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This text shows that the theoretical framework can be applied to a canonical cortical-cortical

strongly coupled region. We use the same experimental data constraints from our simultaneous

dual-array recordings in the olfactory bulb and piriform cortex, but note that the anatomical con-

nections are not the ones described here.

Minimal Firing Rate Model

The minimal firing rate model results in Fig S17 have the same parameters and configuration as in

the main text except the E to I connections within a region are omitted. The derived relationships

are qualitatively the same as in the main text:

|gI1| < gE1 < gE2 . |gI2|.

Leaky Integrate-and-Fire Model of the generic Cortical–Cortical

Circuit

We use a generic spiking neural network model of leaky integrate-and-fire neurons to test the

results of the theory again. The following model is very much like the LIF model in the main text,

with the main differences being in the network connection strengths and the size of C1 (60 here

instead of 100 for OB in the main text). There were NC1 = 60 total C1 cells, of which we set

80% (48) to be excitatory and 20% (12) inhibitory. The equations for the C1 cells are, indexed by
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Figure S17: Minimal firing rate model to analyze synaptic conductance strengths. This firing

rate model only incorporates a subset of the conductances. Each plot shows parameter sets that

satisfy all 12 data constraints in Table 1 (main text, substitute OB with C1, PC with C2), projected

into a two-dimensional plane in parameter space. The blue dots show the result of the fast analytic

method that satisfy all constraints; the red dots show the Monte Carlo simulations that satisfy all

12 constraints. For computational purposes, we only tested the Monte Carlo on parameter sets that

first satisfied the constraints in the fast analytic method. (A) The magnitude of the inhibition within

C2 (|gI2|) is greater than the magnitude of the inhibition within C1 (|gI1|); all dots are above the

diagonal line. (B) The excitation from C2 to C1 (gE2) is generally (but not always) larger than

the excitation from C1 to C2 (gE1). (C) The inhibition within C1 is generally weak; dots are to

the left of the vertical line. (D) The inhibition within C2 is generally strong; dots are to the right

of the vertical line. (E) Shows again that excitation from C2 and inhibition within C2 are both

strong. (F) Shows again that excitation from C1 to C2 is relatively small. See Table 3 (main text)

for parameter values.
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k ∈ {1, 2, . . . , NC1}:

τm
dvk
dt

= µC1 − vk − gk,XI(t)(vk − EI)− gk,XE(t)(vk − EE)

−gk,XC2(t− τ∆,C2)(vk − EE) + σC1

(

√

1− c̃C1ηk(t) +
√

c̃C1ξo(t)
)

vk(t
∗) ≥ θk ⇒ vk(t

∗ + τref) = 0

gk,XE(t) =
γXE

pXE (0.8NC1)

∑

k′∈{ presyn C1 E-cells}

Gk′(t)

gk,XI(t) =
γXI

pXI (0.2NC1)

∑

k′∈{presyn C1 I-cells}

Gk′(t)

gk,XC2(t) =
γX,C2

pX,C2 (0.8NC2)

∑

j′∈{presyn C2 E-cells}

Gj′(t)

τd,X
dGk

dt
= −Gk + Ak

τr,X
dAk

dt
= −Ak + τr,XαX

∑

l

δ(t− tk,l). (1)

The conductance values in the first equation gk,XI , gk,XE, and gk,XC2 depend on the type of neu-

ron vk (X ∈ {E, I}). The last conductance, gX,C2(t − τ∆,C2)(vk − EE), models the excitatory

presynaptic input (feedback) from the C2 cells with a time delay of τ∆,C2. The conductance vari-

ables gk,XY (t) are dimensionless because this model was derived from scaling the original (raw)

conductance variables by the leak conductance with the same dimension. The leak, inhibitory and

excitatory reversal potentials are 0, EI , and EE, respectively with EI < 0 < EE (the voltage is

scaled to be dimensionless, see Table S3). ξk(t) are uncorrelated white noise processes and ξo(t)
is the common noise term to all NC1 cells.

The second equation describes the refractory period at spike time t∗: when the neuron’s voltage

crosses threshold θj (see below for distribution of thresholds), the neuron goes into a refractory

period for τref , after which we set the neuron’s voltage to 0.

The parameter γXY gives the relative weight of a connection from neuron type Y to neuron

type X; the parameter pXY is probability that any such connection exists (X, Y ∈ {E, I}). Gk is

the synaptic variable associated with each cell, and dependent only on that cell’s spike times; its

dynamics are given by the final two equations in Eq 1 and depend on whether k ∈ {E, I}.

Finally, two of the parameters above can be equated with coupling parameters in the reduced

model:

gE2 = γI,C2; gI1 = γEI (2)

which are dimensionless scale factors for the synaptic conductances.

The C2 cells had similar functional form but with different parameters (see Table S3 for pa-

rameter values). We modeled NC2 = 100 total C2 cells, of which 80% were excitatory and 20%
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Figure S18: Detailed spiking LIF model confirms the results from analytic rate model.

Schematic of the LIF model with 2 sets of recurrently coupled E and I cells. There are 12 types

of synaptic connections. (A) Pairwise correlations in C2, spontaneous vs. evoked: ρSpC2
> ρEv

C2
.

(B) Variability (Fano factor) in C2, spontaneous vs evoked: FF Sp
C2

> FFEv
C2

. (C) Correlations in

the spontaneous state, C2 vs. C1: ρSpC2
> ρSpC1

. (D) Correlations in the evoked state, C2 vs. C1:

ρEv
C2

< ρEv
C1

. (E) Variability (Fano factor) in the spontaneous state, C2 vs. C1: FF Sp
C2

> FF Sp
C1

.

(F) Variability (Fano factor) in the evoked state, C2 vs. C1: V arEv
C2

< V arEv
C1

in evoked state.

(G) Covariances in the evoked state, C2 vs. C1: CovEv
C2

< CovEv
C1

. (H) Variability (spike count

variance) in C1, spontaneous vs. evoked: V arSpC1
< V arEv

C1
. The curves show the average statistics

over all NC1/C2 cells or over all possible pairs NC1/C2(NC1/C2−1)/2. We set gI1 = 7, gE1 = 10,

gI2 = 20, gE2 = 15. See text for model details, and Table S3 for parameter values.
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Table S3: Fixed parameters for the LIF Cortical–Cortical model.

Same for both C1 and C2

Parameter τm τref EI EE τd,I τr,I τd,E τr,E αI αE

20 ms 2 ms -2.5 6.5 10 ms 2 ms 5 ms 1 ms 2 Hz 1 Hz

Parameter N Spont. µ Evoked µ σ c̃ γEE γIE γII γE,C2/C1 τ∆,C2/C1

C1 60 0.6 0.9 0.05 0.5 2 4 6 1 10 ms

C2 100 0 0.4 0.1 0.8 2 4 6 1 5 ms

See Eqs 1–3. All 12 probabilities of connections are set to pXY = 0.30 and were randomly chosen

(Erdős-Rényi graphs). The synaptic time delay from C1 to C2 is τ∆,C1 = 10ms, and from C2 to

C1 is τ∆,C2 = 5ms. The scaled voltages from mV is: (V+Vreset)/(Vth+Vreset), corresponding

for example to Vreset=Vleak=-65 mV, Vth=-55 mV (on average), excitatory reversal potential of

0 mV and inhibitory reversal potential of -90 mV.

inhibitory. The equations, indexed by j ∈ {1, 2, . . . , NC2} are:

τm
dvj
dt

= µC2 − vj − gj,XI(t)(vj − EI)− gj,XE(t)(vj − EE)

−gj,XC1(t− τ∆,C1)(vj − EE) + σC2

(

√

1− c̃C2ηj(t) +
√

c̃C2ξp(t)
)

vj(t
∗) ≥ θj ⇒ vj(t

∗ + τref) = 0

gj,XE(t) =
γXE

pXE (0.8NC2)

∑

j′∈{presyn C2 E-cells}

Gj′(t)

gj,XI(t) =
γXI

pXI (0.2NC2)

∑

j′∈{presyn C2 I-cells}

Gj′(t)

gj,XC1(t) =
γX,C1

pX,C1 (0.8NC1)

∑

k′∈{presyn C1 E-cells}

Gk′(t)

τd,X
dGj

dt
= −Gj + Aj

τr,X
dAj

dt
= −Aj + τr,XαX

∑

l

δ(t− tj,l). (3)

Excitatory synaptic input from the C1 cells along the lateral olfactory tract is modeled by: gX,C1(t−
τ∆,C1)(vj−EE). The common noise term for the C2 cells ξp(t) is independent of the common noise

term for the C1 cells ξo(t). Two of the parameters above can be equated with coupling parameters

in the reduced model:

gE1 = γI,C1; gI2 = γEI (4)

The values of the parameters that were not stated in Table S3 were varied:

gI1, gE1, gI2, gE2.
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To model two activity states, we allowed mean inputs to vary (see Table S3). In contrast to the

reduced model, we increased both inputs to C2 cells (from µC2 = 0 in the spontaneous state to

µC2 = 0.4 in the evoked state) as well as to C1 cells (from µC1 = 0.6 in the spontaneous state to

µC1 = 0.9 in the evoked state).

Finally, we model heterogeneity by setting the threshold values θj in the following way. Both

C1 and C2 cells had the following distributions for θj :

θj ∼ eN (5)

where N is normal distribution with mean −σ2

θ/2 and standard deviation σθ, so that {θj} has a

log-normal distribution with mean 1 and variance: eσ
2

θ −1. We set σθ = 0.1, which results in firing

rates ranges seen in the experimental data. Since the number of cells are modest with regards to

sampling (NC1 = 60, NC2 = 100), we evenly sampled the log-normal distribution from the 5th to

95th percentiles (inclusive).

Violating Derived Relationships Between Conductance Strengths

Similar to the main text, we demonstrate here that violating the relationships derived in the main

text results in a subset of the 12 constraints in the experimental data no longer being satisfied in

the full spiking network.

Due to the large amount of computing resources required, we cannot exhaustively explore the

parameter space; recall that the purpose of the method we developed in the minimal firing rate

model is for faster computation. Instead, we distill results into three tests that are exactly the same

as in the main text:

1. Make gI1 > gI2 by setting gI1 = 20 and gI2 = 7.

2. Make gE1 > gE2 by setting gE1 = 15 and gE2 = 1

3. Make gE2 and gI2 relatively smaller by setting gE2 = 10 and gI2 = 10

The result of Test 1 is that 7 of the 12 constraints are violated (see Fig S19); most importantly

stimulus-induced decorrelation of the C2 cells, which is particularly important in the context of

coding, was not present. In addition, the C2 firing rates are larger than the C1 firing rates in both

states, the evoked C2 correlation is larger than evoked C1 correlation, the spontaneous C2 Fano

Factor is larger than spontaneous C1 Fano Factor, and both the variance and covariance of C2 is

larger than C1 in the evoked state (all of which violate the constraints from our data).

The result of Test 3 is that 4 of the 12 constraints are violated (see Fig S20), including again

stimulus-induced decorrelation of the C2 cells. The evoked C2 correlation is larger than evoked C1

correlation, and both the variance and covariance of C2 are larger than the corresponding quantities

in C1 in the evoked state. Both these two tests (1 and 3) indicate that these two qualitative relation-

ships (stronger effective inhibition within C2 and stronger effective presynaptic inputs from C2)

are robust with respect to both the detailed LIF spiking model and the minimal firing rate model.
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Figure S19: Violating derived relationship |gI1| < |gI2| results in statistics that are incon-

sistent with experimental observations. Showing the results of the full LIF spiking model when

gI2 < gI1; specifically, we set gI2 = 7 and gI1 = 20 and set the values of the rest of the pa-

rameters to those used previously. The firing rates are: νSp
C1

= 2.96 ± 5, νEv
C1

= 5.94 ± 11.67,

νSp
C2

= 3.43 ± 1.59, and νEv
C2

= 8.85 ± 3.38, which violates the constraint from the experimental

data that νC1 > νC2 in both states. The 8 panels show the constraints on the 2nd order spiking

statistics in the same format as before. The panels with magenta letters (i.e., A, D, E, F, G) are

constraints that are violated.
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Figure S20: Violating derived relationship gE2, gI2 ≫ gE1, gI1 results in statistics that are

inconsistent with experimental observations.Showing the results of the full LIF spiking model

when gE2 and gI2 are both relatively small; specifically, we set gE2 = 10 and gI2 = 10 and set

the values of the rest of the parameters to those used in Figure 5 (see main text). The firing rates

are: νSp
C1

= 3.85 ± 3.56, νEv
C1

= 8.2 ± 7.08, νSp
C2

= 2.92 ± 2.31, and νEv
C2

= 6.45 ± 6.17, which

violates the constraint from the experimental data that νC1 > νC2 in both states. The 8 panels show

the constraints on the 2nd order spiking statistics. The panels with magenta letters (i.e., A, D, F,

G) are constraints that are violated.
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The result of Test 2 is not as straightforward as the others. We did not exhaustively search

parameter space due to the vast computational resources this would require, but in several param-

eter sets with gE1 > gE2, we found the resulting network statistics could still satisfy all of the

constraints (e.g., with gE1 = 15 and gE2 = 1, as well as with gE1 = 20 and gE2 = 1). The

reason for this may be that in the two coupled recurrent networks we chose very different gI1
and gI2 values to begin with (7 and 20, respectively), and would thus require gE1 and gE2 to be

significantly different to counter-balance this. Also, notice in the minimal firing rate model results

in Fig 4B that there are a significant number of red dots below the diagonal, indicating that the

relationship gE2 > gE1 does not have to strictly hold. However, we did find a condition where

this test demonstrates the value of the minimal firing rate model; we changed c̃C1 from 0.5 to 0.6
(recall c̃C2 = 0.8). (Note that in the minimal firing model that cC1 = 0.3 and cC2 = 0.35, relatively

close in value.) The result of Test 2 (gE1 = 15 and gE2 = 1) with c̃C1 = 0.6 is that one constraint

is violated: ρSpC2
is no longer less than ρSpC1

(see Fig S21). This suggests that the relationship that

gE1 > gE2 is not as robust as the others and can be violated.
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Figure S21: Violating derived relationship gE2 > gE1 results in statistics that are incon-

sistent with experimental observations.Showing the results of the full LIF spiking model when

gE2 < gE1; specifically, we set gE2 = 1 and gE1 = 15, and with c̃C1 = 0.6 instead of 0.5; we

set the values of the rest of the parameters to those used in Figure 5 (see main text). The firing

rates are: νSp
C1

= 3.75± 2.61, νEv
C1

= 8.73± 5.12, νSp
C2

= 2.28± 3.32, and νEv
C2

= 4.87± 9.2. The 8

panels show the constraints on the 2nd order spiking statistics. Only 1 constraint is violated, panel

C in magenta.
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