5127, found 1011.5120 (Δ – 0.7 ppm).

S5. *tert*-Butyl ((6-(decyloxy)-4'-(2-(dimethoxymethyl)pyridin-3-yl)-[1,1'-biphenyl]-3-yl)methyl)carbamate

To a stirred solution of **3** (170 mg, 0.301 mmol) in THF (5 ml) and 2 M Na₂CO_{3(aq)} (2 ml) was added **6** (160 mg, 0.689 mmol). The solution was sparged with argon for 15 min, Pd(PPh₃)₄ (120 mg, 0.104 mmol) was added, and the reaction heated to 60 °C under argon for 4 days. The reaction was cooled to r.t. and partitioned between EtOAc (50 ml) and 0.1 M EDTA_(aq) (50 ml). The organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash column chromatography [EtOAc:CH₂Cl₂ 1:99 grading to 1:24] to furnish **S5** (162 mg, 0.274 mmol, 91%) as a pale yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ: 8.08 (2H, d, J = 8.4 Hz, H₂₃), 7.84–7.81 (1H, m, H₂₈), 7.76 (1H, d, J = 7.7 Hz, H₂₉), 7.69 (2H, d, J = 8.4 Hz, H₂₄), 7.52 (1H, d, J = 7.7 Hz, H₂₇), 7.30 (1H, d, J = 2.1 Hz, H₂₀), 7.25 (1H, d, J = 8.4 Hz, H₁₃), 6.96 (1H, d, J = 8.4 Hz, H₁₂), 5.47 (1H, s, H₃₁), 4.83 (1H, s, br, H₁₅), 4.33 (2H, d, J = 5.8 Hz, H₁₄), 3.98 (2H, t, J = 6.7 Hz, H₁₀), 3.50 (6H, s, H₃₂), 1.76–1.71 (2H, m, H₉), 1.49 (9H, s, H₁₈), 1.44–1.38 (2H, m, H₈), 1.34–1.21 (12H, m, H₇–H₂), 0.88 (3H, t, J = 7.2 Hz, H₁); ¹³**C NMR** (150 MHz, CDCl₃) δ: 157.3, 156.6, 155.9, 155.5, 139.1, 137.6, 137.3,

131.0, 130.5, 130.1, 129.9, 128.0, 126.6, 120.2, 119.2, 112.7, 105.0, 68.8, 54.1, 44.2, 31.9, 29.6, 29.6, 29.5, 29.3, 29.3, 29.1, 28.4, 26.1, 22.7, 14.1; **MS** (ESI⁺): **m/z** = 591.4 [100, (M+H)⁺], 613.3 [20, (M+Na)⁺]; **HRMS** (ESI⁺): $[C_{36}H_{50}N_2O_5]^+$ predicted 591.3792, found 591.3779 (Δ – 2.3 ppm).

8. tert-Butyl ((6-(decyloxy)-4'-(2-formylpyridin-3-yl)-[1,1'-biphenyl]-3-yl)methyl)carbamate

To a stirred solution of **S5** (60.0 mg, 0.102 mmol) in THF (3 ml) was added H₂O (100 μ l) and *p*-toluenesulfonic acid (60.0 mg, 0.316 mmol). The reaction was heated under argon to 50 °C for 3 h. The reaction was partitioned between CH₂Cl₂ (30 ml) and 2 M NaOH_(aq) (30 ml). The organic phase was dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash column chromatography [EtOAc:CH₂Cl₂ 1:99 grading to 1:24] to furnish **8** (44.7 mg, 0.0822 mmol, 81%) as a pale yellow oil.

¹**H NMR** (600 MHz, Acetone- d_6) δ: 10.14 (1H, s, H₃₁), 8.32–8.26 (3H, m, H₂₃ + H₂₉), 8.15–8.11 (1H, m, H_{28}), 7.90 (1H, d, J = 7.7 Hz, H_{27}), 7.74 (2H, d, J = 7.7 Hz, H_{24}), 7.39 (1H, d, J = 2.2 Hz, H_{20}), 7.29 $(2H, dd, J = 7.8, 2.2 Hz, H_{13}),$ 7.07 $(1H, d, J = 8.4 Hz, H_{12}),$ 4.28 6.47 (1H, s, br, H₁₅), $(2H, d, J = 6.4 Hz, H_{14}),$ 4.04 $(2H, t, J = 6.8 Hz, H_{10}),$ 1.76 - 1.70 $(2H, m, H_9),$ 1.46 - 1.40¹³C NMR $(11H, m, H_{18} + H_8),$ 1.34-1.16 $(12H, m, H_7 - H_2),$ 0.83 $(3H, t, J = 6.3 Hz, H_1);$ (150 MHz, Acetone-*d*₆) δ: 193.4, 157.2, 155.9, 155.2, 152.9, 140.3, 138.4, 136.3, 132.7, 130.0, 129.7, 129.6, 128.1, 126.3, 124.3, 119.4, 112.7, 77.8, 68.3, 43.4, 31.7, 29.5, 29.2, 29.2, 29.0, 29.0, 28.8, 27.8, 26.0, 22.4, 13.5; **MS** (ESI⁺): $m/z = 545.3 [100, (M+H)^+]$, 567.3 [10, (M+Na)⁺]; **HRMS** (ESI⁺): $[C_{34}H_{45}N_2O_4]^+$ predicted 545.3374, found 545.3366 ($\Delta - 1.4$ ppm).

10. *tert*-Butyl (*E*)-((6-(decyloxy)-4'-(2-((2-(3-nitrobenzoyl)hydrazono)methyl)pyridin-3-yl)-[1,1'-biphenyl]-3-yl)methyl)carbamate

To a stirred solution of **8** (42.0 mg, 0.0773 mmol) in CH_2Cl_2 (100 ml) was added 3-nitrobenzohydrazide (18.0 mg, 0.0928 mmol, **22**) and aniline (0.360 mg, 3.87 µmol). The reaction was stirred for 16 h then concentrated *in vacuo*. The crude residue was purified by flash column

chromatography [MeOH:CH₂Cl₂ 1:19 grading to 1:9] to furnish **10** (43.7 mg, 0.617 mmol, 80%) as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ: 15.82 (1H, s, H₃₂), 8.75 (1H, s, H₃₉), 8.36 (1H, d, J = 8.2 Hz, H₃₇), 8.13 (1H, d, J = 8.2 Hz, H₃₅), 8.05–8.01 (1H, m, H₂₈), 7.81 (1H, d, J = 8.2 Hz, H₂₉), 7.74–7.70 (3H, m, H₂₃ + H₂₀), 7.54–7.49 (3H, m, H₂₄ + H₂₇), 7.47–7.43 (1H, m, H₃₆), 7.28 (1H, d, J = 8.5 Hz, H₁₃), 6.96 (1H, d, J = 8.5 Hz, H₁₂), 4.96 (1H, s, br, H₁₅), 4.35 (2H, d, J = 4.8 Hz, H₁₄), 3.98 (2H, t, J = 6.7 Hz, H₁₀), 1.72–1.65 (2H, m, H₉), 1.47 (9H, s, H₁₈), 1.36–1.30 (2H, m, H₈), 1.27–1.14 (12H, m, H₇–H₂), 0.83 (3H, t, J = 6.6 Hz, H₁); ¹³**C NMR** (150 MHz, CDCl₃) δ: 162.9, 157.6, 156.0, 155.4, 152.2, 148.3, 140.5, 140.0, 138.9, 136.7, 135.1, 133.4, 131.3, 130.2, 130.1, 129.9, 129.7, 128.5, 126.9, 126.6, 124.6, 123.5, 122.5, 112.7, 68.7, 44.2, 31.9, 29.6, 29.5, 29.5, 29.3, 29.3, 29.2, 29.1, 26.0, 22.7, 14.1; **MS** (ESI⁺): **m/z** = 708.1 [100, (M+H)⁺], 730.1 [10, (M+Na)⁺]; **HRMS** (ESI⁺): [C₄₁H₄₉N₅O₆Na]⁺ predicted 730.3575, found 730.3581 (Δ + 0.8 ppm).

2. N'-((E)-(3-(2'-(decyloxy)-5'-(((2-(((R)-((1*S*,2*S*,4*S*,5*R*)-5-ethylquinuclidin-2-yl)(6-methoxyquinolin-4-yl)methyl)amino)-3,4-dioxocyclobutyl)amino)methyl)-[1,1'-biphenyl]-4-yl)pyridin-2-yl)methylene)-3-nitrobenzohydrazide

10 (43.7 mg, 0.617 mmol) was dissolved in CH_2CI_2 (4 ml) and TFA (1 ml) was added. The reaction was stirred at r.t. for 1 h and concentrated *in vacuo* with the addition of toluene (5 ml). The residue was azeotroped 5 × with toluene: CH_2CI_2 (1:1, 10 ml). The crude residue was dissolved in DMF (2 ml), MeOH (2 ml) and Et_3N (0.5 ml), then **5** (85 mg, 0.195 mmol) was added. The reaction was stirred at r.t. for 16 h, concentrated *in vacuo*, and purified by preparatory thin layer chromatography (4 × 500 µm, eluted with Et_3N :MeOH: CH_2CI_2 0.1:1:10) to afford **2** (33.1 mg, 0.327 mmol, 53%) as a yellow powder.

¹H NMR (600 MHz, DMSO-*d*₆) δ: 12.42 (1H, s, H₅₅), 8.80 (1H, s, H₅₅), 8.75 (1H, s, H₂₄), 8.63 (1H, s, H₅₄), 8.49 (1H, d, *J* = 8.1 Hz, H₆₀), 8.41 (1H, d, *J* = 8.1 Hz, H₆₂), 8.15 (2H, d, *J* = 8.1 Hz, H₄₇), 8.07 (1H, d, *J* = 6.9 Hz, H₅₀), 8.04–7.94 (3H, m, H₅₁ + H₅₂ + H₆₁), 7.91–7.87 (1H, m, H₂₇), 7.86–7.79 (1H, m, H₂₃), 7.65–7.55 (3H, m, H₁₃ + H₄₆), 7.43 (1H, d, *J* = 8.1, H₂₈), 7.36-7.33 (1H, m, H₃₁), 7.29–7.25 (1H, m, H₄₃), 7.11–7.07 (1H, m, H₁₂), 6.29 (1H, br, H₁₅ or H₂₀), 6.05 (1H, br, H₁₅ or H₂₀), 4.70–4.61 (2H, m, H₁₄), 3.99–3.95 (2H, m, H₁₀), 3.94–3.87 (4H, m, H₂₁ + H₃₀), 2.90–2.84 (1H, m, H₃₃), 1.65–1.59 (2H, m, H₉), 1.56–1.45 (5H, m, H₇ + H₈ + H_{35a}), 1.38–1.10 (20 H, m, H₂– H₆ + H₃₄ + H_{35b} + H₃₆ + H₃₇ + H₃₉ + H₄₀ + H₄₁), 0.84–0.80 (3H, m, H₁), 0.77 (3H, t, *J* = 7.4, H₃₈); ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 182.4, 182.1, 167.0, 157.9, 155.1, 147.8, 147.7, 146.7, 145.2, 144.3, 141.2, 139.6, 138.5, 137.9, 137.3, 134.2, 133.8, 131.6, 131.1, 130.2, 129.9, 129.7, 129.6, 129.4, 129.3, 128.9, 127.5, 126.0, 125.6, 125.2, 122.5, 122.1, 113.2, 101.3, 68.2, 59.0, 55.6, 49.0, 48.1, 46.4, 31.3, 29.1, 29.0, 28.9, 28.9, 28.8, 28.7, 28.7, 28.6, 28.6, 25.7, 25.6, 25.4, 22.1, 13.9, 13.9; **MS** (ESI⁺): **m/z** = 1011.1 [100, (M+H)⁺], 1033.2 [5, (M+Na)⁺]; **HRMS** (ESI⁺): [$C_{60}H_{67}N_8O_7$]⁺ predicted 1011.5127, found 1011.5096 (Δ – 3.1 ppm).

3. Catalysis tests

Addition of malonitrile to chalcone to form S6

Malonitrile **12** (1.0 mg, 0.015 mmol), chalcone **S7** (32 mg, 0.15 mmol) and catalyst **1** or **2** (0.75 mg, 0.75 μ mol) were dissolved in CDCl₃ (0.7 ml). Conversion was measured periodically by ¹H NMR spectroscopy and comparison with authentic spectra of starting materials and product. Upon completion, the crude was purified by TLC, and the chirality of the product ascertained by HPLC (chiralpak IC, 90:10 Hexane:*i*PrOH, major enantiomer produced by catalyst **1** t_r = 18.4 min, for catalyst **2** t_r = 29.9 min).

Addition of 1,4-dithiane-2,5-diol to chalcone to form S8

1,4-dithiane-2,5-diol **S9** (2.3 mg, 0.015 mmol), chalcone **S7** (32 mg, 0.15 mmol) and catalyst **1** or **2** (0.75 mg, 0.75 μ mol) were dissolved in toluene (0.7 ml) then heated to 50 °C. Conversion was measured periodically by ¹H NMR spectroscopy and comparison with authentic spectra of starting materials and product. Upon completion, the crude was purified by TLC, and the chirality of the product ascertained by HPLC (chiralpak IA, 90:10 Hexane:*i*PrOH, major enantiomer produced by catalyst **1** t_r = 13.6 min, for catalyst **2** t_r = 19.3 min).

Addition of malonitrile to (E)-1-(furan-2-yl)-3-phenylprop-2-en-1-one to form 14

Malonitrile **12** (1.0 mg, 0.015 mmol), (*E*)-1-(furan-2-yl)-3-phenylprop-2-en-1-one **13** (30 mg, 0.15 mmol) and catalyst **1** or **2** (0.75 mg, 0.75 µmol) were dissolved in CDCl₃ (0.7 ml). Conversion was measured periodically by ¹H NMR spectroscopy and comparison with authentic spectra of starting materials and product. Upon completion, the crude was purified by TLC, and the chirality of the product ascertained by HPLC (chiralpak IA, 90:10 Hexane:*i*PrOH, major enantiomer produced by catalyst **1** t_r = 19.9 min, for catalyst **2** t_r = 23.9 min).

Addition of diethyl malonate to trans-β-nitrostyrene to form S10

Diethyl malonate **S11** (24 mg, 0.15 mmol), *trans*- β -nitrostyrene **S12** (2.2 mg, 0.015 mmol) and catalyst **1** or **2** (3.75 mg, 3.75 µmol) were dissolved in CDCl₃ (0.7 ml). Conversion was measured periodically by ¹H NMR spectroscopy and comparison with authentic spectra of starting materials and product. Upon completion, the crude was purified by TLC, and the chirality of the product ascertained by HPLC (chiralpak IA, 90:10 Hexane:*i*PrOH, major enantiomer produced by catalyst **1** t_r = 13.7 min, for catalyst **2** t_r = 18.4 min).

Addition of diethyl malonate to trans-β-nitrostyrene to form S13

1,3-Diphenylpropane-1,3-dione **S14** (3.4 mg, 0.015 mmol), *trans*- β -nitrostyrene **S12** (22 mg, 0.15 mmol) and catalyst **1** or **2** (3.75 mg, 3.75 μ mol) were dissolved in CDCl₃ (0.7 ml). Conversion was measured periodically by ¹H NMR spectroscopy and comparison with authentic spectra of starting materials and product. Upon completion, the crude was purified by TLC, and the chirality of the product ascertained by HPLC (chiralpak IA, 90:10 Hexane:*i*PrOH, major enantiomer produced by catalyst **1** t_r = 18.5 min, for catalyst **2** t_r = 36.8 min).

Addition of malonitrile to (E)-1-(furan-2-yl)-3-phenylprop-2-en-1-one to form S15

2-(Methoxymethoxy)malononitrile **S16** (8.0 mg, 0.063 mmol, prepared according to literature procedure)^{S10}, (*E*)-1-(furan-2-yl)-3-phenylprop-2-en-1-one **13** (62 mg, 0.32 mmol) and catalyst **1** or **2** (3.2 mg, 3.2 µmol) were dissolved in CDCl₃ (1 ml). Upon completion, the crude was purified by PTLC, furnishing a colourless oil (24.1 mg, 0.0744 mmol, 74%) and the chirality of the product ascertained by HPLC (chiralpak IA, 90:10 Hexane:*i*PrOH, major enantiomer produced by catalyst **1** t_r = 12.1 min, for catalyst **2** t_r = 9.8 min). ¹H **NMR** (600 MHz, CDCl₃) δ : 7.60 (1H, d, *J* = 1.9 Hz, H₁₅), 7.49 (2H, dd, *J* = 7.8, 1.3 Hz, H₄ + H₆), 7.38-7.34 (3H, m, H₁–H₃), 7.21 (1H, d, *J* = 3.6 Hz, H₁₃), 6.54

(1H, dd, J = 3.6, 1.7 Hz, H₁₄), 5.06–5.01 (2H, m, H₂₀), 4.21 (1H, dd, J = 9.2, 3.9 Hz, H₇), 3.72 (1H, dd, J = 15.8, 9.7 Hz, H_{8a}), 3.55 (1H, dd, J = 16.7, 3.9 Hz, H_{8b}), 3.46 (3H, s, H₂₂); ¹³**C** NMR (150 MHz, CDCl₃) δ : 184.4, 152.2, 146.8, 133.9, 129.6, 129.3, 128.9, 117.6, 112.7, 96.5, 70.0, 57.5, 49.1, 38.4; MS (ESI⁺): m/z = 347.1 [100, (M+Na)⁺]; HRMS (ESI⁺): [C₁₈H₁₆N₂O₄Na]⁺ predicted 347.1002, found 347.1002 (Δ –0.1 ppm).

4. Optimisation of light switching conditions for catalyst 1

The degree of isomerisation was monitored by following the integral ratio of the E and Z states of hydrazone proton H(55) (at c. 12 ppm and c. 16 ppm, see characterisation for full numbering).

A brief initial screen of light sources showed a 395 nm source to be the most efficient in promoting hydrazone isomerization. Initially problems with decomposition, particularly hydrazone hydrolysis, were observed. This could be prevented by the addition of molecular sieves, which also improved the *E*:*Z* ratio achieved. A significant improvement in final switching ratio was achieved by the addition of EtOAc to the solvent mixture (pure EtOAc could not be used due to insufficient solubility). Increasing the concentration of solution was deleterious to conversion. The timescale of switching could be accelerated to 20 min of irradiation by increasing the power and using CH_2Cl_2 :EtOAc as solvent. This switching system also alleviated the previously observed decomposition, obviating the need for molecular sieves.

Mass/ mg	Solvent	Additive	Wavelength/nm	Time/m in	Power / mW	Ratio <i>E:Z</i>	Decomp.
1	CH_2CI_2	-	365	30	215	60:40	20%
1	Toluene	-	365	30	215	57:43	20%
1	EtOAc	-	365	30	215	43:57	20%
1	CHCl₃	-	395	30	215	58:42	10%
1	Toluene: CH ₂ Cl ₂ 9:1	-	395	30	215	60:40	10%
1	EtOAc: $CH_2Cl_29:1$	-	395	30	215	40:60	10%
1	CH_2CI_2	-	Cold White	30	215	87:13	10%
1	EtOAc: CH ₂ Cl ₂ 9:1	-	Cold White	30	215	90:10	10%
1	EtOAc CH ₂ Cl ₂ 9:1	-	Cold White	900	215	45:55	25%
1	EtOAc: CHCl₃ 4:1	-	395	300	380	54:46	35%
1	CHCl₃	MS	395	60	380	40:60	-
1	CHCl₃	MS	395	140	380	46:54	5%
1	EtOAc: CHCl ₃ 4:1	MS, 10 Eq Chalcone	395	60	380	29:71	-
1	EtOAc: CHCl₃4:1	MS, Rose Bengal	395	60	380	87:13	-
1	EtOAc: CHCl₃4:1	MS, 2 Eq TFA	395	60	380	52:48	5%
1	EtOAc: CHCl₃4:1	MS, 2 Eq TFA, Chalcone	395	60	380	42:58	5%
1	EtOAc: CHCl ₃ 4:1	MS, Et₃N	395	90	380	27:73	-
1	EtOAc: CHCl ₃ 4:1	MS, Chalcone, Malo-	395	90	380	34:66	-

Table S1

		nitrile					
1	EtOAc: CHCl ₃ 4:1	MS, Zn ²⁺	395	90	380	84:16	-
3	EtOAc: CHCl₃ 4:1	MS	395	90	380	39:61	-
1	EtOAc: CHCl ₃ 4:1	MS, β- Nitrostyre ne, diethylma lonate	395	90	380	48:52	Some
1	EtOAc: MeOH 4:1	MS	395	90	380	Too broad to integr ate at 12 ppm	-
1	DCE	MS	395	60	380	50:50	-
1	CH_2CI_2	MS	395	110	380	50:50	Limited
1	CHCl₃	MS	395	70	380	47:53	-
1	EtOAc: CHCl ₃ 2:3	MS	395	120	380	25:75	-
1	EtOAc: CHCl₃ 4:1	MS	395	120	380	22:78	-
1	EtOAc: CH ₂ Cl ₂ 4:1	MS	395	70	380	25:75	-
1	Toluene: CH ₂ Cl ₂ 4:1	MS	395	70	380	53:47	-
1	EtOAc: CHCl ₃ 4:1	MS	395	90	380	30:70	-
1	TCE		395	20	700	47:53	-
1	TCE: CH ₂ Cl ₂ :EtOAc 1:1:5		395	20	700	32:68	-
1	CH ₂ Cl ₂ :EtOAc 1·4		395	20	700	21:79	-

All entries run in 3.5 ml total solvent, with switching ratios obtained after removal of solvent and 1 H NMR in d_{6} -DMSO.

5. Optimisation of thermal switching of catalyst 1

The degree of isomerisation was monitored by following the integral ratio of the E and Z states of hydrazone proton H(55) (at c. 12 ppm and c. 16 ppm, see characterisation for full numbering).

Initial isomerization of catalyst **1** focused on pure thermal switching. More polar solvents were found to promote isomerization, and pleasing ratios could be obtained in DMF at 90 °C. However, the extended reaction time and high temperature required prompted us to search for effective acid catalysed switching conditions. The addition of TFA to EtOAc allowed virtually quantitative switching after one hour.

Entry	Solvent	T/°C	Concentration mg/ml	Additive	Time/ hr	Ratio
1	CHCl₃	65	0.01	-	3	25:75
2	EtOAc/DMF 9:1	60	0.01	-	3	40:60
3	DMF	60	0.01	-	3	46:54
4	DMSO	60	0.01	-	3	34:66
5	DMF	90	0.02	-	3	84:16
6	DMF	90	0.2	-	3	84:16
7	DMF	90	0.2	-	5	90:10
8	CHCl₃	40	0.02	0.02% TFA	1	62:38
9	EtOAc	50	0.02	0.04% TFA	1	83:17
10	EtOAc	50	0.02	0.1% TFA	1	98:2

Table S2

6. Literature	Catalysis	Examples
---------------	-----------	----------

Entry	Reagents	Product	Catalyst	Catalyst loading (mol%)	Solvent	Temp.	Time (h)	Conversion (S:R)
1	NC_CN O Ph	NC CN Ph Ph		0.5	CHCl ₃	rt	24	82% (95:5) ⁵⁶
2	HO S S OH O Ph Ph Ph	Ph. S Ph OH	$\begin{array}{c} \circ \\ H \\$	1	Toluene	60•C	6	81% (6:94) ^{\$7}
3		NC CN Ph		10	<i>m</i> -Xylene	rt	18	96%* (93:7) ⁵⁸
4	Ph NO ₂	Ph NO ₂		1	CH ₂ Cl ₂	rt	180	83% (95:5) ^{\$9}
5	Ph Ph Ph	Ph Ph Ph		1	CH ₂ Cl ₂	rt	6	89% (95:5) ⁵⁹

7. in situ Switching Experiments

Procedure for switching of catalyst state during the course of reaction

Malonitrile (1.0 mg, 0.015 mmol), (*E*)-1-(furan-2-yl)-3-phenylprop-2-en-1-one (9 mg, 0.045 mmol) and catalyst **2** (0.75 mg, 0.75 μ mol) were dissolved in CDCl₃ (0.7 ml). Conversion was measured periodically by ¹H NMR spectroscopy and comparison with authentic spectra of starting materials and product. After a given time, the reaction was diluted with 10 ml Et₂O. The precipitate was collected *via* syringe filtration, and dissolved in CH₂Cl₂. The filtrate was stored at – 20 °C for the duration of the switching procedure. The relevant heat or light switch was performed on the catalyst, followed by aqueous extraction with saturated Na₂CO_{3 (aq)}. After drying, the catalyst was recombined with the diluted reaction mixture. Solvent was removed *in vacuo* whilst the flask was cooled to 0 °C. The reaction mixture was immediately dissolved in CDCl₃ (0.7 ml) and monitored by NMR. This process was repeated using the alternate switching conditions after a suitable time had passed. No erosion of stereochemistry in the product was observed, as compared to the continuous reaction.

Figure S1. Relative reactivity of ON and OFF states of catalyst **2** towards the addition of malonitrile to chalcone **22** by starting with the OFF state (left) or ON state (right, solid lines are a guide to the eye). A full switching cycle could be carried out during this reaction, starting from either 'ON' or 'OFF' catalyst, using 3.5 mol% of **2** (initial *E:Z* ratio 99:1 (ON) or 2:98 (OFF)). After 6 h the *E*-to-Z, or *vice versa*, stimulus was applied (0.1% CF₃CO₂H, 60 min, 50 °C or 395 nm, 700 mW, 20 min) and the reaction continued. After 24 h (for initially OFF **2**) or 21 h (for initially ON **2**) the opposing stimulus was applied reverting catalyst **2** to its initial state.

8. HPLC Traces

Formation of **S6** using catalyst **1** (Chiralpak IC, 90:10 Hexane:*i*PrOH, 1mL/min).

Signal 3: DAD1 C, Sig=210,4 Ref=500,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.360	BB	0.5819	1179.75647	30.59268	16.9746
2	29.923	BB	0.8860	5770.36914	101.39182	83.0254

Formation of **S6** using catalyst **2** (Chiralpak IC, 90:10 Hexane:*i*PrOH, 1mL/min).

Signal 3: DAD1 C, Sig=210,4 Ref=500,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	13.783	BB	0.3569	2804.13428	121.64997	29.5406
2	19.261	BB	0.5065	6688.33691	205.05865	70.4594

Formation of 14 using catalyst 1 (Chiralpak IA, 90:10 Hexane: *i*PrOH, 1mL/min).

Signal 2: DAD1 B, Sig=254,4 Ref=500,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	20.252 23.801	 ММ ВВ	0.5563 0.5819	39.87947 829.54236	1.19485 21.51132	4.5869 95.4131
Total	s :			869.42183	22.70618	

Formation of **S10** using catalyst **1** (Chiralpak IC, 90:10 Hexane:*i*PrOH, 1mL/min).

Signal 3: DAD1 C, Sig=210,4 Ref=500,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	13.715	BB	0.3133	1069.02795	53.00949	89.2687
2	19.452	BB	0.4296	128.51219	4.38877	10.7313

Formation of **S10** using catalyst **2** (Chiralpak IC, 90:10 Hexane:*i*PrOH, 1mL/min).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	13.218	BB	0.3000	85.15978	4.39684	19.6072
2	18.370	BB	0.4224	349.16968	12.63498	80.3928

Formation of **\$13** using catalyst **1** (Chiralpak IA, 90:10 Hexane:*i*PrOH, 1mL/min).

Signal 1: DAD1 A, Sig=250,4 Ref=500,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.461	BB	0.7091	478.63751	10.05877	90.5574
2	36.193	MM	1.2775	49.90842	6.51126e-1	9.4426

Formation of **S13** using catalyst **2** (Chiralpak IA, 90:10 Hexane:*i*PrOH, 1mL/min).

Signal 1: DAD1 A, Sig=250,4 Ref=500,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	9.756	BB	0.2392	91.24355	5.87517	14.3406
2	12.142	BB	0.2937	545.01532	28.41956	85.6594

Formation of **\$15** using catalyst **2** (Chiralpak IA, 90:10 Hexane:*i*PrOH, 1mL/min).

Signal 1: DAD1 A, Sig=250,4 Ref=500,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	9.744	BB	0.2353	809.28400	52.65082	84.5287
2	12.136	BB	0.2904	148.12373	7.77182	15.4713

9. NMR Spectra

Spectra of intermediate **S1**

¹H NMR (600 MHz, CDCl₃) of intermediate S1

¹³C NMR (150 MHz, CDCl₃) of intermediate S1

NMR spectra of intermediate S2

¹H NMR (600 MHz, CDCl₃) of intermediate S2

¹³C NMR (150 MHz, CDCl₃) of intermediate S2

NMR spectra of intermediate S3

¹³C NMR (150 MHz, CD₂Cl₂) of intermediate S3

¹⁹F NMR (376 MHz, CDCl₃) of intermediate S3

NMR spectra of intermediate 3

¹H NMR (600 MHz, CDCl₃) of intermediate 3

¹³C NMR (150 MHz, CDCl₃) of intermediate 3

NMR spectra of intermediate S4

¹³C NMR (150 MHz, CDCl₃) of intermediate S4

NMR spectra of intermediate 9

¹H NMR (600 MHz, CDCl₃) of intermediate 9

¹³C NMR (150 MHz, CDCl₃) of intermediate 9

NMR spectra of intermediate 11

¹H NMR (600 MHz, d₆–DMSO) of intermediate 11

¹³C NMR (150 MHz, *d*₆–DMSO) of intermediate 11

NMR spectra of bifunctional catalyst 1

¹H NMR (600 MHz, *d*₆–DMSO) of bifunctional catalyst 1

¹³C NMR (150 MHz, *d*₆–DMSO) of bifunctional catalyst 1

NMR spectra of intermediate S5

¹H NMR (600 MHz, CDCl₃) of intermediate S5

¹³C NMR (150 MHz, CDCl₃) of intermediate S5

NMR spectra of intermediate 8

¹H NMR (600 MHz, *d*₆–Acetone) of intermediate 8

¹³C NMR (150 MHz, *d*₆–Acetone) of intermediate 8

NMR spectra of intermediate 10

¹H NMR (600 MHz, CDCl₃) of intermediate 10

 $^{\rm 13}C$ NMR (150 MHz, CDCl_3) of intermediate 10

NMR spectra of bifunctional catalyst 2

¹H NMR (600 MHz, *d*₆–DMSO) of bifunctional catalyst 2

¹³C NMR (150 MHz, *d*₆–DMSO) of bifunctional catalyst 2

NMR spectra of addition product **S15**

^1H NMR (600 MHz, CDCl_3) of addition product S15

¹³C NMR (150 MHz, CDCl₃) of addition product S15

10. References

(S1) R. G. Hicks, B. D. Koivisto and M. T. Lemaire, Org. Lett. 2004, 6, 1887.

(S2) T. Kuroda, M. Takahashi, T. Ogiku, H. Ohmizu, T. Nishitani, K. Kondo and T. Iwasaki, *J. Org. Chem.* 1994, **59**, 7353.

(S3) C. Cassani, R. Martín-Rapun, E. Arceo, F. Bravo and P. Melchiorre, Nat. Protoc. 2013, 8, 325.

(S4) K. Gobis, H. Foks, E. Augustynewicz-Kopec, M. Szczesio, A. Olczak and M. L. Glouka, *Monatsh. Chem.* 2012, **143**, 607.

(S5) T. Curtis and G. Struve, J. Prakt. Chem. 1894, 50, 295.

(S6) W. Yang, Y. Jiu and D.-M. Du, Org. Biomol. Chem. 2012, 10, 332.

(S7) J.-B. Ling, Y. Su, H.-L. Zhu, G.-Y. Wang and P.-F. Xu, Org. Lett. 2012, 14, 1090.

(S8) N. Molleti, K. N. Rana and V. K. Singh, Org. Lett. 2012, 14, 4322.

(S9) K. S. Rao, R. Trivedi and M. L. Kantam, Synlett 2015, 26, 221.

(S10) K. S. Yang, A. E. Nibbs, Y. E. Türkmen and V. H. Rawal, J. Am. Chem. Soc. 2013, 135, 16050.