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Supplementary Methods 

Overview 
Our approach to study the developmental changes in the dynamical behavior of immature neural 
networks is based on four steps. First, we use a mean-field network model that describes the neuronal 
population dynamics using ordinary differential equations (ODEs). This model is of the Wilson-Cowan-
type 1,2 and is presented here without further derivation where biophysical interpretations are available 
in the literature; e.g. see refs 3,4. Second, we extend the network model to include short-term synaptic 
plasticity (STP) mechanisms, namely short-term synaptic depression (STD) and facilitation (STF) 5,6. Third, 
we describe the phase plane analysis and computation of nullclines. Fourth, we define cortical operating 
regimes in terms of steady state properties from the linear stability analysis. Finally, we outline how we 
chose and set parameter values, for postnatal developing networks. 

Model description 
The schematic diagram of our two-population recurrent neural network (RNN) model is shown in Fig. 1a. 
The network consists of two spatially localized, homogeneous excitatory (E) and inhibitory (I) 
populations with reciprocal connections to each other and self-connections. At any given time, each of 
the E- and I-populations receives an external input Ee  and Ie , respectively, from other brain regions. 
These inputs represent e.g. the feedforward inputs to network 7,8. For ongoing spontaneous activity, we 
set E I 0e e= =  2. The network dynamics are described by the mean-field equations 1,2: 
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where rE  and rI  are the average activity (in hertz) of the E- and I-populations, and Et  and It  are the 
time constants of these populations, which are here considered as an approximation of the decay time 

constants of E (i.e. glutamatergic) and I (i.e. GABAergic) postsynaptic responses; e.g. see refs 4,8. ( )E Ef h  

and ( )I If h  are the so-called response functions, which model the transformation from summed inputs, 

ζh , to an activity output (in hertz) defined as 5,9: 
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for { }ζ E, I∈ , where ζθ  are the population activity thresholds 2,5, and ζG  are the linear input-output 

gains above these thresholds. For the analyses below, we first investigate the networks in the supra-
threshold mode (similarly to 1,8), i.e. when the summed inputs to both populations are larger than their 
corresponding ζθ . We then readily generalize our analyses to the three other cases, where either E- or I-



3 
 

population or both of them are in a sub-threshold mode (see the “Sub-threshold networks” section 
below). Obviously, for a subthreshold mode the corresponding ζG  can be considered to be zero. 

In the following, we use the mean-field model (equation (1)) to first formulate the dynamics of RNNs 
with time-independent synaptic efficacies (Static-RNN), and with dynamic efficacies (STP-RNN). To do 
this, we will extend equation (1) to include STP dynamics. 

Static-RNN 
In a Static-RNN, the synaptic connections have efficacies, which are constant over time. The dynamics of 
this network are given by (e.g. see refs 1,8): 

E EE r r E EE E EI r E E

I II r r I IE I II r I I

GE E G J G J E G ed
GI I G J G J I G edt
θt
θt

−          
= − + − +         −         

 (3) 

where ijJ  are the average maximum absolute efficacies of synaptic recurrent ( i j= ) and feedback 

connections ( i j≠ ); from presynaptic population j  to postsynaptic population i , where j  and { }i E , I∈ . 

For example, EEJ  denotes the average number of recurrent excitatory contacts per each postsynaptic 
neuron in the E-population, times the average amplitude of unitary maximal postsynaptic response on 
the neuron 1,5.  

STP-RNN 
STP 6,10 renders the synaptic efficacies dynamic over time, as a function of the recent history of 
presynaptic activity. The main underlying biological mechanisms of STP are 6: i) vesicle depletion and ii) 
accumulation of calcium at the presynaptic axon terminals, during the neurotransmission. These two 
have an opposite impact on synaptic efficacy: while the depletion decreases the synaptic efficacy (short-
term depression; STD), the accumulation increases it (short-term facilitation; STF). For including these 
mechanisms in the mean-field equations (equation (1)), we follow the Tsodyks-Markram approach 5. In 
their model, STD and STF mechanisms are governed by two STP variables per synaptic connection: ijx  

(average fraction of available synaptic resources) and iju  (average utilization parameter), respectively. 

For instance, in the case of a spike arrival at a single axon terminal, iju  is facilitated due to spike-evoked 

calcium influx to the terminal, and then decays back to its basal value ijU  (analogous to the release 

probability) with the time constant 
ijft , while ijx  is “consumed” with the spike and then recovers to its 

baseline value of 1 with time constant 
ijrt . Accordingly, the mean-field dynamics of a STP-RNN are 

described by 5: 
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where { }j r r,A E I∈ , and { }j E , I∈  is the index of the presynaptic population ( E rA E=  and I rA I= ). We 

model each postnatal developing neural network as a STP-RNN.  

Phase plane and nullclines  
To characterize the operating regimes of the Static-RNN and STP-RNN, we use phase planes and linear 
stability analyses. In the following we start by formulating the corresponding stationary components and 
properties, including the steady state values and the slopes of nullclines.  

Conditions for steady states 
For each network, the steady state values of its dynamics can be obtained by setting its ODEs equal to 
zero. Such states may be achieved e.g. in response to sustained input. We have listed the steady state 
values and the resulting steady state connectivity matrices in Supplementary Table 1. In contrast to the 
Static-RNN, the STP variables of STP-RNN may converge to steady states as: 
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t t t t
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=
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 (5) 

which implies that different sustained levels of the presynaptic activity ( { }j r r,A E I∈ ) can lead to 

different steady state efficacies (see STP
ssJ  in Supplementary Table 1).  

Computation of 2D phase planes 
The rationale of our approach is that the operating regimes we are interested in (such as an inhibition-
stabilized network (ISN) vs. Non-ISN; see below) can be defined at the intersection of the excitatory and 
inhibitory nullclines, namely at the fixed point (FP) 1,8. For Static-RNN the nullclines of the E- and I-
populations ( r -E nullcline and r -I nullcline) in a 2D phase plane ( r r- -planeE I ) are computed as: 

( ) ( )
( ) ( )
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θ
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 (6) 

where STC
EΘ  and STC

IΘ  are the right-hand sides of the ODEs in equation (3). However, this two-

dimensional r r- -planeE I  analysis 1,2 is not directly applicable to STP-RNNs, since it is a 10D system (8 STP 
and 2 activity variables; see equation (4)) with ten 10D nullclines. Instead, for this network we compute 
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the quasi r -E  and r -I nullclines in the r r- -plane-E I like (or simply r r- -planeE I , for brevity) sketches. To 
do this, we assume that at each FP, the synaptic efficacies of the STP-RNN are at their steady state 
values (see Supplementary Table 1), where these steady states are in turn a function of the activity 

variables determined at that point (see equation (5), and STP
ssJ  in Supplementary Table 1). Accordingly, 

by substituting the STP variables in the activity ODEs (equation (4)) with their steady state values (see 
equation (5)), the network dimensionality is reduced from ten to two:  

ss ss ss ss
E EE r r r E EE EE EE EE E EI EI EI

ss ss ss ss
I II r r r I II IE IE IE I II II II

GE E E G eG J u x G J u xd
GI I I G edt G J u x G J u x
θt
θt

  −       
= − + − +         −          

 (7) 

and thus, we can compute the (2D) quasi r -E  and r -I nullclines as: 

( ) ( )
( ) ( )

STP ss ss ss ss
E r r r E EE EE EE r EI EI EI r E E

STP ss ss ss ss
I r r r I IE IE IE r II II II r I I

, 0

, 0

E I E G J u x E J u x I e

E I I G J u x E J u x I e

θ

θ

Θ = − + − − + =

Θ = − + − − + =





 (8) 

where STP
EΘ  and STP

IΘ  are the right-hand sides of the ODEs in equation (7). Substituting ss ss
ij iju x  with their 

steady state expressions (as in equation (5)) makes the quasi r -E  and r -I nullclines just dependent on 

the activity variables (but nonlinearly, as opposed to the case of Static-RNN). Most importantly, this 
implies that the networks operating at different FPs have, in general, STP variables (thus, synaptic 

efficacies) with different steady state values (see STP
ssJ  in Supplementary Table 1), depending on the 

underlying activity rates. Moreover, note that the intersection of the quasi r -E  and r -I nullclines in the 

non-negative ranges of r r- -planeE I  will capture the FPs of the full system (i.e. the 10D STP-RNN, 

equation (4)). 

Frozen STP-RNN 
Before proceeding with our analyses, we first introduce the Frozen STP-RNN which allowed us to 
characterize the dynamics of the STP-RNN using analytical expressions (see the “Characterization of 
operating regimes” section, below). To investigate the effect of STP on the fast network dynamics we 
can freeze (i.e., fix) the synaptic variables at their steady state values at the FP of interest (“frozen 
weight”). This approximation may be justified as the initial phase of the network response mainly 
depends on the activity variables, which evolve much faster than STP variables, see also ref. 9. 
Effectively, the freezing converts the STP-RNN to a Static-RNN model with the connectivity matrix 
determined at that FP. Accordingly, the dynamics of a Frozen STP-RNN (2D) can be readily adapted from 
equation (3) (see also Supplementary Table 1, for steady states values): 

FP FP
E EE r r r E EE EE E EI

FP FP
I II r r r I II IE I II

GE E E G eG J G Jd
GI I I G edt G J G J
θt
θt

  −       
= − + − +         −          

 (9) 

where FP FP FP
ij ij ij ijJ J u x= , and FP FP

ij iju x  are the values of ss ss
ij iju x  (see equation (5)) at the FP of interest. 

Similarly, its r -E and r -I nullclines are obtained as: 
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Importantly, note that the Frozen STP-RNN not only can be used to reliably determine the operating 
regime of the STP-RNN at FP (see “Characterization of operating regimes” section), but also enables one 
to compare the transient behavior of the two network types (STP-RNN vs. Static-RNN) in response to 
e.g. a perturbation, at the FP (see Results). 

Properties of nullclines 
To characterize the operating regimes we also consider the slopes of the activity nullclines in the 

r r- -planeE I  ( rI  vs. rE ). In our preliminary analysis, we found that the operating regime of a developing 
network (i.e. a STP-RNN, equation (4)) at the FP can be reliably determined based on its corresponding 
Frozen STP-RNN (equation (9)), rather than the reduced system defined in equation (7) (and its quasi 
nullclines). Therefore, for our slope analysis we only need to consider the Frozen STP-RNN. However, as 
mentioned above (see the text immediately following equation (8)), the reduced system in equation (7) 
can capture the FPs of the full STP-RNN (equation (4)). Accordingly, to track how the location of the FPs 
may change in the r r- -planeE I  (non-negative ranges), as well as for the sake of generality, below we 
first develop a generic framework for formulating such slopes for the reduced STP-RNN (equation (7)), 
and then apply it to the Frozen STPP-RNN. In particular, as we found in our simulations that the quasi 

r -E nullcline has in general a non-monotonic shape (see Results), we will also test whether the quasi 

nullclines or the nullclines of the Frozen STP-RNN exhibit any extremum in the r r- -planeE I . 

Slopes of STP-RNN’s quasi nullclines 
We first re-write the expressions of quasi nullclines in equation (8) as: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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I r r r II r r IE r I I I
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, 0
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E I I I E E G e

ψ ψ θ

ψ ψ θ

Θ = − + − =

Θ = − + + − =





 (11) 

where ( ) ( )ss ss
EE r E EE EE EE 1E G J u xψ = − , ( ) ss ss

EI r E EI EI EII G J u xψ = , ( ) ss ss
II r I II II II 1I G J u xψ = +  and 

( ) ss ss
IE r I IE IE IEE G J u xψ =  are implicit functions of activity variables. Hence, by using implicit differentiations 

we can compute: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

STP
E r r EE r EI rr

EE r r EI r r
r r r r

STP
I r r II r IE rr

II r r IE r r
r r r r

,
0

,
0

d E I d E d IdIE E I I
dE dE dE dE

d E I d I d EdI I I E E
dE dE dE dE

ψ ψ
ψ ψ

ψ ψ
ψ ψ

Θ
= + − − =

Θ
= − − + + =





 (12) 



7 
 

where ( ) ( )( ) ( )EI r r EI r r r r/ / /d I dE d I dI dI dEψ ψ= ×  and ( ) ( )( ) ( )II r r II r r r r/ / /d I dE d I dI dI dEψ ψ= × . By 

substituting these terms into equation (12), the general expression for the slopes of quasi r -E  and r -I

nullclines ( STP-like
Eslope  and  STP-like

Islope ) are obtained analytically as: 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

EE r r EE r rSTP-like
E

r EI r r EI r r

IE r r IE r rSTP-like r
I

r II r r II r r

/
/

/
/

r
E E d E dEdIslope

dE I I d I dI

E E d E dEdIslope
dE I I d I dI

ψ ψ
ψ ψ

ψ ψ
ψ ψ

+
= =

+

+
= =

+

 (13) 

Note that these slopes do not depend on activity-independent parameters like the inputs or the 
population activity thresholds (e.g. see equation (4)). 

We now investigate the possibility of a sign-switch in these slopes; each sign-switch implies the 
existence of one extremum leading to a non-monotonic form of the related nullcline in the r r- -planeE I . 

To do this, we start by checking the following necessary (but not sufficient) condition: The slope is zero 
at an extremum. Accordingly, we set each of the computed slopes (equation (13)) equal to zero, and 
search for the activity rates at which extrema may occur. For a quasi r -I nullcline to have a sign-switch 

at least one of the following two conditions needs to be fulfilled: 

( )IE IE

2 2
IE f r f r2 1 0U E Et t+ + =   ( I ) 

( ) ( )( )II II II II

2
2 1

f r r f r II 0I IE IE rG J U I I Ut t t t −+ + + =   ( II ) 

The roots of the first polynomial (condition ( I )) are ( ) IE

1,2
r IE IE f1 1 /E U U t= − ± − . As the roots, we only 

accept the real positive activity rates; see also ref. 9. In our modelling, for all connections we have 

ij0 1U≤ ≤  (analogous to release probability). Therefore, the constraint on having a real root is always 

fulfilled, since IE1 0U− ≥ . However, IE1 1 0U− ± − ≤ . Hence, the first polynomial does not have any 

admissible (i.e. real positive) root, meaning that the slope-sign of the quasi r -I nullcline cannot change 

due to condition ( I ). Alternatively, this could also be found by using Vieta's formulas, which relates the 
coefficients of a polynomial to the sum and product of its roots. For our quadratic polynomial in 
condition ( I ), applying this formula results in: 

IE IE

1 2 1 2
r r r r 2

IE f IE f

2 10 & 0E E E E
U Ut t
−

+ = < = >  (14) 

which imply that both roots have negative real parts, and thus are not admissible. Similarly, by applying 
this theorem to the repeated roots of the quadratic polynomial in condition ( II ), we obtain: 
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II II

II II II II

f r1 2 1 2
r r r r

f r II f r

10 & 0I I I I
U

t t

t t t t

+
+ = − < = >  (15) 

which show that these roots are also negative (although not shown, the same results about condition (
II ) could also be derived using the direct way as used additionally for condition ( I )). Overall, we can 
conclude that the STP-like

Islope  does not include any sign-switch. Besides, since the polynomials in 

conditions ( I ) and ( II ), whose multiplication determines the numerator, and the denominator (not 
shown) of STP-like

Islope  contain only positive quantities, the quasi r -I nullcline has always a monotonically 

increasing slope in the r r- -planeE I , for positive activity rates. 

For the quasi r -E nullcline, setting STP-like
E 0slope =  yields the following conditions: 

( ) ( )( )EI EI EI EI

2
2 1

f r r f r r EI 0I I Ut t t t −+ + + =   ( III ) 

( ) ( )( ) ( )( )EE EE EE EE EE EE

2
2 1 1

f r r f r r EE E EE EE f r f EE r1 2 0E E U G J U E U Et t t t t t− −− + + + + + + =   ( IV ) 

Similarly to condition ( II ), it can be proved that the condition ( III ) is violated (not shown). Condition (
IV ) includes a fourth degree polynomial. Importantly, note all its coefficients are the parameters of the 
recurrent excitatory ( E E→ ) synapses. Here we do not further treat this condition analytically, but 
instead point to simulations (see Results): For the fixed values that we chose for E E→  STP parameters, 
i.e. EEU , 

EErt  and 
EEft  (see Table 1), depending on the strength of EEJ  and EEG  the quasi r -E nullcline 

can have either a monotonically decaying or a non-monotonic shape for positive activity rates. For 
instance, the latter may possess one maximum (i.e. a concave shape; see Results), where this extremum 
must be an admissible (i.e. real positive) root of condition ( IV ). We name any of such roots, which are 

readily numerically computable, a “sign-switching rate”, SSR
rE .  

Slopes of Frozen STP-RNN’s nullclines 
The slopes of the r -E  and r -I nullclines in a STP-RNN with synaptic efficacies frozen at the FP, i.e. in its 

corresponding Frozen STP-RNN ( STP-frz
Eslope  and STP-frz

Islope ), can be computed by adapting equation 

(13). Since in this network the synaptic efficacies are kept fixed at the FP, we set the terms 

( )EE r r/d E dEψ , ( )EI r r/d I dIψ , ( )IE r r/d E dEψ , and ( )II r r/d I dIψ  (see equation (13)) all equal to zero. We 

then have: 

FP
STP-frz r E EE
E FP

r E EI
FP

STP-frz r I IE
I FP

r I II

1

1

dI G Jslope
dE G J
dI G Jslope
dE G J

−
= =

= =
+

 (16) 
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Based on these slopes we can conclude that, for positive activity rates, the r -I nullcline remains always 

positive in the r r- -planeE I , while the slope of the excitatory one can be either negative or positive, 

depending on the values of FP
EEJ  and EEG  (i.e. E E→  synaptic parameters). This indicates that none of 

the Frozen STP-RNN’s nullclines can have a sign-switching rate, since their slopes defined at the FP are 
activity independent. However, the sign of STP-frz

Eslope  implicitly depends on the E-activity rate of the FP 

at which we freeze the synaptic efficacies. This is because the value of FP
EEJ  (and thus the sign of 

FP
E EE 1G J − ) depends on rE  level at the FP (equations (5) and (9)). When considering all potential Frozen 

STP-RNNs in different FPs in a r r- -planeE I , at least one potential rE  level may exist around which the 

Frozen STP-RNNs have STP-frz
Eslope  with different signs. Such a rate or rates can be readily computed as 

the root or roots of the FP
E EE 1G J − . We name any of such a root a “pseudo sign-switching rate”, pSSR

rE . 
The existence of pseudo sign-switching rates plays a central role in determining the operating regimes of 
STP-RNNs; see below. 

Characterization of operating regimes 
To study the developmental changes in the operating regimes of immature networks we first need to 
define and classify these operating regimes. One established theoretical definition of operating regimes, 
proposed for adult RNNs, classifies these regimes as inhibition-stabilized networks (ISNs) vs. Non-ISNs 
1,8. This definition takes all recurrent ( E E→  and I I→ ) and reciprocal feedback ( E I→  and I E→ ) 
synaptic connections into consideration, consistent with cortical connectivity patterns. The ISN regime 
(vs. Non-ISN) is thought to provide a general strategy for supporting complex computations while 
avoiding instabilities 11, and to be the substrate for several cortical phenomena such as the so-called 
“paradoxical effect” (increasing the excitation to the I-population decreases its activity rate 1,8) and the 
balanced amplification mechanism 7. For instance, 8 reported that an ISN is the only architecture that 
can explain their intra-cellular recordings in the context of center-surround effects in adult cat V1. 
Accordingly, we decided to use this well-established classification to study in what regime the postnatal 
developing networks operate. 

For definitions, we rely on previous work 1,8 that used a stability analysis framework of a Static-RNN-type 
model at the FP. The authors defined three criteria for discriminating between ISNs and non-ISNs at the 
FP: (A) Excitatory instability: For the inhibitory activity rate fixed at the FP, the recurrent excitation is 
strong enough to render the E-population intrinsically unstable; depending on initial conditions, its 
activity either dies off or saturates at a high activity rate. (B) Excitatory stability: In contrast to (A), the E-
population is stable per se, i.e. even with a feedback inhibition fixed at its level at the FP. (C) Overall 
stability: The dynamic feedback inhibition to the E-population is strong enough to stabilize the whole 
network activity. A network operating under (A) and (C) criteria is an ISN, while a network operating 
under (B) and (C) criteria is a Non-ISN. This implies that both ISN and Non-ISN regimes are stable, where 
they differ only in terms of the excitatory stability behavior. These criteria were already derived for 
RNNs lacking STP effects (i.e. Static-RNN-type models) 1,8. However, the immature networks considered 
in this study are STP-RNN-type models. Hence, here our main focus will be to derive the criteria 
underlying these regimes for STP-RNNs.  
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Technically, these three stability criteria can be investigated within linear stability theory (similarly to 
refs 1,8; see also refs 2,11), which in general can determine the stability of the FPs. We found in our 
preliminary analysis that applying this theory to STP-RNN (10D; see equation (4)) leads to rather 
complicated expressions, which make the derivation of analytical formalism difficult. Therefore, we 
reasonably simplified these calculations for STP-RNN by exploiting the following facts. First, linear 
stability theory is applied in vicinity of the FP of interest. Second, at a FP all network variables are at 
their steady states (with the stability to be determined). Third, the steady states of the STP variables are 
only functions of activity variables (see equation (5)). Fourth, the time constants of the activity variables 
( Et  and It ; usually some milliseconds) are much smaller than those of STD and STF (

ijrt  and 
ijft ; usually 

several tens to hundreds of milliseconds). Accordingly, to study the stability of the network based on its 
activity in vicinity of the FP of interest we use a timescales separation technique (see also refs 9,12): We 
assume that following a small perturbation used to perturb the network relaxed at the FP of interest, 
the slower variables (i.e. ijx  and iju ) do not change considerably as compared to faster variables (i.e. rE  

and rI ), and thus can be assumed to be fixed at their steady states at the FP (i.e. FP
ijx  and FP

iju ). 

Effectively, this assumption will turn the network into a STP-RNN with frozen synaptic efficacies at the 
FP of interest (i.e. a Frozen STP-RNN), as we have already defined in equation (9). 

In the following we use this 2D system of equations for deriving the criteria for network regimes and FP-
domains (see below). We found that this system, when sub-threshold modes were also considered (see 
“Sub-threshold networks section” below), provides a reliable approximation to the stability behavior of 
full system (i.e. 10D; equation (4)) at the FPs, as we checked it by applying the linear stability analysis 
numerically to the full systems at all FPs of interest (see Results). 

To apply linear stability theory, we first linearize the Frozen STP-RNN (equation (9)) around the FP of 
interest: We take the first-order Taylor expansion of the right-hand side of its ODEs and evaluate the 
derivatives at the FP. We express the linearized dynamics of the system in matrix form: 

( )1 STP-frz
lnr-d

dt
t −= −A T 1 J A  (17) 

with r

r

E
I

 
=  
 

A , 
1 0
0 1
 

=  
 

1 , 
1 0
0 α
 

=  
 

T  for some positive constant α , where It αt=  and Et t= , and 

the linearized (around the FP of interest) connectivity matrix STP-frz
lnrJ , which is obviously equal to STP-frzJ  

(Supplementary Table 1). Note that the values of the STP-frz
lnrJ  elements differ from one FP to another as 

they depend on the activity rates (equation (5)). For the feedback inhibition to the E-population ( I E→  
connection) fixed at its level at the FP, the upper-right element in these matrix is set to zero. For the 
sake of clarity, we use the additional subscript “ \EI ” to discriminate these incomplete connectivity 
matrix from the original one; i.e. STP-frz

lnr \EIJ . We further define the corresponding full-coefficient (

( )STP-frz 1 STP-frz
lnr lnr

−= − −M T 1 J ) and incomplete-coefficient ( ( )STP-frz 1 STP-frz
lnr \EI lnr \EI

−= − −M T 1 J ) matrices, at the FP. 
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Following linear stability theory, we now study the stability behavior of the network around its FP, based 
on the eigenvalues of its corresponding Jacobian matrix (here, our coefficient matrices): The system is 
(asymptotically) stable at the FP if necessarily all the eigenvalues have strictly negative real parts, where 
the existence of at least one eigenvalue with positive real part implies that the FP is unstable. 
Accordingly, to satisfy the excitatory instability (criterion A, see above) at least one of the two 
eigenvalues of the network’s incomplete-coefficient matrix (i.e. STP-frz

lnr \EIM ), i.e. 1λ  and 2λ , must have a 

positive real part, see also ref. 8. In contrast, the excitatory stability (criterion B) requires these two 
eigenvalues to have real parts less than zero. The overall stability (criterion C) requires both eigenvalues 

of the STP-frz
lnrM  to have real parts less than zero. Using the Routh-Hurwitz criteria we restate this criterion 

as having both the determinant and the trace operators of the negative of the full-coefficient matrix (i.e. 
STP-frz
lnr−M ) positive (see also ref. 8). 

For a Frozen STP-RNN at the FP, we have FP
1 E EE 1G Jλ = −  and ( )FP

2 I II1 /G Jλ α= − + . Since 2λ  is always 

negative, hence FP
E EE 1G J >  (i.e. 1 0λ > ) and FP

E EE 1G J <  (i.e. 1 0λ < ) fulfill the excitatory instability and 

excitatory stability criteria, respectively. Considering equation (16), the excitatory instability indicates 
STP-frz
E 0slope >  and excitatory stability indicates STP-frz

E 0slope < , at the FP. The determinant condition can 

also be shown to yield STP-frz STP-frz
I Eslope slope> , at the FP. The trace condition yields 

( )FP FP
I II E EE1 1G J G Jα+ > −  at the FP, which holds if α  is sufficiently small; for more details see ref. 8. 

Similar results have been already obtained by previous studies based on the Static-RNNs (e.g. see 
equation (3)), which neglected the effect of STP 1,8. But, for a STP-RNN, the synaptic efficacies of the 
corresponding Frozen STP-RNNs (equation (9)) can have different values at different FPs (equation (5)). 
In practice, this implies that, in contrast to a Static-RNN (equation (3)), a STP-RNN has two distinct 
operational features (see Results): i) its operating regime at a FP is dependent on the activity rate levels 
at that FP (see previous paragraph), ii)  its operating regimes, e.g. the ISN and Non-ISN regimes, may be 
co-existing rather than being mutually exclusive regimes (e.g., in r r- -planeE I ; see “Operational FP-

domains” section below); this case can happen in the presence of a  pseudo sign-switching rate pSSR
rE  

(see the text below equation (16)). 

Sub-threshold networks 
All analyses above were done for a supra-threshold network, where both E- and I-populations are in 
supra-threshold mode (see equation (2)). We now generalize these analyses to the sub-threshold modes 
(see equation (2)): i) sub-threshold network ( E Eh θ≤  and I Ih θ≤ ), ii) sub-threshold E-population (

E Eh θ≤  and I Ih θ> ), and iii) sub-threshold I-population ( E Eh θ>  and I Ih θ≤ ). The equation (4) for the 

STP-RNN (similarly, the equation (9) for a Frozen STP-RNN) can be re-written to derive the equations 
governing the network dynamics in these modes. This can be simply done by setting E I 0G G= =  for a 

sub-threshold network, E 0G =  for a sub-threshold E-population mode, and I 0G =  for a sub-threshold I-
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population mode. Similarly, the steady state values and the resulting steady state connectivity matrices 
for these networks can also be obtained from those listed in Supplementary Table 1.  

In mode (i), the only FP of the network is the origin (i.e. r r 0E I= =  Hz) in the r r- -planeE I . At this FP, the 
network is essentially stable. This can be shown by computing the eigenvalues of the corresponding full-

coefficient matrix ( STP-frz
lnrM ) of this mode, at the FP: (i)

1 1λ = −  and (i)
2 1 /λ α= −  which are both always 

negative; the upper-index indicates the index of the sub-threshold mode. At this FP, the network 
operates necessarily as a Non-ISN, as there are no feedback connections to the populations (and in 
particular, there is no I E→  connection). 

In mode (ii), r -E nullcline (and quasi r -E nullcline) lies on r 0E =  Hz line in the r r- -planeE I . A FP located 

on this vertical branch is always stable. This is because, at a FP in this mode we have (ii)
1 1λ = − , and 

( )(ii) FP
2 I II1 /G Jλ α= − + , which are always negative. Obviously, the corresponding STP-frz

lnr \EIM  and STP-frz
lnrM  

matrices of this mode (at the FP) are equal, and thus the same eigenvalues as (ii)
1λ  and (ii)

2λ  can be 

obtained based on STP-frz
lnr \EIM . Since both (ii)

1λ  and (ii)
2λ  are negative (criterion B), so we can conclude that 

the Frozen STP-RNN will operate as a Non-ISN at the FP located on the vertical branch at r 0E =  Hz. 

Moreover, note that in this mode, similarly to the supra-threshold networks, the slope of r -I nullcline at 

such a FP is positive. This can be readily shown by adapting our analyses in “Phase plane and nullclines” 
section to this mode; the STP-frz

Islope  in this mode is equal to that in equation (16). 

In mode (iii), r -I nullcline (and quasi r -I nullcline) lies on r 0I =  Hz line in the r r- -planeE I . A FP located 
on this horizontal branch can be either stable or unstable. This is because, while at a FP in this mode we 
have (iii)

2 1 /λ α= − , (iii) FP
1 E EE 1G Jλ = − . Accordingly, (iii)

1λ  can be either positive or negative; if negative, the 

FP is stable, otherwise the FP is unstable. Similarly to mode (ii), the eigenvalues based on the 
corresponding STP-frz

lnr \EIM  of this mode (at the FP) are the same as (iii)
1λ  and (iii)

2λ . Since (iii)
2λ  is always 

negative, therefore depending on the sign of (iii)
1λ  at the FP located on this horizontal branch, the 

network can be either unstable (if (iii)
1 0λ > ) or a Non-ISN (if (iii)

1 0λ < , criterion B); note the condition 
(iii)

1 0λ > , required for a ISN regime (criterion A), violates the overall stability condition of network. 
Similarly, the r -E nullcline can have either a negative or positive slope sign at the FP, depending on the 

sign of (iii)
1λ ; the STP-frz

Eslope  is equal to that in equation (16). 

Summary of rules for operating regimes 
We can now determine two simple rules to distinguish between ISN and Non-ISN regimes in the positive 
ranges of activity rates in the r r- -planeE I . Rule I : For sufficiently small values of α , at the FP, a STP-

RNN (equation (4)) operates as an ISN if STP-frz STP-frz
I E 0slope slope> >  or as a Non-ISN if 

( ) ( )STP-frz STP-frz
I E0 0slope slope> > < . Rule II : at the FP, the STP-RNN operating neither as ISN nor Non-ISN 

is unstable. This is equivalent to saying, at the FP, the STP-RNN has overall instability if 
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STP-frz STP-frz
E I 0slope slope> >  or the inhibitory population has a sufficiently slow time constant relative to 

the excitatory one. Note that when determining these rules we also considered the fact that the r -I

nullcline has always positive slope in the r r- -planeE I  for positive activity rates (see equation (16)). 

Besides, we determine the following rules for the FPs locating on the borders of the r r- -planeE I  (i.e. at 

r 0E =  and/or r 0I =  Hz), belonging to the sub-threshold modes (see previous section). Rule III : At the 

origin ( r r 0E I= =  Hz), the STP-RNN operates as a Non-ISN. Rule IV : At the FP located on the vertical 

branch of the r -E nullcline (or quasi r -E nullcline) at r 0E = , the STP-RNN operates as a Non-ISN. Rule 

V : At the FP located on the horizontal branch of the r -I nullcline (or quasi r -I nullcline) at r 0I =  (but 

r 0E ≠ ), the STP-RNN is unstable if STP-frz
E 0slope >  or is a Non-ISN if STP-frz

E 0slope < .  

Furthermore, one can deduce from Rule II  and Rule V  that an ISN (but not a Non-ISN) is prone to 
overall instability, because of the intrinsic instability of its E-population’s activity (i.e. STP-frz

E 0slope >  at 

the FP). Considering this point, together with the expressions we derived above for 1λ  and (iii)
1λ  (see 

also equation (5)), we stress the key role of E E→  synapses in governing the overall instability, where 
weak E E→  synapses can effectively diminish or remove instability. The second source of overall 
instability effectively depends on the ratio of the synaptic time constants Et  and It  (i.e. α ; see the 

trace condition ( )FP FP
I II E EE1 1G J G Jα+ > −  below equation (17)), and can just accompany the potential 

instability effect caused by E E→  synapses. This means that the removal of E E→  synapses can 
effectively eliminate these both sources of overall instability. In addition, note that this conclusion, as 
well as the five rules (Rule I  to Rule V ), are based on the assumption that the GABAergic transmission 
acts on the whole as inhibitory at the network level (i.e. when EIJ  and IIJ  are positive). Otherwise, at 

least, I I→  synapses will also accompany to the second source of instability (i.e. through the trace 
condition), where its corresponding contribution will be effectively regulated by α . 

Parameterization of postnatal developing networks 
In this work, we aimed at studying the developmental changes in immature network dynamics in vivo, 
during the first postnatal month. During this period, these networks undergo dramatic refinements in 
their biophysical characteristics, including the intrinsic neuronal properties (e.g. membrane resistances), 
STP properties (e.g. release probabilities), and the effect of GABAergic synaptic transmission on 
immature neurons 13,14. The sparsification phenomenon also occurs in this period: the network’s 
spontaneous activity transition from highly synchronized (cluster activity) to more sparse firing patterns 
15,16. Overall, as an example of sensory cortices undergoing such developmental changes in both 
biophysical characteristics and network dynamics, we consider the visual cortex for which the 
sparsification is mainly set in around eye-opening 16,17. Accordingly, to cover the range of postnatal days 
(P) towards the complete process of sparsification (starting from birth) we study the dynamics of a 
developing RNN model at four stages of visual cortex which we modeled: P3 (period of physiological 
blindness), P9 (a few days before eye-opening), P14 (the day after eye-opening) and P20 (a few days 
after eye-opening); see also refs 16,17. 
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Since STP mechanisms undergo substantial developmental changes and significantly affect (mainly via 
strong STD) the dynamics of immature networks 14,18, we consider the developing RNN model as a STP-
RNN. For this network we make two simplifications. First, consistent with experimental reports 19 (see 
also refs 6,20), we assume changes in synaptic projections are independent of the target population type, 
where the projections of the same type (GABAergic or glutamatergic) have the same (immature) STP 
properties, separately. Hence, we use the same values for STP parameters of E E→  and E I→  
connections ( EU , 

Ert , 
Eft ) and of I I→  and I E→  connections ( IU , 

Irt , 
Ift ). We also assume both 

glutamatergic connections ( E E→  and E I→ ) and both GABAergic connections ( I I→  and I E→ ) 
have the same absolute synaptic efficacies ( EJ  and IJ ), separately. This follows as the target-specific 
synaptic patterns might not, or at least poorly, formed in immature networks. By using these 
simplifications we aimed at providing a clearer representation of our main findings about the prominent 
phenomena occurring between P3 to P20 (see Results). However, we stress that: i) for the mathematical 
framework of our analyses (see above), we made no assumption about the parameter values and thus 
our analytical (algebraic) results were obtained for a general case, ii) in our preliminary results, we 
observed that our main findings (see Results) remained mainly intact even without these assumptions. 
Nonetheless, note that further electrophysiological experiments are required to be done for this 
postnatal period, in order to provide more detailed distinction and characterization of, e.g. the STP 
properties and synaptic patterns between different neuron types.  

To incorporate the postnatal developmental changes in the parameter values of a STP-RNN we re-
parameterized it for each of P3, P10, P14 and P20 stages, separately (see Table 1); based on the 
currently available experimental findings (mostly from visual cortex). To do this, we made the following 
assumptions for a network growing during P3 to P20 (see Table 1): 

1) The (synaptic) time constants of E- and I-populations ( Et  and It ) decrease profoundly during this 
period. This is effectively due to the substantial developmental decline in membrane resistance of 
neurons 14,15. Recall Et  and It  are typically some approximations of the decay time constants of 

glutamatergic and GABAergic postsynaptic responses 4,8. 

2) Both receptor-mediated glutamatergic and GABAergic synaptic projections are strongly depressing at 
an early postnatal age (P3), and become less depressing towards P20. This is based on findings about 
strong developmental increments in the paired pulse ratios of postsynaptic responses, and the 
developmental changes in the organization and mechanisms governing the vesicle pools machinery 14,18. 
Accordingly, we translated these findings into the reported reductions of release probabilities ( EU  and 

IU ) and time constants of synaptic depression (
Ert  and 

Irt ) and facilitation (
Eft  and 

Ift ) mechanisms. 

3) GABAergic synapses are on the whole less depressing than glutamatergic ones and this difference 
increases from P3 to P20 (especially after eye-opening) due to the maturation of the STP mechanisms; 
e.g. see experimental reports in refs 21,22. This difference can be seen in the relatively higher values of 

Ert  and EU  as compared to 
Irt  and IU  in Table 1. 
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4) The thresholds of E- and I-populations activity ( Eθ  and Iθ ) increase from P3 to P20. In our model 

these parameters depend effectively on i) background inputs (e.g. driven by neuropil activity 2,4) and ii) 
membrane resistance. During P3 to P20, the background activity increases, especially after the onset of 
sensory transduction 15-17; e.g. see the developmental increase in the frequency of spontaneous Ca2+ 
waves in refs. 15,16. In contrast, the membrane resistance profoundly declines during this period 14,15, 
which, according to Ohm’s law, implies that the depolarizing membrane current required for triggering 
an AP is increased during development 23. We assume that the overall effect of these developmental 
changes leads to the experimentally observed increase in the corresponding rheobase currents during 
this period 14. Intuitively, this means that the neurons become harder to fire. In terms of the populations 
activity, this indicates a developmental increase in Eθ  and Iθ . In brief, when considering a single stage, 

the increase in the background input to a population can be modeled by decreasing its threshold ( Eθ  or 

Iθ ), while the decline in membrane resistance can be modeled by increasing that threshold. Moreover, 

note that we assumed Iθ  is in general to some extent larger than Eθ  2. 

5) The effective absolute synaptic efficacy of average excitatory projections (i.e. E EG J ; for simplicity we 

set E 1G = ) increases prior to eye-opening and then starts to decay toward P20. This is mainly based on 
the findings about the developmental increase (before eye-opening) followed, after eye-opening, by a 
decrease in the amplitude of the mean unitary (maximal) glutamatergic postsynaptic responses 14,18. 
Moreover, at early postnatal days (before eye-opening) these synapses are overexpressed, and there is 
a high density of glutamatergic receptors 13,24. The un-silencing of these synapses, and in particular the 
start of functioning of AMPA receptors at the end of first postnatal week 13,24, may determine the early 
increase in these responses; see also ref. 25. However, the further maturation of neuronal mechanisms 
and organizations after eye-opening tends to reduce the excitatory factors, e.g. due to a downregulation 
in the number of functional contacts per excitatory synaptic connection 18; see also ref. 25. 

6) The effective absolute synaptic efficacy of average inhibitory projections (i.e. I IG J ; for simplicity we 

set I 1G = ) increases from P3 to P20. In particular, we assigned a very small value to this parameter at 
P3 (rendering the inhibitory processing remarkably weak), a relatively much higher value at P10, and 
with more smooth increments toward P20. These changes should underlie the following experimental 
findings about 13,24,25: i) the relative paucity of inhibitory synapses in immature networks, ii) the lack of 
postsynaptic GABAB receptor-mediated responses until the end of first postnatal week, iii) the shift in 
activation effect of GABAA receptors on membrane potential of neonatal neurons, namely from partially 
depolarizing (during first postnatal week) to its classical hyperpolarizing effect, and iv) strengthening of 
the inhibitory effect during the developing period. Regardless of iii), we still consider the overall 
GABAergic transmission to be inhibitory at the network level, even during first postnatal week; 
consistent with recent in vivo experiments 26,27. However, for completeness, we also separately consider 
the case that GABAergic transmission is on the whole excitatory at the network level (see 
Supplementary Fig. 3). 
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Additional parameters and definitions  
In the following, we define a number of numerical parameters, and describe some specific properties, 
which are relevant for the obtained results.    

Operational FP-domains 
For a STP-RNN, we partition the r r- -planeE I  into different domains of FPs (FP-domains), where each FP-
domain belongs to a different operating regime (see Results). For instance, the FP-domain of an ISN 
contains the steady states (i.e. FPs) at which the network could operate as an ISN. Similarly, we can 
define the FP-domain of Non-ISN and unstable regimes. To plot these domains (see Results) we utilized 
our analytically driven (algebraic) expressions for each regime (e.g. see the “Characterization of 
operating regimes” section).  

Moreover, we also numerically compute the two-dimensional integration over the area of each FP-
domain ( AOD ; area of domain), by using a sparse grid rule (i.e. the fully symmetric integration rule) as 
implemented in Mathematica (version 9). Note that for all FP-domains, the integration limits do not 

exceed the minimum (here, always the origin) and maximum E- and I-activity rates ( max max
r r[ , ]E I ), which 

are determined by the desired phase plane (see Results). In addition to the area of ISN ( ISNAOD ), and 

Non-ISN ( Non-ISNAOD ) FP-domains, we also compute ISN / Unstable ISN Unstable/AOD AOD AOD= ; clearly, this 

ratio measures the ISNAOD  vs. UnstableAOD , and vice versa. For instance, an increase in ISN / UnstableAOD  

indicates that within the E-activity ranges where both ISN and unstable regimes co-exist (although at 
different I-activity ranges; see Results), the unstable FP-domain has been replaced by ISN FP-domain in 
the r r- -planeE I . In other words, the increase in ISN / UnstableAOD  shows an effective increase in ISN FP-

domain in parallel to an effective decrease in unstable FP-domain, and vice versa. 

Mono-stable and bi-stable trajectories  
Any particular solution of a dynamical system (as a function of time) sketched in the phase plane is 
called the trajectory of that solution; or simply the trajectory. By inspecting the trajectory one can see 
whether the underlying solution converges to a FP as time increases. Here, we briefly describe two types 
of the trajectories, i.e. mono-stable and bi-stable, which we use later when explaining the emergence of 
cluster activity (see Results). A mono-stable trajectory appears in a mono-stable system, where the 
trajectory is initiated and terminated at the only stable FP of the system. In contrast, a bi-stable 
trajectory appears in bi-stable systems, where the trajectory connects the two stable FPs of the system. 
For a description of these trajectories see, for example, ref. 28. 

Population spike  
A population spike (PS) reflects the near-synchronous activation of many neurons 12,29. During a PS in 
excitatory (PSE) or inhibitory (PSI) populations, the population activity diverges, makes an overshoot, and 
then returns to an asynchronous activity level. A PS with larger amplitude indicates that more neurons 
participated in the underlying synchronous event 12,29. For a recurrent network of E- and I-populations 
(RNN), this event underlies cluster activity (PSnet) which usually involves both populations (i.e. it is a 
combination of PSE and PSI).  
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The cluster activity size is defined as the number of E- and I-neurons which become active during the 
cluster. We can qualitatively estimate this quantity from the network sum activity ( sum r rA E I= + ). This 

follows as in our Wilson-Cowan-type model rE  and rI  denote the average activity (in hertz) of 
homogenous E- and I-populations at any given time, which are equivalent to their instantaneous 
population firing rates (i.e. the number of active neurons in a certain short time interval, in the 

corresponding population); see refs 2,12. We define the cluster activity size as ( )amp amp 0
net sum sumPS A Aω= × − , 

where amp
sumA  and 0

sumA  are the maximal activity during the cluster activity and the preceding activity, 

respectively, and ω  is a scaling factor (in units of [Hz-1]) to convert the activity rate to an approximate 
number of activated neurons during cluster activity. The veridical value of ω  depends on the number of 
network neurons, which is not defined explicitly for a mean-field model. For simplicity, we set 1ω =  for 
all stages throughout the paper, so we can compare different cluster activity sizes qualitatively: a larger 

value of amp
netPS  (a dimensionless parameter) implies that more E- and I-neurons participated in the 

underlying cluster activity 12,29.  

Similarly, the size of PSE or PSI can be defined ( amp
EPS  and amp

IPS ). Note that the cortical neural 

networks are typically considered to be comprised of 20% GABAergic and 80% glutamatergic neurons. 

Accordingly, for example, a amp amp
I EPS PS>  can imply that a higher fraction of GABAergic neurons (out of 

20%) than the glutamatergic neurons (out of 80%) were active during a cluster activity. 

Moreover, we measure the duration of a cluster activity as its termination time minus its onset time.  
Here, for each cluster activity we estimate the onset time as the arrival time of perturbation (see 
Results), and the termination as the time that sumA  falls below FP

sum 1A +  Hz; where, FP
sumA  is the sum 

activity at the FP achieved after the perturbation.  

Simulations 
All results described in this study have been implemented as Matlab (MathWorks) and Mathematica 
codes. The integration time-step size for simulations is set to 0.001 s. 

 

 

 

 

 

 

 

 



18 
 

Supplementary Figure Legends 

 

Supplementary Figure 1 

The variability in spatiotemporal characteristics of postnatal spontaneous cluster activities. (a) The 
effect of synaptic recovery from a depressing state (lower panel) on size of cluster activities (upper 
panel) at P3. Following the first cluster activity (black line) elicited by a perturbation input applied to the 
E-population, a new single perturbation with the same strength (30 Hz) is applied and triggers another 
cluster activity. The second perturbation times are 5 (brown), 10 (orange), 15 (grey) and 20 s (purple). 
The plot shows, using four different inter-perturbation intervals (IPI), the sum activity sum r rA E I= +  

(upper panel) and the synaptic efficacy of recurrent excitatory connection E E EJ x u  (lower panel). (b) 
Zoom-in of the second and third cluster activities in (a), around the time of their perturbation. The plot 
shows the same effect as (a), but for the duration of cluster activities (upper panel). (c) The color-coded 
matrices show the interaction of perturbation strength and IPIs on size (upper panel) and duration 
(lower panel) of the cluster activity following the second perturbation, at P3. (d) Same as (c), but for 
P10. For spontaneous activity, the variability in the perturbation strengths and IPIs may reflect the 
stochasticity in the amplitude and timing of inputs to the network, driven by e.g. spontaneous retinal 
waves or thalamus 16,26. It can be seen that cluster activity (upper panel) emerges only when the 
perturbation strength exceeds some thresholds (black regions, corresponding to the sum activities with 
maximum size less than 1). The fixed level of the black region at sufficiently long IPIs relates to the 
amplification-threshold at r 0I =  Hz, in Fig. 3b. These findings are consistent with the experimentally 
reported all-or-none characteristic of postnatal cluster activities 17,30. The networks at P3 and P10 were 
parameterized according to Table 1. The P14 and P20 stages were not shown due to their potential 
need, after a first perturbation, to receive a large enough inhibitory input to push them from the 
attractor (Fig. 3c) to the rest state first. However, at these stages, we expect a weaker dependency of 
cluster activity characteristics on IPIs, as the excitatory synapses recover faster from depression (Table 
1). 
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Supplementary Figure 2 

Activity properties of developing networks in response to long-lasting inputs. (a) The same plots as in 
Fig 3a; the quasi r -E  and r -I nullclines were plotted in the absence of external input. (b) The emergence 

of stimulus-evoked attractors in developing networks during development. The same format is used as 
in (a), but overlaid by the FPs. The same networks as in (a), i.e. when relaxed at their rest states, were 
stimulated by a constant input ( E 1.3e =  Hz) applied to the E-population. The input shifted the quasi r -E

nullcline and a stimulus-evoked attractor (the green dot, pointed to by green arrow) emerged in the 
Non-ISN (P3 and P10; pink region) and later in the ISN (P14 and P20; light-yellow region) FP-domain. 
Other combinations of long-lasting inputs to E- and I-populations could be used to set the network’s 
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activity state at other potential, both Non-ISN or ISN stimulus-evoked attractors (not shown). (c) 
Transient feature of stimulus-evoked attractors. The temporal network activities towards the stimulus-
evoked attractors in (b) are shown. The new attractor (pointed to by green arrow) is evoked during the 
input (black bar below the plots). It vanishes after input removal and the network returns to its 
spontaneous, stable steady state (green dots in (a)). The 2-second input ( E 1.3e =  Hz) used here can be 
due to external stimulation or spontaneous Ca2+ waves from the surrounding neuropil of the network 
15,16. (d) Enhanced contribution of inhibitory transmission to network activity after eye-opening. For a 
P14 network, the effect of inhibitory input to the I-population (at 1.2t =  s) on the network relaxed at its 
spontaneous attractor was evaluated. Left panel: an impulse perturbation (single-shock) I 30e =  Hz, 

Middle panel: I 1e =  Hz for 20 ms, Right panel: I 1e =  Hz for 40 ms. per
E E ( 0) 30e e t= = =  Hz. As observed 

experimentally for more mature network 31, a strong single-shock (left panel) or a relatively weak but 
long duration inhibitory input (right panel) were able to terminate the persistent activity and move the 
network back to its rest state.  
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Supplementary Figure 3 

Postnatal changes in the amplification-threshold of developing networks. The same format is used as 
in Figs. 2c and 2d. (a) Developmental extension of the non-amplification domain (black region), for the 
developing STP-RNN. (b) Developmental extension of the attraction domain of the rest state (grey 
region) in the STP-RNNs with synaptic efficacies frozen (Frozen STP-RNN) at the rest state (at 150t = −  
ms, as in Fig. 3b). Note that at each developmental stage, for a network relaxed at the rest state, the 
non-amplification domain in the STP-RNN shown in (a) and the attraction domain in its corresponding 
Frozen STP-RNN shown in  (b) are very similar in shape. 
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Supplementary Figure 4 

Contribution of population activity threshold to the emergence of spontaneous attractors. The same 
format is used as in Fig. 1b. (a) The r r- -planeE I  of the STP-RNN at P10 based on the parameter values in 
Table 1, i.e. before the following modification. (b) Same as (a) but after substituting the activity 
threshold of excitatory population Eθ  by its value at P20 (1 Hz, Table 1). (c) Same as (a) but after 

substituting the activity threshold of inhibitory population Iθ  by its value at P20 (2 Hz, Table 1). (d) 

Same as (a) but after substituting both Eθ  and Iθ  by their values at P20 (Table 1). (e) Same as (a) but 

after changing Iθ  to 1.5 Hz. (f) Same as (a) but after changing Iθ  to 1 Hz. (g) Same as (a) but after 

changing Eθ  and Iθ  to 0.6 and 1 Hz. In the model, the values of these parameters are determined by 

the combined effect of background activity and membrane resistance (see Supplementary Methods). 
The plots show that these modifications of Eθ  and Iθ  (increasing relative to their P10 values) result in 

an overall downward shift in both quasi -E  (see (b), (d), and (g)) and r -I nullclines (see (c)-(g)), relative 

to (a). Note the emergence of non-origin stable (green dots) and unstable (black dots) FPs due to the 
modifications of Eθ  and Iθ . In sum, the plots show that changes in Eθ  and Iθ  can contribute to the 

emergence of spontaneous attractors in developing networks. The negative activity ranges have no 
physical meaning and are displayed only for better representing the change in quasi nullclines behavior 
after modification. 
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Supplementary Figure 5 

Postnatal changes in robustness of cluster activities against interfering inputs. (a) The effect of 
perturbing a cluster activity on its dynamics, during development. Following the first cluster activity 
(black line) elicited by a perturbation input applied to the E-population at the rest state, a new single 
perturbation (brown line) is applied when the first cluster activity reaches its half-maximum size. Each 
plot shows the sum activity sum r rA E I= +  for the absence (black line) and presence of the second 

perturbation (brown line). (Insets) Zoom-in of the sum activities at onset of first perturbation. Note that 
due to the small effect of the perturbation on cluster activity, especially at P3 and P10, the sum activity 
after second perturbation (brown line) can be barely seen. The perturbation strengths are 30 Hz (black) 
and 10 Hz (brown). The green dots show the stable FPs in Fig. 3a. (b) First row: The effect of different 
inter-perturbation intervals (IPI) and strength of perturbations, occurring during a cluster activity, on 
cluster activity size. The colors encode the difference between cluster activity size in the absence and 
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presence of second perturbation (presence minus absence). (c) Same as (b), but for cluster activity 
duration. (d) Same as (c), but after normalization; the negative and positive differences shown in (c) 
were normalized to the absolute minimum and maximum differences in cluster activity durations, 
respectively. Negative and positive values in (c) and (d) indicate the shortening and prolongation of 
cluster activity duration due to the second perturbation, respectively. In sum, these results show that, as 
compared to the stage after eye-opening (P14 and P20), the mono-stable cluster activities prior to eye-
opening (P3 and P10) are in general more robust against the interfering perturbations in terms of both 
cluster activity size (see (b)) and duration (see (c) and (d)). Conversely, after eye-opening the networks 
show more flexible behavior in response to interfering inputs; compare the differences in cluster activity 
sizes before and after eye-opening in (b). IPIs are limited to the onset (i.e. 0) and duration of cluster 
activities, in the absence of second perturbation. All four networks were parameterized according to 
Table 1. 
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Supplementary Figure 6 

Spontaneous stationary and cluster activity properties of a STP-RNN where GABAergic connections at 
P3 were simulated to be excitatory. (a) The same format is used as in Fig. 1b. (b) The same format is 
used as in Fig. 4b. Cluster activities before (solid lines) and after (dashed lines) blocking the GABAergic 
receptors. This blockage led to a decrease in cluster activity size and prolonged cluster activity duration; 

amp
netPS : from 67 to 62, Duration: from 318 to 323 ms. (c) Effect of different E and I synaptic time 

constants Et  and It  on the cluster activity size (first panel) and duration (second panel). The matrix 

elements below the dashed black line belong to 1α > , where I E/α t t= . It can be seen that in general 

parameters Et  and It  effectively determine the duration of cluster activity, and there is an inverted 
relationship between their effect on cluster activity size and duration. Simulations are performed for 

I 0.1J = − . The values of all other parameters were set to the same as at the P3 stage in Table 1. 
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Supplementary Figure 7 

Effect of synaptic time constants on postnatal cluster activities before eye-opening. (a) The effect of 
different E and I synaptic time constants Et  and It  on the size (first row) and duration (second row) of 

cluster activity, at P3 and P10. Note the change in the effect of larger 1α >  (the elements below the 
dashed black line; I E/α t t= ) and, especially, larger Et  values on cluster activity size and duration, 

between these two stages. Overall, it can be seen that parameters Et  and It  have opposing effects on 

cluster activity size and duration. (b) The effect of a 25% decrease in both Et  and It  on cluster activity 

characteristics at P10. Upper panel: the sum activity ( sum r rA E I= + ), Lower panel: synaptic efficacy of 

recurrent excitatory connection ( E E EJ x u ), Grey lines: after the decrease of Et  and It , Brown lines: 

before the decrease of Et  and It . It can be seen that this modification led to an increase of cluster 

activity size and a decrease of duration (change from brown to grey lines). (Inset) Zoom-out of the 
synaptic efficacies. (c) The computed sum activities in (b) were scaled to both have a maximum value of 
1. Regardless of the size of these cluster activities, the decrease in Et  and It  effectively shrunk the 
cluster activity duration (grey line). In sum, these results indicate that the values of these parameters (as 
well as α , see (a)) play an important role in determining the temporal characteristics of cluster activity. 
The networks at P3 and P10 (before the modification in (b)) were parameterized according to Table 1. 
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Supplementary Figure 8 

Extended analysis for the impact of specific maturational processes on the sparsification process. 
Similar assessment was done as in Fig. 5, but here we instead, virtually, de-mature the parameter(s) of 
interest at P20, when transitioning from P10 to P20. To do this we substituted the single or combination 
of parameters at P20 (Table 1) with their values at P10 (Table 1), and then computed the 

* res
P20 P20 P10 P20100 ( ) / ( )ratioγ ϖ γ γ γ γ= × − − , where res

P20γ  is the value of γ  measured after the modification. 

(a) amp
netPSγ =  with 1ϖ = + . The plotted values of *

PSratio  measure the modification-induced changes in 
amp
netPS  relative to the increase when transitioning from P20 to P10. The dashed orange line at 

* 100%PSratio = +  indicates the normal amount of increase in amp
netPS , as expected when transitioning 

from P20 to P10. (b) ISN / UnstableAODγ =  with 1ϖ = − . The plotted values of *
AODratio  measure the 

modification-induced change in ISN / UnstableAOD  relative to the decrease when transitioning from P20 to 

P10. The dashed orange line at * 100%AODratio = −  indicates the normal amount of decrease in 

ISN / UnstableAOD , as expected when transitioning from P20 to P10. For computing ISN / UnstableAOD , we 

considered the r r- -planeE I  plots with max max
r r[ , ]E I =[10,10] Hz. Parameters combinations are { }E IJ ,J J=

, { }syn E Iτ ,t t= , { }all E ISTP STP ,STP= , { }E EE E r fSTP , ,U t t= , { }I II I r fSTP , ,U t t= , { }E Iθ ,θ θ= . 
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Supplementary Tables 
 

Supplementary Table 1. Stationary components of the network models. 

Network type Steady state value Steady state connectivity matrix 
Static-RNN ( )

( )
r E EE r EI r E E

r I IE r II r I I

E G J E J I e

I G J E J I e

θ

θ

= − − +

= − − +
 

E EE E EISTC

I IE I II

G J G J
G J G J

− 
=  − 

J  

Static-RNN 
(Frozen STP-RNN) 

( )
( )

FP FP
r E EE r EI r E E

FP FP
r I IE r II r I I

E G J E J I e

I G J E J I e

θ

θ

= − − +

= − − +
 

FP FP
STP-frz E EE E EI

FP FP
I IE I II

G J G J
G J G J

 −
=  

− 
J  

STP-RNN ( )
( )
( )ij

ij

ij

r E EE EE EE r EI EI EI r E E

r I IE IE IE r II II II r I I

ij j f

ij
j ij f

ij
j ij r

1

1

1
1

E G J u x E J u x I e

I G J u x E J u x I e

U A
u

AU

x
A u

θ

θ

t

t

t

= − − +

= − − +

+
=

+

=
+

 

ss ss ss ss
STP E EE EE EE E EI EI EI
ss ss ss ss ss

I IE IE IE I II II II

G J u x G J u x
G J u x G J u x

 −
=  

− 
J  

Steady state values and connectivity matrices of Static-RNN-type and STP-RNN models, in supra-

threshold mode. For sub-threshold modes, j 0G =  (see equation (2)). Note j  and { }i E, I∈ , { }j r r,A E I∈

, and  j  is the index of the presynaptic population, where E rA E=  and I rA I= . 
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