Lewis acid enabled copper catalysed asymmetric synthesis of chiral β -substituted amides

Mamen Rodríguez-Fernández^{†§}, Xingchen Yan^{†§}, Juan F. Collados^{†§}, Paul B. White[‡], Syuzanna R. Harutyunyan^{†*}

[†]Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

[‡]Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands

Table of Contents:

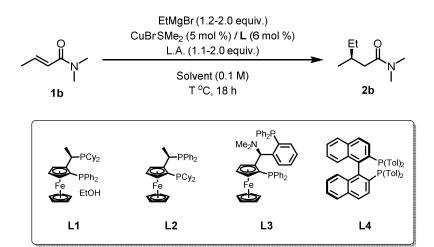
1. General experimental information	S3
2. Chemicals	S4
3. Determination of absolute configuration	S4
4. Optimization of reaction conditions	S5
5. $(E)/(Z)$ Isomerization experiments	S7
6. NMR spectroscopy based mechanistic studies	S14
7. Synthesis of enamides: procedure and characterization of products	S46
8. Cu- ACA of Grignard reagents to enamides: General procedures, preparative scale,	
catalyst recovery, CA product characterisation	S62
9. Deprotection of PMB protected amide	S130
10. Transformation of amide into β - and γ -branched amines	S132
11. Catalytic ACA followed by intramolecular trapping	S136
12. References	S138

1. General experimental information

All reactions using oxygen- and/or moisture-sensitive materials were carried out with anhydrous solvents (vide infra) under a nitrogen atmosphere using oven-dried glassware and standard Schlenk techniques. Reactions were monitored by ¹H NMR. Purification of the products was performed by column chromatography using Merck 60 Å 230-400 mesh silica gel. Components were visualized by UV and KMnO₄ staining. NMR data was collected on Varian VXR400 (¹H at 400.0 MHz; ¹³C at 100.58 MHz) equipped with a 5 mm z-gradient broadband probe. Chemical shifts are reported in parts per million (ppm) relative to residual solvent peak (CDCl₃, ¹H: 7.26 ppm; ¹³C: 77.16 ppm; D₂O, ¹H: 4.79 ppm). Coupling constants are reported in Hertz. Multiplicity is reported with the usual abbreviations (s: singlet, br s: broad singlet, d: doublet, dd: doublet of doublets, t: triplet, tdt: triplet doublet of triplets, tqt: triplet quartet of triplets, ttq: triplet triplet of quartets, q: quartet, quint: quintet, sex: sextet, hept: heptet, m: multiplet, if an apparent multiplicity is observed the actual multiplicity will be noted in brackets). Variable-temperature NMR spectra were acquired on a Bruker Avance III spectrometer paired with an Ascend 400 MHz magnet and BBFO dual-resonance probe. All temperatures were calibrated prior to acquisition with an external pure MeOH reference. ¹H TOCSY and ROESY experiments were carried out with 9.6 kHz and 4.54 kHz spinlocking fields, and the ROESY mix time was set to 400 ms. ¹H-¹⁹F HOESY experiments utilized a mix time of 350 ms. ¹H-¹³C HSQCED spectra were recorded with the ¹ J_{CH} constant set to 145 Hz while the ¹H-¹³C and ¹H-²⁹Si HMBC spectra were recorded with a ⁿ J_{XH} constant set to 8 Hz and 10 Hz, respectively. 1D ¹⁹F spectra were acquired with inverse-gated ¹H decoupling. 1D ³¹P spectra were acquired with ¹H decoupling during the relaxation delay and acquisition time and thus are non-quantitative. Exact mass spectra were recorded on a LTQ Orbitrap XL apparatus with ESI ionization. Enantiomeric excess (ee) were determined by chiral HPLC analysis using a Shimadzu LC-10ADVP HPLC equipped with a Shimadzu SPD-M10AVP diode array detector.

2. Chemicals

Unless otherwise indicated, reagents and substrates were purchased from commercial sources and used as received. Solvents not required to be dry were purchased as technical grade and used as received. Dry solvents were freshly collected from a dry solvent purification system prior to use. Inert atmosphere experiments were performed with standard Schlenk techniques with dried (P_2O_5) nitrogen gas. Grignard reagents were purchased from Sigma-Aldrich (EtMgBr, MeMgBr, PhMgBr (3.0 M in Et₂O), *i*ButMgBr, *i*PentMgBr, HexMgBr, cyclopentylMgBr (2.0 M in Et₂O). All other Grignard reagents were prepared from the corresponding alkyl bromides and Mg activated with I₂ in Et₂O: phenylethylMgBr (2.6 M in Et₂O), pent-4-en-1-ylMgBr (1.7 M in Et₂O) and (4-chlorobutyl)MgBr (1.3 M in Et₂O). All Grignard reagents were titrated by NMR before use. Unless otherwise noted enamides substrates were prepared following the literature methods (*vide infra*). Chiral ligands (L1-L4) were purchased from Sigma Aldrich and Solvias. All reported compounds were characterized by ¹H and ¹³C NMR and compared with literature data. All new compounds were fully characterized by ¹H and ¹³C NMR and HRMS techniques.


3. Determination of absolute configuration

The absolute configuration was determined by comparison of the optical rotation for the compounds **2b** $([\alpha]_D{}^{20} = +10.4 \ (c \ 1.4, \text{CHCl}_3), S\text{-configuration})$ and the ester derived from **2m** $([\alpha]_D{}^{20} = +16.1 \ (c \ 1.43, \text{CHCl}_3), S\text{-configuration})$ with reported data (K. Biswas and S. Woodward, *Tetrahedron: Asymmetry*, **2008**, *19*, 1702; $[\alpha]_D{}^{20} = -5.6 \ (c \ 1.5, \text{CHCl}_3), R\text{-configuration})$ and (C.-J. Hou, W.-L. Gou, X.-P. Hu, J. Deng and Z. Zheng. *Tetrahedron: Asymmetry*, **2011**, *22*, 195-199; $[\alpha]_D{}^{20} = +7.8 \ (c \ 1.18, \text{CHCl}_3), S\text{-configuration})$, respectively. The absolute configurations of other compounds were assigned by analogy.

4. Optimization of reaction conditions for enantioselective conjugate addition to enamides

Optimisation studies were carried out with two enamide substrates 1a and 1b.

Table S1. Screening of chiral ligands, solvents, LA for copper 1,4-addition of EtMgBr to acyclic α,β -unsaturated amide **1b**.



Entry	L	LA	Solvent	T[°C]	Yield $[\%]^a$	ee [%] ^b
1	L2	-	Et ₂ O	-78	$9^{c,d}$	-
2	-	BF ₃ ·Et ₂ O	Et ₂ O	-78	$0^{c,e}$	-
3	L2	BF ₃ ·Et ₂ O	Et ₂ O	-78	45 ^e	33
4	L2	BF ₃ ·Et ₂ O	MTBE	-78	39 ^f	23
5	L2	BF ₃ ·Et ₂ O	DCM	-78	62^{f}	24
6	L1	BF ₃ ·Et ₂ O	DCM	-78	57 ^f	90
7	L3	BF_3 ·Et ₂ O	DCM	-78	40 ^f	84
8	L4	BF ₃ ·Et ₂ O	DCM	-78	45 ^f	65
9	L1	TMSOTf	DCM	-78	60 ^g	94
10	L1	BF ₃ ·Et ₂ O / TMSOTf	DCM	-78	66 ^g	92

11	L1	TMSCl	DCM	-78	<7 ^{c,h}	-
12	L1	BF ₃ ·Et ₂ O	DCM	-78	79 ^g	94
13	L1	BF ₃ ·Et ₂ O	DCM	-60	57 ^g	92

Reaction conditions: 0.2 mmol of **1b** in 2 mL of solvent, CuBrSMe₂ (5 mol%), ligand L1 (6 mol%), LA (1.1-2.0 equiv.), EtMgBr (3.0 M in Et₂O, 1.1-2.0 equiv.), T (°C), 18 h. ^{*a*} Yield of isolated **2b**. ^{*b*} Enantiomeric excesses were determined by HPLC on a chiral stationary phase. ^{*c*} This value is related to the conversion. ^{*d*} 1.5 equiv. of EtMgBr were used in this case. ^{*e*} 1.1 equiv. of BF₃·Et₂O and 1.2 equiv. of EtMgBr were used in this case. ^{*f*} 1.1 equiv. of BF₃·Et₂O and 2.0 equiv. of EtMgBr were used in this case. ^{*k*} 2.0 equiv. of EtMgBr were used in this case. ^{*h*} 2.0 equiv. of TMSCl and 1.5 equiv. of EtMgBr were used in this case.

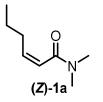
Table S2. Optimization data for the Cu- conjugate addition of EtMgBr and MeMgBr to enamide 1a

	1a				T A	TIOCI	. 61. 7	37: 11:0/34	50/Jb
E	Entry	[mmol]	[mol%]	RMgBr	LA	T[°C]	t[h]	Yield [%] ^a	ee [%] ^b
	1	0.2	-	EtMgBr	-	-78	3	0^c	-
	2	0.2	5 ^{<i>d</i>}	EtMgBr	-	-78	1	0^c	-
	3	0.2	5	EtMgBr	-	-78	1	0^c	-
	4	0.2	-	EtMgBr	-	0	5	97 ^c	-
	5	0.2	5^d	EtMgBr	-	0	5	42 ^c	-
	6	0.2	5	EtMgBr	-	0	5	61	rac.
	7	0.2	-	EtMgBr	-	-50	18	12 ^c	-
	8	0.2	5	EtMgBr	-	-50	18	20^c	5
	9	0.2	-	EtMgBr	BF ₃ ·Et ₂ O	-78	1	0^c	-
	10	0.2	-	EtMgBr	TMSOTf	-78	1	50 ^c	-
	11	0.2	5	EtMgBr	BF ₃ ·Et ₂ O	-78	18	73	97

12	0.2	5	EtMgBr	TMSOTf	-78	18	92	92
13	0.2	5	MeMgBr	BF ₃ ·Et ₂ O	-78	18	50	99
14	0.2	5	MeMgBr	TMSOTf	-78	18	77	99
15	0.2	5	EtMgBr	BF ₃ ·Et ₂ O	-78	18	69 ^e	96
16	0.2	100	EtMgBr	-	-30	18	4 ^{<i>c</i>,<i>f</i>}	64
17	0.2	5	MeMgBr	TMSOTf	-50	18	93	99
18	0.2	5	EtMgBr	TMSOTf	25	18	79	76
19	0.2	10	EtMgBr	TMSOTf	0	2	92	93
20	0.5	1	MeMgBr	TMSOTf	0	2	80	95
21	0.2	5	EtMgBr	BF ₃ ·Et ₂ O	-78	18	78 ^{<i>g</i>}	96
22	1.0	1	EtMgBr	BF ₃ ·Et ₂ O	-78	18	78	98
23	71.0	5	MeMgBr	TMSOTf	0	2	93	96
24	1.0	5	EtMgBr	BF ₃ ·Et ₂ O	-78	18	89	96

Reaction conditions: 0.2 mmol of 1a in 2 mL of DCM, CuBr SMe₂ (5 mol%), ligand L1 (6 mol%), LA (2.0 equiv.), RMgBr (3.0 M in Et₂O, 2.0 equiv.), T (°C), t (h). ^a Yield of isolated 2a. ^b Enantiomeric excesses were determined by HPLC on a chiral stationary phase. ^c This value is related to the conversion. ^d Without ligand L1. ^e CuBr SMe₂ (5 mol%) and ligand L1 (6 mol%) in 2 mL of DCM for 20 min. BF₃·Et₂O (2.0 equiv.) was added at -78 °C. After 20 min., 1a (0.2 mmol) was added at -78 °C. After 20 min., EtMgBr (3.0 M in Et₂O, 2.0 equiv.) was added. ^f With stoichiometric amount of Cu(I)/L1 complex. ^g With recovered Cu(I)/L1 complex.

5. (E)/(Z)-Isomerization experiments


A set of experiments was carried out for addition of EtMgBr and MeMgBr to (*E*)-1a and (*Z*)-1a in the presence of either BF₃·Et₂O or TMSOTf at -78 °C (Table S3). The (*Z*)/(*E*) ratio of 1a in the resulting crude mixture was determined by ¹H NMR. No isomerization product to the more stable (*E*)-1a was obtained using TMSOTf (entries 3, 9, 11, 13, 16 and 20) or with a little conversion up to 2.5% in the presence of BF₃·Et₂O (entries 2, 8, 10, 12, 14 and 18). CA products with opposite absolute configuration were obtained from (*E*)-1a and (*Z*)-1a using chiral catalyst of the same configuration.

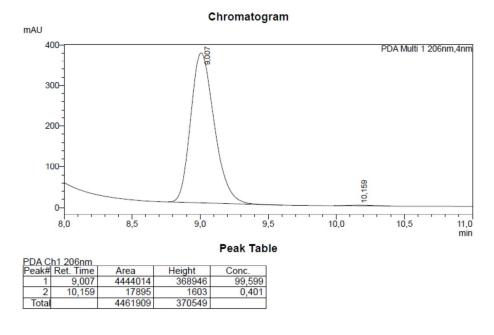
		CuBr	(2.0 equiv.) SMe ₂ / L1 2.0 equiv.)			\sim	° ↓
(✓ ¹ N ² Z)-1a	N √(s) N I DCM (0.1 M) I a -78 °C 2a R=Et 3h R=Me 3h R=Me		(<i>E</i>)-1a			
Entry	1a	L1/Cu [mol%]	LA	RMgBr	$(Z):(E):2a^{a}$ $(Z):(E):3h^{a}$	ee [%] ^b	Conf 2a or 3h
1	Z	5	-	-	100:0:-	-	-
2	Ζ	-	BF ₃ ·Et ₂ O	-	100:0:-	-	-
3	Ζ	-	TMSOTf	-	100:0:-	-	-
4	Z	-	-	MeMgBr	100:0:0	-	-
5	Z	-	-	EtMgBr	100:0:0	-	-
6	Z	5	-	MeMgBr	100:0:0	-	-
7	Ζ	5	-	EtMgBr	100:0:0	-	-
8	Ζ	-	BF ₃ ·Et ₂ O	MeMgBr	100:0:0	-	-
9	Z	-	TMSOTf	MeMgBr	100:0:0	-	-
10	Z	-	BF ₃ ·Et ₂ O	EtMgBr	100:0:0	-	-
11	Z	-	TMSOTf	EtMgBr	98:0:2	-	-
12	Z	5	BF ₃ ·Et ₂ O	-	97.5:2.5:-	-	-
13	Z	5	TMSOTf	-	100:0:-	-	-
14	Z	5	BF ₃ ·Et ₂ O	MeMgBr	75.8:1.6:22.6	99	(<i>S</i>)-3h
15	E^{c}	5	BF ₃ ·Et ₂ O	MeMgBr	-:35:65	99	(<i>R</i>)-3h
16	Z	5	TMSOTf	MeMgBr	93:0:7	46	(<i>S</i>)-3h
17	E^{c}	5	TMSOTf	MeMgBr	-:8:92	99	(<i>R</i>)-3h
18	Z	5	BF ₃ ·Et ₂ O	EtMgBr	37.4:1.6:61	96	(<i>S</i>)-2a
19	E^{c}	5	BF ₃ ·Et ₂ O	EtMgBr	-:6:94	97	(<i>R</i>)-2a
20	Z	5	TMSOTf	EtMgBr	70:0:30	33	(<i>S</i>)-2a
21	E^{c}	5	TMSOTf	EtMgBr	-:6:94	92	(<i>R</i>)-2a

Table S3. Cu- CA of EtMgBr and MeMgBr to (E)- or (Z)-1a.

Reaction conditions: 0.16 mmol of (*Z*)-1a in 1.6 mL of DCM, CuBrSMe₂ (5 mol%), ligand L1 (6 mol%), LA (2.0 equiv.), RMgBr (3.0 M in Et₂O, 2.0 equiv.), -78 °C. ^{*a*} The ratio between (*Z*)-1a:(*E*)-1a:2a or (*Z*)-1a:(*E*)-1a:3a was determined by ¹H-NMR. ^{*b*} Enantiomeric excesses were determined by HPLC on a chiral stationary phase. ^{*c*} 0.2 mmol of (*E*)-1a were used in this case.

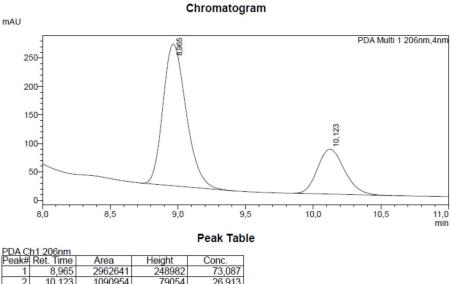
(Z)-N,N-Dimethylhex-2-enamide (1a)

To a solution of *N*,*N*-dimethylacetamide (465 μ L, 5 mmol) in dry THF (15 mL) cooled to -78 °C, a 1.0 M solution of LDA in THF (4.5 mmol, 4.5 mL) was slowly added and the mixture was stirred for 30 minutes at -78 °C. Then, TMSCl (571 μ L, 4.5 mmol) was added and the mixture was stirred for 1 h at 0 °C and, afterwards, cooled down again to -78 °C. A 1.0 M solution of LDA in THF (4.5 mmol, 4.5 mL) was slowly added and the reaction mixture was stirred for 30 minutes at -78 °C. Finally, butyraldehyde (405 μ L, 4.5 mmol) was added and the mixture was stirred overnight at -78 °C. The reaction was quenched by addition of MeOH (1.0 mL) and 1.0 M HCl aqueous solution (10 mL), stirred at room temperature for 45 minutes and extracted with Et₂O (15 mL × 3). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (SiO₂, pentane:Et₂O 1:1) to afford product **1a** as a colorless oil [39% yield].

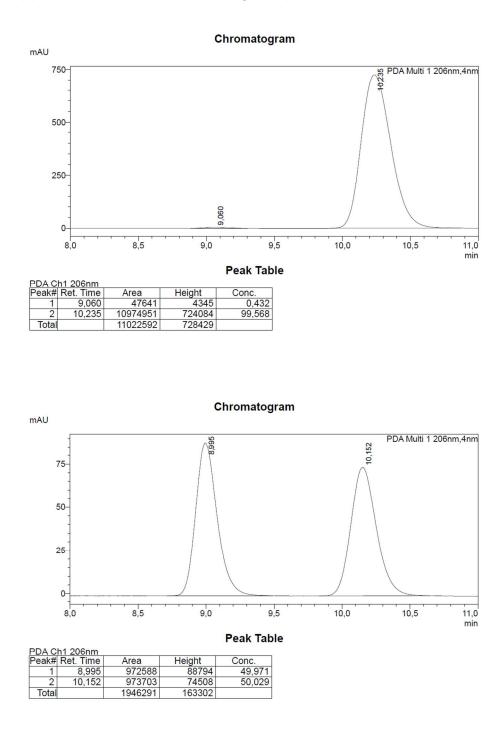

¹H NMR (CDCl₃, 400 MHz): δ 5.95 (dt, *J* = 11.7, 1.3 Hz, 1H, C*H*=CH), 5.89 (dt, *J* = 11.7, 7.3 Hz, 1H, CH=C*H*), 3.00 (s, 6H, N(C*H*₃)₂), 2.31 (dq, *J* = 7.3, 1.3 Hz, 2H, C*H*₂CH=CH), 1.44 (sext (tq), *J* = 7.3 Hz, 2H, CH₂CH₂CH₃), 0.92 (t, *J* = 7.3 Hz, 3H,CH₂CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ 168.0, 141.0, 122.0, 37.6, 35.1, 31.3, 22.3, 13.8.

Chiral HPLCs of the products from (Z)/(E) isomerization experiments of (Z)-1a

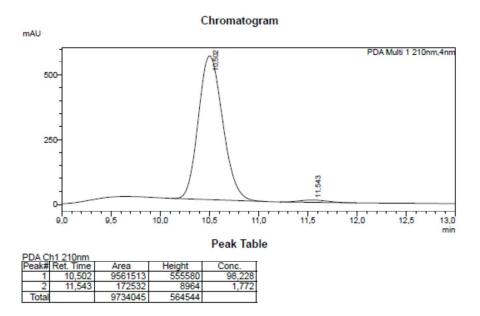

With (Z)-1a, catalyst, LA and MeMgBr:

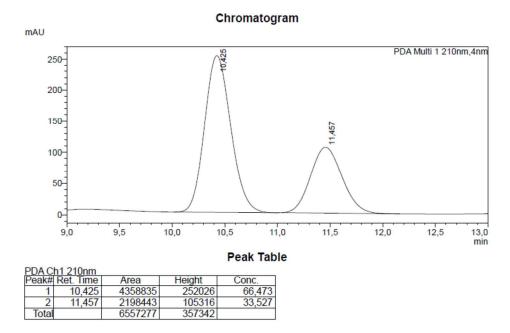
HPLC: Chiracel-OBH, n-heptane/i-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 206 nm. Retention time (min): 9.0 (major) and 10.1 (minor).


With (Z)-1a, L1-CuBr, BF₃·Et₂O and MeMgBr: (S)-3h [99% ee]. *a*)

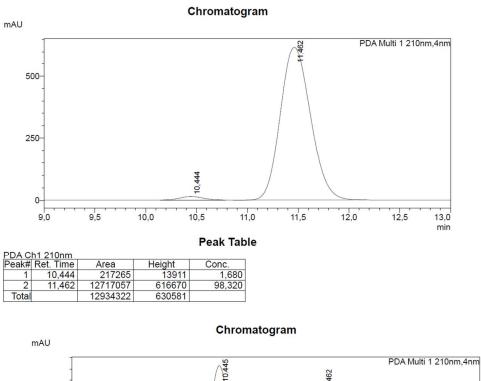
b) With (Z)-1a, L1-CuBr, TMSOTf and MeMgBr: (S)-3h [46% ee].

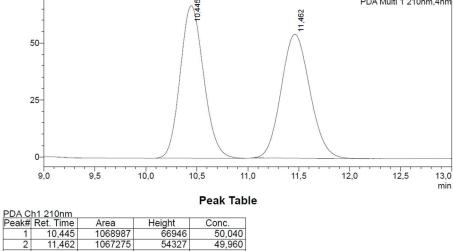
Area 2962641 1090954 Conc. 73,087 26,913 79054 2 10,123 Total 4053595 328036


c) With (E)-1a, L1-CuBr, BF₃·Et₂O and MeMgBr: (R)-3h [99% ee].


With (*Z*)-1a, catalyst, LA and EtMgBr:

HPLC: Chiracel-OBH, *n*-heptane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 210 nm. Retention time (min): 10.5 (major) and 11.5 (minor).


a) With (Z)-1a, L1-CuBr, BF_3 · Et_2O and EtMgBr: (S)-2a [96% ee].



b) With (Z)-1a, catalyst, TMSOTf and EtMgBr: (S)-2a [33% ee].

With (*E*)-1*a*, *L*1-*CuBr*, *BF*₃·*Et*₂*O* and *EtMgBr*: (*R*)-2*a* [97% ee]. c)

49,960

2

Total

2136262

121273

ς	1	2
5	4	

6. NMR spectroscopy based mechanistic studies

Transmetallated species 8

Transmetallated species **8**, which initiates the catalytic cycle (see Figure 3, main manuscript), were prepared by addition of MeMgBr to L1-CuBr complex and analyzed by ¹H and ³¹P NMR spectroscopy. A 3 M MeMgBr solution in Et₂O (20 μ L, 0.06 mmol) was added to a solution of L1-CuBr complex (11 mg, 0.015 mmol) in CD₂Cl₂ (0.6 mL) in a dry NMR tube at -78 °C and the resulting mixture was immediately measured by NMR spectroscopy at -80 °C. Two different transmetallated species (**A** and **B**, Figures S1 and S2) were detected. Both species present methyl moieties coupled with both phosphines with the same pattern in the ¹H-³¹P HMBC spectrum (Figure S3). For both species the integration indicates that only 1 methyl group is bound to the copper (based on the 1:1 ratio measured by comparison of the Me signal with signals from the ferrocene). For these reasons both the species are assumed to be the two possible diastereoisomers of the tetrahedral alkylcuprate **10**¹ (species **B**: -0.28 ppm, dd, Cu*Me* in ¹H NMR; 14.8 (d, *J*=155.5 Hz), -18.0 (d, *J*=155.5 Hz) in ³¹P NMR and species **A**: -0.37 ppm, dd, Cu*Me* in ¹H NMR; 7.5 (d, *J*=144.3 Hz), -26.4 (d, *J*=144.3 Hz) in ³¹P NMR.

¹ The transmetallated species 8 was also formed in our previous work (see ref. 22 in the main manuscript). At that time our understanding was that species A and B are structurally different. However, based on the additional data in this work we have redefined the structure of species B and propose that both species A and B are diastereoisomers of the transmetallated species B. Their catalytic activity is identical as well.

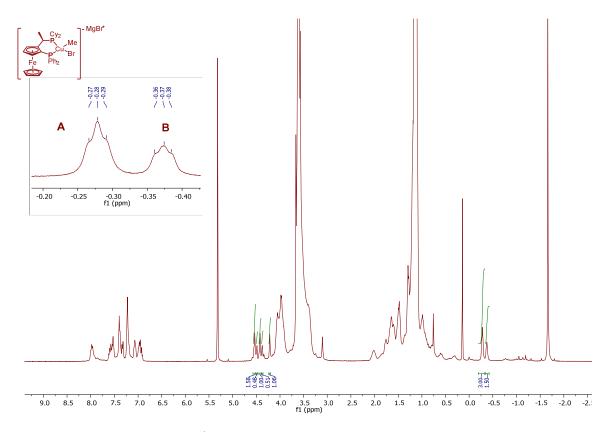


Figure S1: ¹H NMR spectrum of the transmetallated species 8.

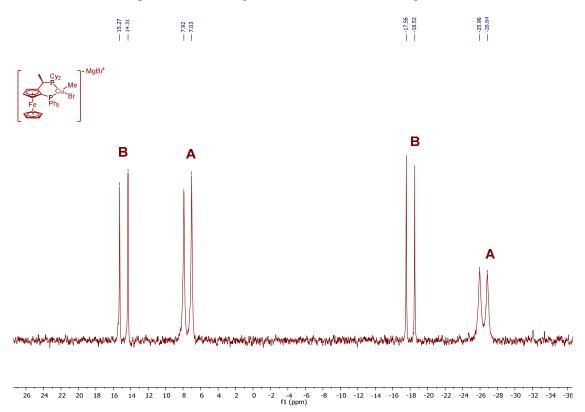
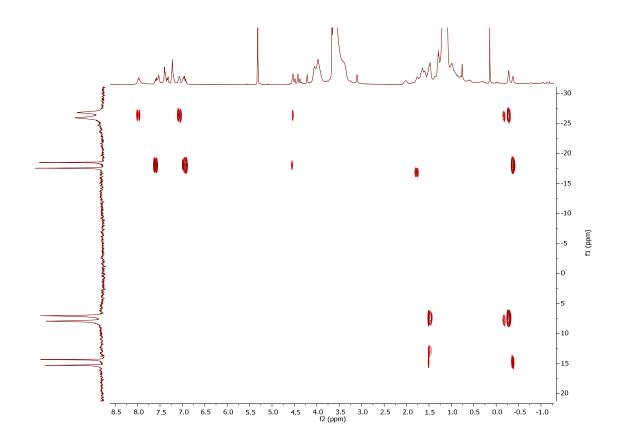



Figure S2: ³¹P NMR spectrum of the transmetallated species 8.

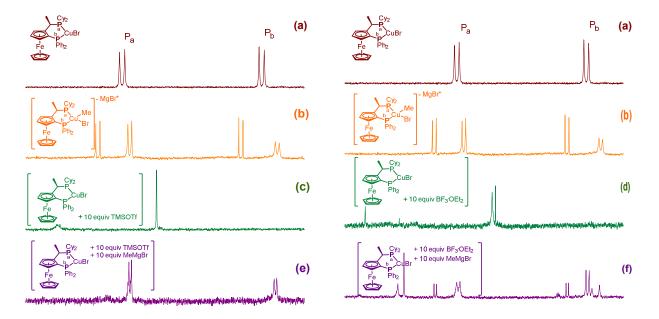


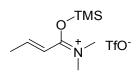
Figure S3: ¹H-³¹P HMBC spectrum of the transmetallated species **8**. Similar pattern of coupling with the phosphines is observed for both species.

Stability of L1-CuBr and transmetallated species 8 towards Lewis acids

With the aim to investigate the interactions between Lewis acids, L1-CuBr and transmetalated species **8** a set of experiments was carried out. L1-CuBr complex (5.9 mg, 0.08 mmol) was dissolved in CD₂Cl₂ (0.6 mL) in a dry NMR tube under a N₂ atmosphere and cooled down to -78 °C. TMSOTf (15 µL, 0.08 mmol) or BF₃·Et₂O (10 µL, 0.08 mmol) was added to the complex and the resulting mixture was measured by ¹H and ³¹P NMR spectroscopy at -60 °C. L1-CuBr complex (doublets, see top panels in Fig. S4) disappeared in both cases and unidentified phosphine species were formed: (singlets at 27.1 and 4.4 ppm; with TMSOTf left column, panel (c) of Fig. S4) , and singlets at 31.9, 0.5 and -0.3 ppm; with BF₃·Et₂O (right column, panel (d) of ,Fig. S4) spectrum **D**, figure S4). Observing phosphorus signals as singlets instead of

the initial doublets indicates detachment of, at least, one of the phosphine moieties of the L1-CuBr complex. Formation of new L1-CuBr complex with monodentate instead of bidentate coordination cannot be excluded either. After cooling down again to -78 °C, a 3 M MeMgBr solution in Et₂O (67 µL, 0.2 mmol) was added and the mixture was measured by ¹H and ³¹P NMR spectra NMR spectroscopy at -60 °C. Importantly the transmetallated L1-CuBr species **8** was observed in both cases, , although in the case of TMSOTf only isomer **A** (left column, panel (e) of Fig. S4) and in the case of BF₃·Et₂O only isomer **B** among other signals (right column, panel (f) of Fig. S4).

Figure S4: ³¹P NMR spectra of combinations of L1-CuBr, MeMgBr and LA. Left column: from top to bottom the panels show the spectra of (a) the L1-CuBr complex, (b) the transmetallated species **8** (with **A** and **B** diastereoisomers), (c) L1-CuBr after adding 10 equiv. of TMSOTf, (e) the result of adding 10 equiv. of MeMgBr to (c) leading to the formation of species **A**. Right column: same as left column, but using BF₃·Et₂O instead of TMSOTf. (a) the L1-CuBr complex, (b) the transmetallated species **8** (with **A** and **B** diastereoisomers), (d) L1-CuBr after adding 10 equiv. of BF₃·Et₂O, (f) the result of adding 10 equiv. of MeMgBr to (d) leading to the formation of species **A** and L1-CuBr together with decomposed complex peaks from (d).


Similarly, the addition of TMSOTf or $BF_3 \cdot Et_2O$ to the transmetallated species **8** (panels (b) in Fig. S4) does not change the structure of the complex and the same NMR spectra were obtained (not depicted).

Lewis acid-enamide binding

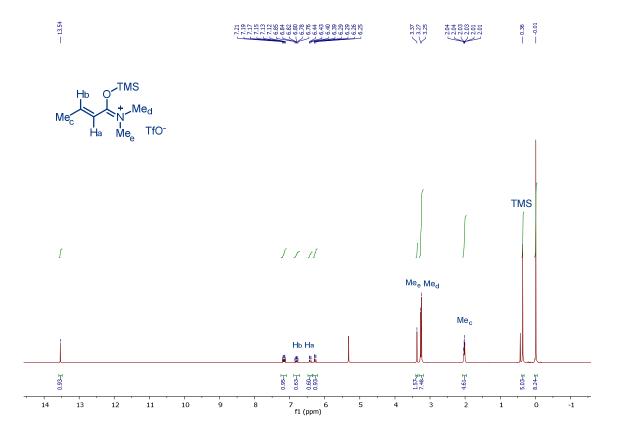
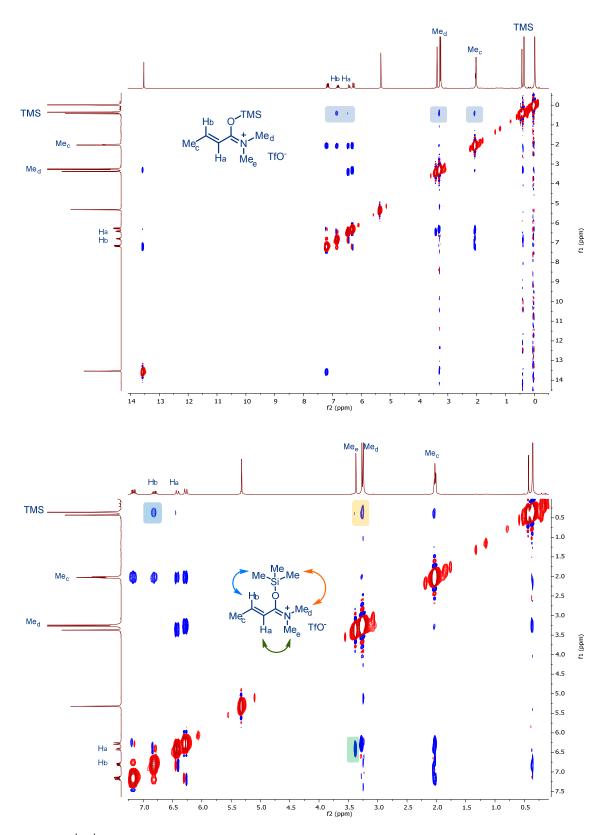
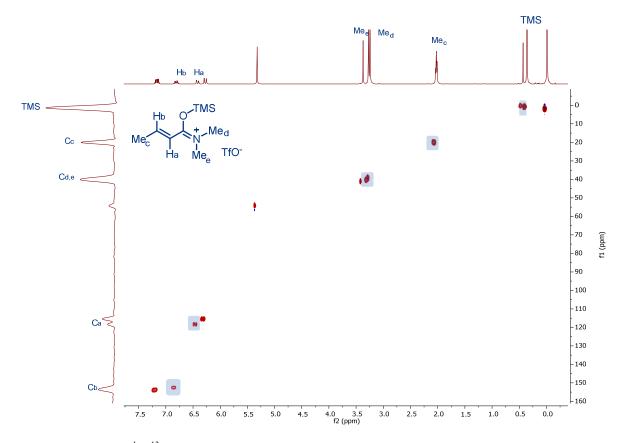
In order to determine the activation mode of enamide **1b** in the presence of a Lewis acid , a set of experiments was carried out. Complexes of enamide/TMSOTf, enamide/BF₃·Et₂O and enamide/MeMgBr were prepared separately and analysed by NMR spectroscopy.

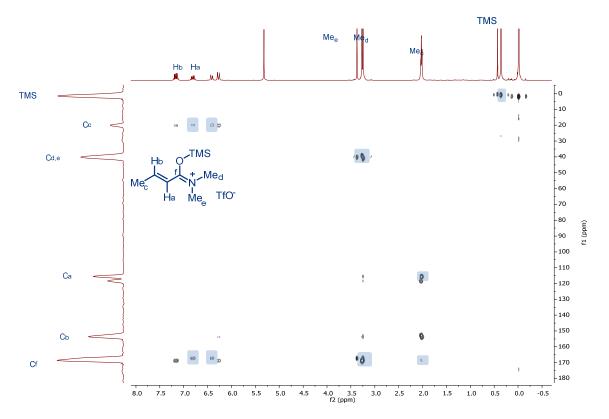
TMS-amide complex

TMSOTf (16 μ L, 0.088 mmol) was added to a solution of enamide **1b** (10 mg, 0.088 mmol) in CD₂Cl₂ (0.6 mL) in a dry NMR tube at -78 °C under N₂ atmosphere, leading to instantaneous formation of a new species which was immediately measured by NMR spectroscopy at -80 °C. Two enamide complexes were observed and characterized as TMS-enamide complex (assigned in Figure S5) and protonated enamide.² The formation of an iminium-type complex, placing the silyl moiety on the oxygen atom, was suggested by the deshielded NMe₂ groups in the new iminum moiety (up to 0.5 ppm downfield) and confirmed by a ¹H-¹H ROESY experiment (Figure S6) NMR spectroscopy also confirmed s-*trans* conformation. Full characterization was carried out by ¹H-¹³C-HSQCED (Figure S7), ¹H-¹³C-HMBC (Figure S8) and ¹H-²⁹Si-HMBC (figure S9).

¹H NMR (CD₂Cl₂, 400 MHz):δ 6.81 (dq, J = 15.5, 6.9 Hz, 1H), 6.41 (dd, J = 15.5, 1.5 Hz, 1H), 3.37 (s, 3H), 3.25 (s, 3H), 2.05-2.00 (m, 3H), 0.36 (s, 9H) ¹³C NMR (CD₂Cl₂, 100 MHz): δ 167.2, 152.5, 117.7, 40.4, 38.8, 19.4, 0.2. ²⁹Si NMR (CD₂Cl₂, 79.5 MHz): δ 38.4. ¹⁹F NMR (CD₂Cl₂, 376.6 MHz): δ -79.17.

² Water derived from the enamide substrates partially hydrolizes TMSOTf resulting in formation of TfOH, which can protonate the enamide


Figure S5: ¹H NMR spectrum of the equimolar mixture of enamide 1b and TMSOTf.

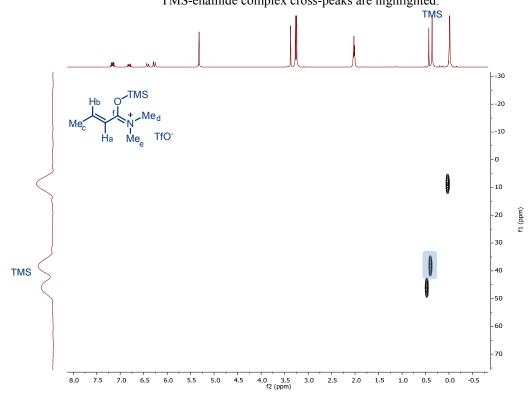

Figure S6: ¹H-¹H-ROESY spectrum of the equimolar mixture of enamide **1b** and TMSOTf and expansion. Crosspeaks between the TMS moiety and both Hb (blue) and one of the NMe groups (orange) and between the other NMe group and Ha (green) confirmed the O-silylation and the s-*trans* conformation.

Figure S7: ¹H-¹³C-HSQCED spectrum of the equimolar mixture of enamide **1b** and TMSOTf. TMS-enamide complex cross-peaks are highlighted.

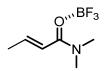


Figure S8: ¹H-¹³C-HMBC spectrum of the equimolar mixture of enamide **1b** and TMSOTf. TMS-enamide complex cross-peaks are highlighted.

Figure S9: ¹H-²⁹Si-HMBC spectrum of the equimolar mixture of enamide **1b** and TMSOTf. TMS-enamide complex cross-peaks are highlighted.

BF₃·Et₂O (10 μ L, 0.08 mmol) was added to a solution of amide **1b** (9 mg, 0.08 mmol) in CD₂Cl₂ (0.6 mL) in a dry NMR tube at -78 °C. Instantaneous formation of a new species at -80 °C was measured by NMR spectroscopy. In analogy with the experiment above two new enamide species were detected using ¹H NMR (Fig. S10).³ Formation of an enamide-BF₃ complex was confirmed by ¹H-¹⁹F-HOESY spectra (Figure S11) and fully characterized by ¹¹B-NMR (Figure S12), ¹⁹F-NMR (Figure S13), ¹H-¹³C-HSQCED (Figure S14), and ¹H-¹³C-HMBC (Figure S15).

¹H NMR (CD₂Cl₂, 400 MHz):δ 13.55 (s, 1H), 6.78 (dq, J = 13.6, 6.8 Hz, 1H), 6.23 (d, J = 15.9, 1H), 3.30 (s, 3H), 3.22 (s, 3H), 2.00 (d, J = 6.8 Hz, 3H) (Major species). ¹³C NMR (CD₂Cl₂, 100 MHz): δ 169.7, 149.0, 117.6, 41.0, 38.7, 19.9, 14.6 (Major species). ¹¹B NMR (CD₂Cl₂, 100 MHz): δ -0.26, -0.74, -1.22, -1.28.

¹⁹F NMR (CD₂Cl₂, 100 MHz): δ -146.82 (¹⁹F-¹⁰B), -146.88 (¹⁹F-¹¹B).

³ A few other acidic proton peaks were detected as well due to the water present in the substrate.

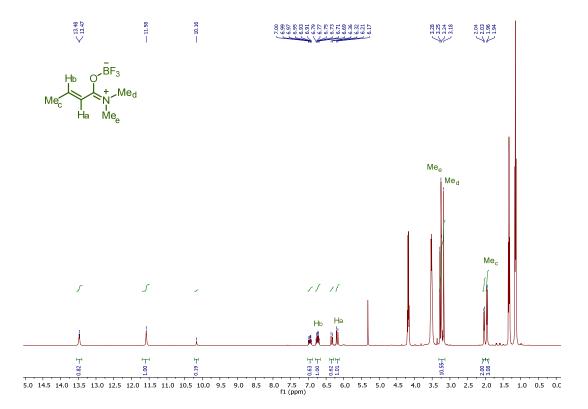
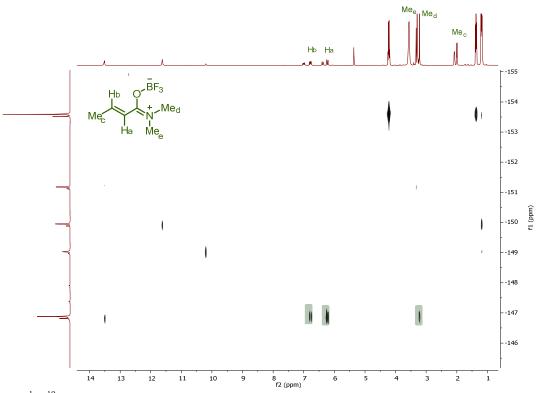



Figure S10: ¹H NMR spectrum of the equimolar mixture of enamide 1b and BF₃·Et₂O.

Figure S11: ¹H-¹⁹F-HOESY spectrum of the equimolar mixture of enamide **1b** and BF₃·Et₂O. Cross-peak with the enamide moieties (green) and ¹⁹F signal at -147 ppm confirmed the formation of a complex. BF₃-enamide complex cross-peaks are highlighted.

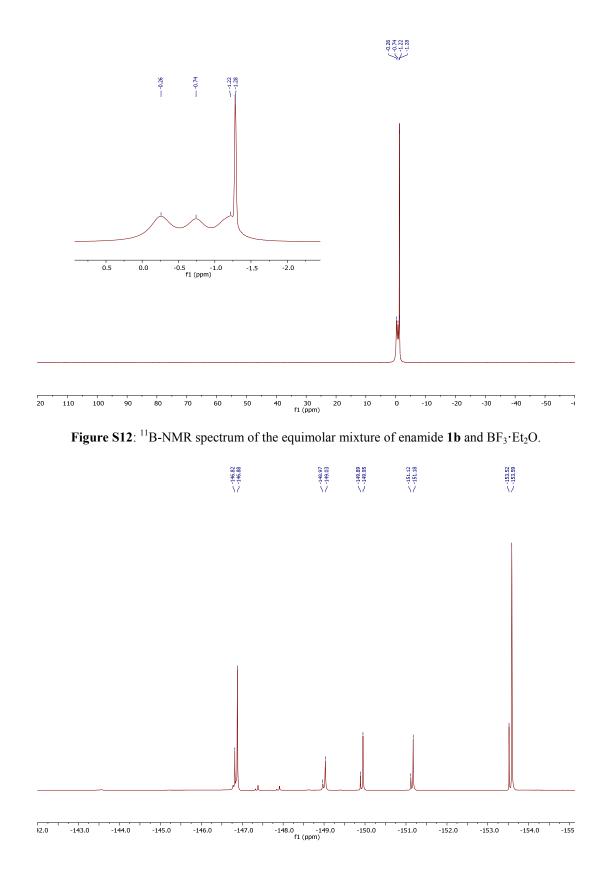
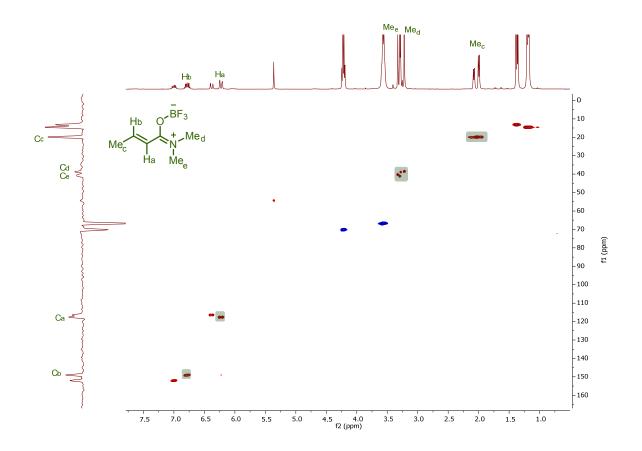
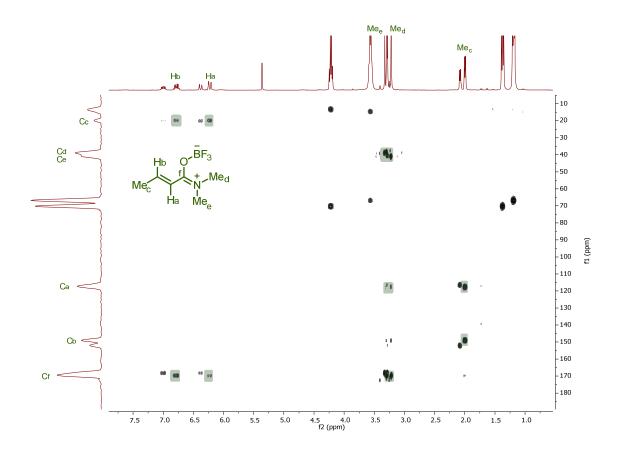




Figure S13: ¹⁹F-NMR spectrum of the equimolar mixture of enamide 1b and BF₃·Et₂O.

Figure S14: ¹H-¹³C-HSQCED spectrum of the equimolar mixture of enamide **1b** and BF₃·Et₂O. BF₃-enamide complex cross-peaks are highlighted.

Figure S15: ¹H-¹³C-HMBC spectrum of the equimolar mixture of enamide **1b** and $BF_3 \cdot Et_2O$. BF₃-enamide complex cross-peaks are highlighted.

MeMgBr-amide complex

A 3 M MeMgBr solution in Et_2O (54 µL, 0.2 mmol) was added to a solution of amide **1b** (6 mg, 0.05 mmol) in CD_2Cl_2 (0.6 mL) in a dry NMR tube at -78 °C Instantaneous formation of a new species at -80 °C attributed to MeMgBr/enamide complex was measured by NMR spectroscopy. Only this species was observed in this experiment.

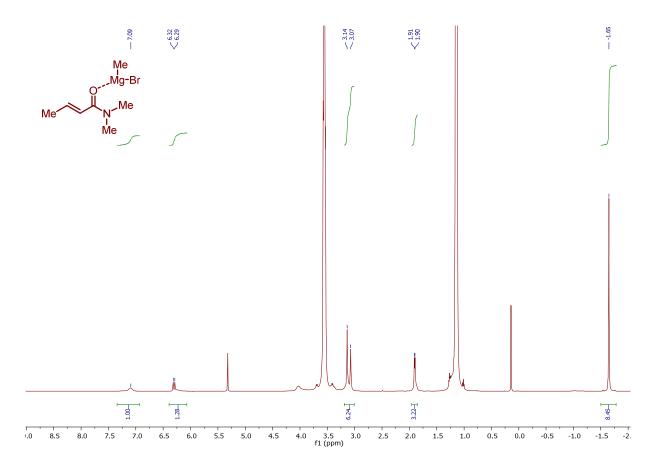
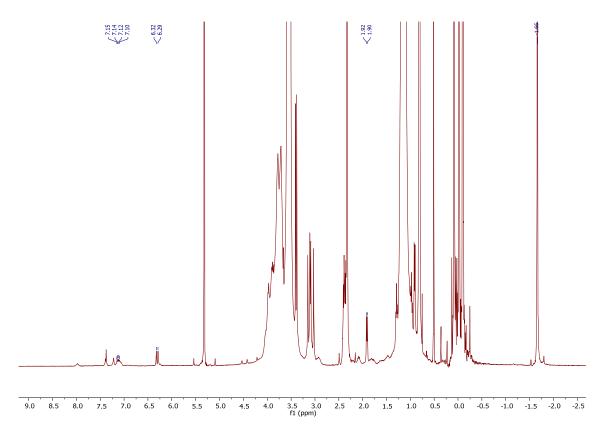



Figure S16: ¹H NMR spectrum of the mixture of enamide 1b and MeMgBr.

Reaction media before the completion of the ACA reaction

In order to determine if any of the species discussed above are present in the reaction media a set of reactions was carried out in the presence of TMSOTf or BF₃·Et₂O in CD₂Cl₂ either directly in the NMR tubes or in dry Schlenk flasks at -78 °C and then measured at -80 °C (Figure S17, only the reaction media in the presence of TMSOTf are shown). In a flame-dried Schlenk tube equipped with septum and magnetic stirring bar, CuBr-(*R*,*S*_{Fe})-L1 complex (5.53 mg, 0.0075 mmol, 5 mol%) and amide 1b (17 mg, 0.15 mmol) were dissolved in CD₂Cl₂ (1.5 mL) and stirred under nitrogen atmosphere. After stirring at room temperature for 5 minutes, the reaction mixture was cooled to -60 °C and TMSOTf (52 µL, 0.30 mmol) was added. After 15 minutes, MeMgBr (100 µL, 0.30 mmol, 3.0 M in Et₂O) was added. Then the mixture was transferred to a NMR tube cooled to -78 °C and then measured by NMR spectroscopy at -80 °C.

Figure S17: ¹H NMR spectrum of the reaction media in the reaction of enamide **1b** with MeMgBr in the presence of **L1-**CuBr complex and TMSOTf in CD₂Cl₂.

Regardless of the LA used, the only species observed in the reaction media correspondeds to the complex derived from the interaction between the enamide and MeMgBr (Figure 3f in the main text). The same complex was also detected when MeMgBr was added to the preformed TMSOTf-enamide or $BF_3 \cdot Et_2O$ -enamide complexes preformed in the absence of other reaction intermediates. These results suggest that MeMgBr replaces the Lewis acid and forms a more stable complex with the enamide.

Transmetallation of the Lewis acid by MeMgBr

Transmetallation of the Lewis acid by MeMgBr was also studied by NMR spectroscopy. An equimolar mixture of MeMgBr solution in Et₂O (33 μ L, 0.1 mmol) and BF₃·Et₂O (12 μ L, 0.1 mmol) in CD₂Cl₂ (0.6 mL) was prepared in a dry NMR tube under N₂ atmosphere at -78 °C and measured by NMR

spectroscopy at -80 °C. Formation of Me₄BMgBr (-0.74 ppm, q, *J*=3.7 Hz in ¹H NMR, -19.8 ppm, m, *J*=3.7 Hz in ¹¹B NMR) was immediately detected at -80 °C (Figures S18 and S19).

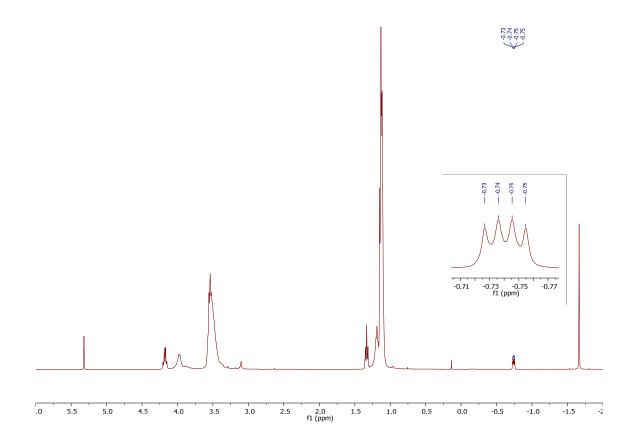


Figure S18: ¹H NMR spectrum of the equimolar mixture of MeMgBr and BF₃·Et₂O in CD₂Cl₂.

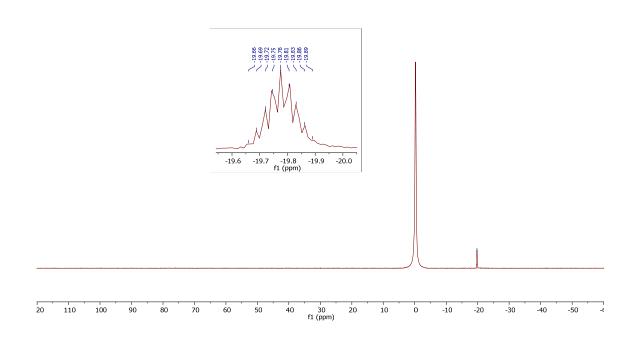
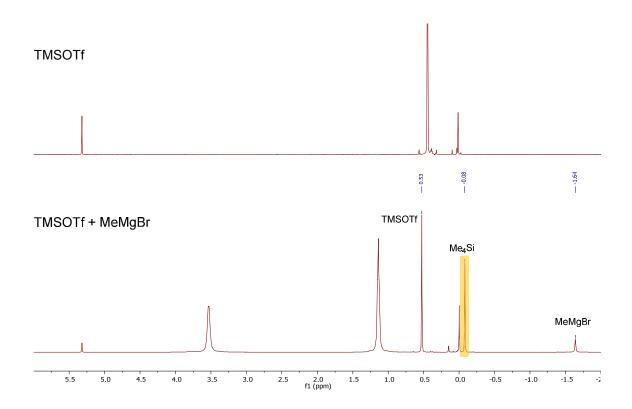
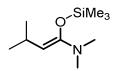



Figure S19: ¹¹B NMR spectrum of the equimolar mixture of MeMgBr and BF₃·Et₂O in CD₂Cl₂.

Likewise, formation of tetramethylsilane was detected by ¹H NMR at -60 °C when MeMgBr (solution 3 M in Et₂O, 33 µL, 0.1 mmol) was added to a solution containing TMSOTf (18 µL, 0.1 mmol) in CD₂Cl₂ (0.6 mL). Formation of Me₄Si (-0.08 ppm in ¹H NMR) was immediately detected at -60 °C (figure S20).

Figure S20: ¹H NMR spectrum of TMSOTf (top) and the equimolar mixture of MeMgBr and TMSOTf in CD₂Cl₂ (bottom). Appearance of a new peak of Me₄Si was immediately detected (highlighted).


Nature of enolates formed as an end product copper ACA reactions

The structure of the final product of the reaction, namely the enolates, was determined by analysis of the reaction crude before quench in CD_2Cl_2 .

Catalytic ACA in the presence of TMSOTf (silyl enolate formation)

In a flame-dried Schlenk tube equipped with septum and magnetic stirring bar, CuBr-(R, S_{Fe})-L1 complex (5.53 mg, 0.0075 mmol, 5 mol%) and amide 1b (17 mg, 0.15 mmol) were dissolved in CD₂Cl₂ (1.5 mL) and stirred under nitrogen atmosphere. After stirring at room temperature for 5 min., the reaction mixture was cooled to -60 °C and TMSOTf (52 µL, 0.30 mmol) was added. After 15 min., MeMgBr (100 µL, 0.30 mmol, 3.0 M in Et₂O) was added. After stirring at -60 °C for 18 h, the mixture was transferred to a

NMR tube followed by measurement at -80 °C. The final product in the reaction mixture was identified as a TMS-enolate (Figure S21), based on a TOCSY experiment. (Z)-configuration was assigned to the enolate, based on series of 1D ROESY experiments (Figure S23). Full characterization by ¹H-¹³C-HMBC (Figure S25) and ¹H-²⁹Si-HMBC (figure S26) was carried out.

¹H NMR (CD₂Cl₂, 400 MHz):δ 3.39 (d, *J* = 9.4 Hz, 1H), 2.42-2.32 (m, 1H), 2.33 (s, 6H), 0.81 (d, *J* = 6.7 Hz, 6H), 0.08 (s, 9H).

¹³C NMR (CD₂Cl₂, 100 MHz): δ 152.1, 95.7, 40.4, 25.3, 24.5, -0.4.

²⁹Si NMR (CD₂Cl₂, 79.5 MHz): δ 19.3.

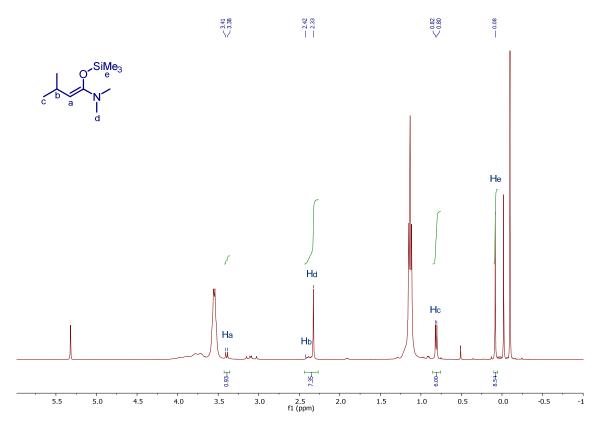


Figure S21: ¹H NMR spectrum of the crude of the reaction in the presence of TMSOTf.

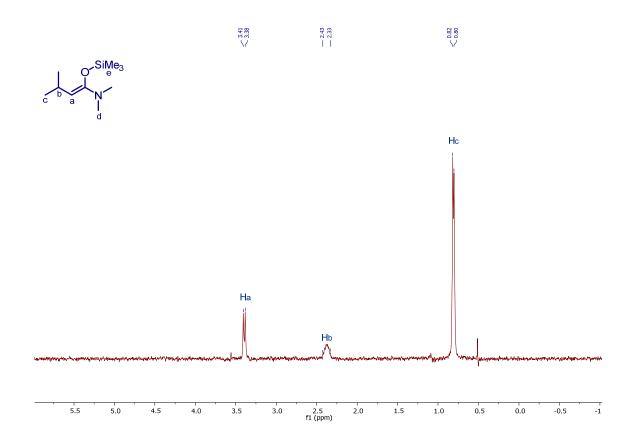
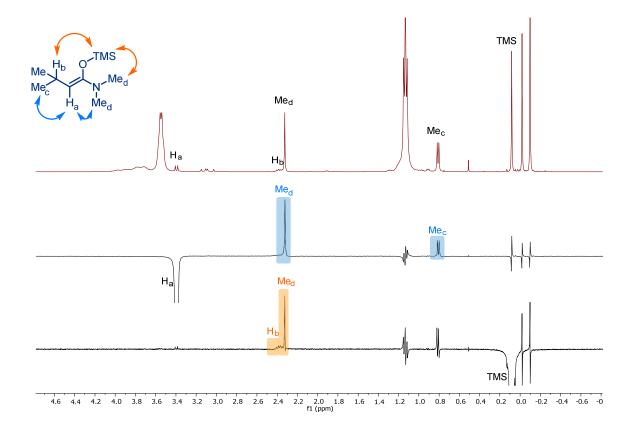



Figure S22: TOCSY experiment (irradiating nucleus Ha) of the crude of the reaction in the presence of TMSOTf.

Figure S23: 1D ROESY experiments of the crude of the reaction in the presence of TMSOTf. Z-enolate configuration was determined by observation of NOE between the TMS moiety and Hb (orange) and between Ha and NMe moiety and *gem*-dimethyl moiety (Me c, blue).

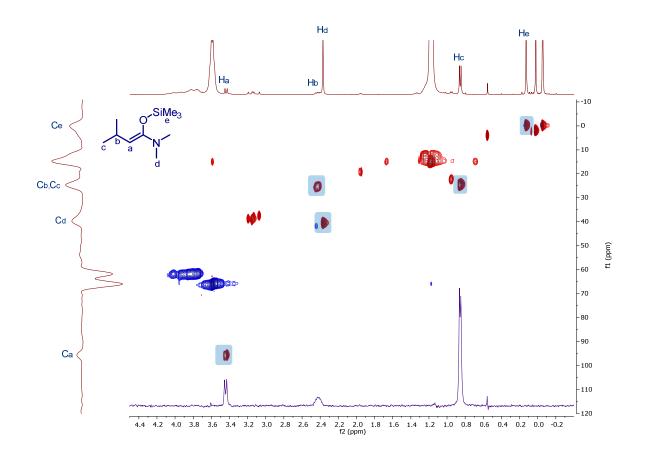
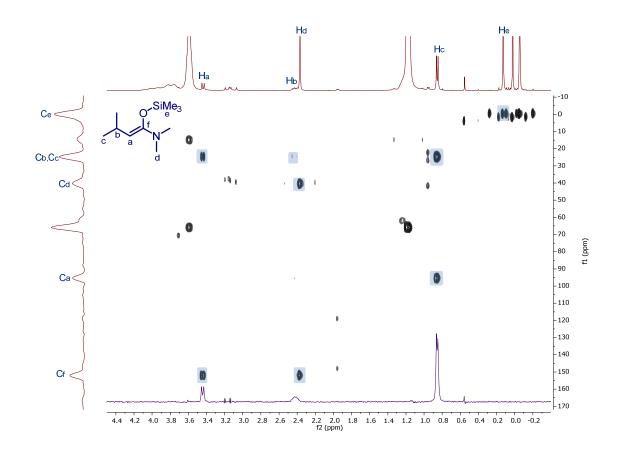
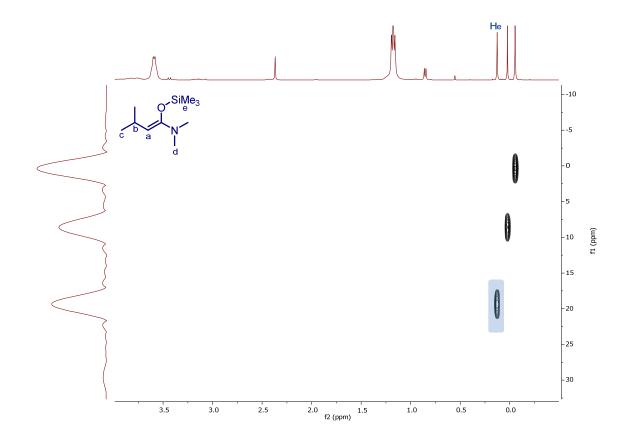




Figure S24: ¹H-¹³C-HSQCED spectrum of the crude of the reaction in the presence of TMSOTf. TMS-enolate peaks are highlighted.

Figure S25: ¹H-¹³C-HMBC spectrum of the crude of the reaction in the presence of TMSOTf. TMS-enolate peaks are highlighted.

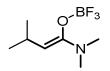
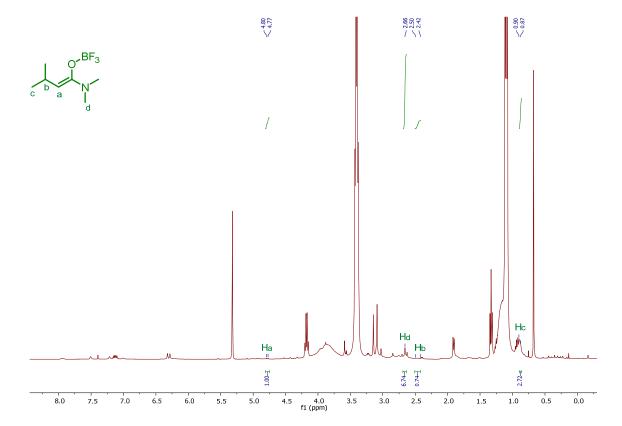


Figure S26: ¹H-²⁹Si-HMBC spectrum of the crude of the reaction in the presence of TMSOTf. TMS-enolate peaks are highlighted.

Catalytic ACA in the presence of BF_3 ·Et₂O (boron enolate formation)


In a flame-dried Schlenk tube equipped with septum and magnetic stirring bar, CuBr-(R, S_{Fe})-L1 complex (5.53 mg, 0.0075 mmol, 5 mol%) and amide 1b (17 mg, 0.15 mmol) were dissolved in CD₂Cl₂ (1.5 mL) and stirred under nitrogen atmosphere. After stirring at room temperature for 5 min., the reaction mixture was cooled to -60 °C and BF₃·Et₂O (37 µL, 0.30 mmol) was added. After 15 min., MeMgBr (100 µL, 0.30 mmol, 3.0 M in Et₂O) was added. After stirring at -60 °C for 18 h, the mixture was transferred to a NMR tube, cooled and measured by NMR spectroscopy at -80 °C. A BF₃-enolate structure was assigned based on ¹H NMR (Figure S27). Enolate proton (Ha) was detected in the crude and with a TOCSY

experiment (Figure S28) Ha, Hb, Hc protons were assigned. Full characterization of the enolate was done by ¹H-¹³C-HSQCED (Figure S29) and ¹H-¹³C-HMBC (Figure S30) experiments.

¹H NMR (CD₂Cl₂, 400 MHz): δ 4.78 (d, *J* = 10.3 Hz, 1H), 2.66 (s, 6H), 2.50-2.42 (m, 1H), 0.89 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (CD₂Cl₂, 100 MHz): δ 132.7, 111.6, 44.5, 25.5, 22.7.

Figure S27: ¹H NMR spectrum of the crude of the reaction in the presence of $BF_3 \cdot Et_2O$.

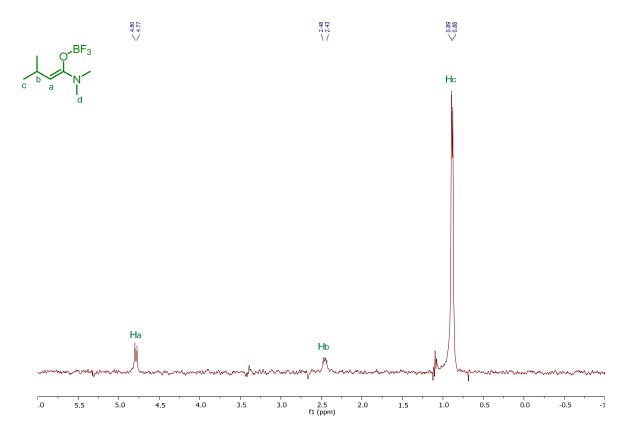


Figure S28: TOCSY experiment (irradiating nucleus Ha) of the crude of the reaction in the presence of BF₃·Et₂O.

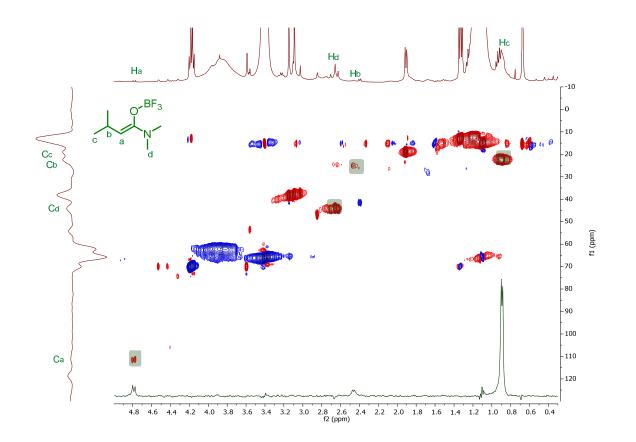
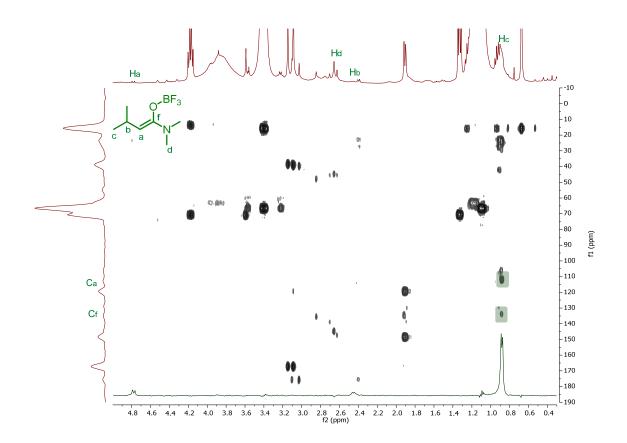



Figure S29: ${}^{1}H-{}^{13}C-HSQCED$ spectrum of the crude of the reaction in the presence of $BF_3 \cdot Et_2O$. BF_3 -enolate peaks are highlighted.

Figure S30: ${}^{1}\text{H}-{}^{13}\text{C}-\text{HMBC}$ spectrum of the crude of the reaction in the presence of BF₃·Et₂O. BF₃-enolate peaks are highlighted.

However, the configuration of the enolate could not be determined by HOESY experiments since no clear cross-peak ¹H-¹⁹F wase observed. To prove that the enolate we observed in this case is not a magnesium enolate we have prepared Mg-enolate independently in the absence of LA and fully characterize it by NMR spectroscopy.

CA in the absence of Lewis acid (magnesium enolate formation)

A 3 M MeMgBr solution in Et₂O (67 μ L, 0.2 mmol) was added to a solution of amide **1a** (12 mg, 0.10 mmol) in CD₂Cl₂ (0.6 mL) in a dry NMR tube under N₂ atmosphere. After 18 h the mixture was measured by NMR spectroscopy at -80 °C. A Mg-enolate structure was assigned based on ¹H NMR (Figure S31). Enolate proton (Ha) was detected in the crude and a TOCSY experiment (figure S32) was carried out to

assign the spin system (Ha, Hb, Hc). Full characterization by ¹H-¹³C-HSQCED (Figure S33) and ¹H-¹³C-HMBC (Figure S34) was carried out.

o^{_MgBr}

¹H NMR (CD₂Cl₂, 400 MHz): δ 3.97 (d, J = 8.7 Hz, 1H), 2.41 (s, 6H), 2.38-2.27 (m, 1H), 0.84 (d, J = 6.6 Hz, 6H).

¹³C NMR (CD₂Cl₂, 100 MHz): δ 129.7, 110.0, 40.4, 26.9, 24.1.

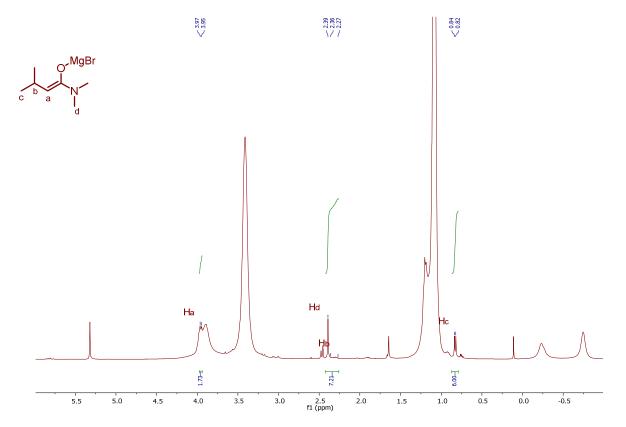


Figure S31: ¹H NMR spectrum of the crude of the reaction in the absence of Lewis acid.

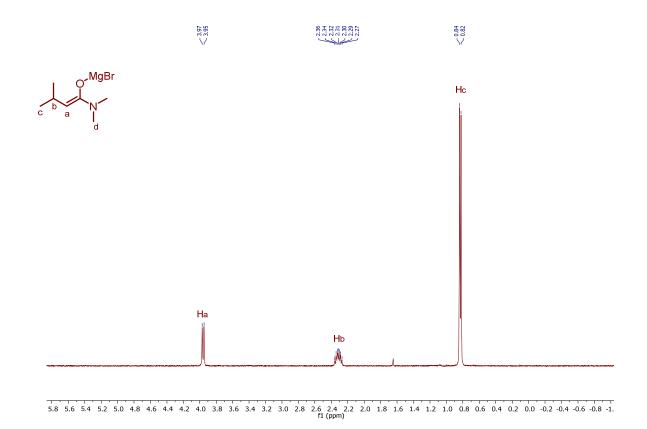
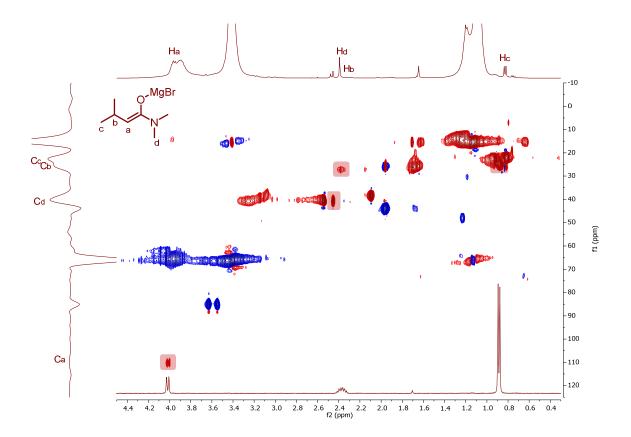
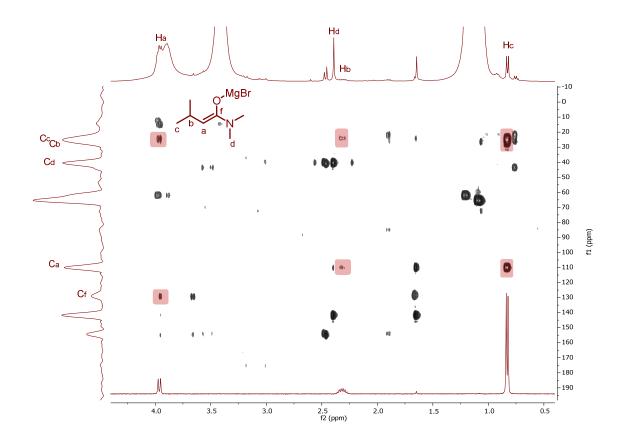




Figure S32: TOCSY experiment (irradiating nucleus Ha) of the crude of the reaction in the absence of Lewis acid.

Figure S33: ¹H-¹³C-HSQCED spectrum of the crude of the reaction in the absence of Lewis acid. Mg-enolate peaks are highlighted.

Figure S34: ¹H-¹³C-HMBC spectrum of the crude of the reaction in the absence of Lewis acid. Mg-enolate peaks are highlighted.

This set of experiments shows that three different enolates, namely TMS-enolate (in the presence of TMSOTf), BF3-enolate (in the presence of $BF_3 \cdot Et_2O$) and Mg-enolate (in the absence of Lewis acid).are formed in the reaction mixture, depending on the reaction components

7. Synthesis of enamides: procedures and characterization of products

 α,β -Unsaturated amides **1a-x** were prepared from the corresponding acyl chloride (Method 2:¹ RCOCl, amine; Method 3:¹ RCOCl, amine, NEt₃), from the corresponding carboxylic acid (Method 1:¹ (i) RCO₂H, SOCl₂, cat. DMF (ii) amine, NEt₃), from the corresponding alkenes (Method 6)², and from other derivative compounds (Method 4³, Method 5^{4,5}). **1a-1b**, **1f-j**, **1l-m**, **1o**, **1q-s**, **1v** are known compounds.

Method 1

To a cold 0 °C solution of the corresponding carboxylic acid (5 mmol) in DCM (4 mL) was added thionyl chloride (6 mmol) and dry DMF (14 μ L). The solution was then stirred at room temperature for 2 h and concentrated under reduced pressure to remove residual thionyl chloride. The resulting residue was redissolved in DCM (4 mL), cooled at 0 °C and the corresponding amine (8 mmol) was added. Dry triethylamine (6.6 mmol) was added and stirring was continued at ambient temperature (3 h). The solvent was removed under reduced pressure and DCM (14 mL) was added. The organic phase was washed with dilute hydrochloric acid (2.0 M, 2 mL × 2), water (3 mL × 2), and brine (4 mL), and dried over MgSO₄. After removal of the solvent, the corresponding enamides were obtained.

Method 2

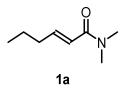
A solution of acyl chloride (0.96 mL, 10 mmol) in 6.3 mL dry Et_2O was cooled to 0 °C in an ice-bath. Anhydrous dimethylamine (2.0 M in THF, 10 mL, 20 mmol) was added for over 5 min and the reaction mixture was allowed to warm to room temperature (12 h). The solvents were evaporated under reduced pressure. Product **1b** was obtained after purification by column chromatography.

Method 3

To a cold 0 °C solution of the corresponding acyl chloride (5 mmol) in DCM (4 mL) was added the corresponding amine (8 mmol). Dry triethylamine (6.6 mmol) was added and stirring was continued at ambient temperature (3 h). The solvent was removed under reduced pressure and DCM (14 mL) was added. The organic phase was washed with dilute hydrochloric acid (2.0 M, 2 mL \times 2), water (3 mL \times 2), and brine (4 mL), and dried over MgSO₄. After removal of the solvent, the corresponding enamides were obtained.

Method 4

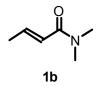
A solution of *N*-methyl-4-methylbenzenesulfonamide (1.85 g, 10 mmol) in anhydrous THF (20 mL) cooled at 0 °C was added under nitrogen a solution of *n*-BuLi (1.6 M in hexanes, 6.9 mL, 11 mmol) and the resulting mixture was stirred for 15 min. Subsequently, crotonyl chloride (1.0 mL, 11 mmol) dissolved in anhydrous THF (5 mL) was added and the mixture was left to warm to room temperature during 2 h. Saturated aqueous NH₄Cl solution was added and the mixture was extracted with DCM (14 mL). The organic phase was washed with dilute hydrochloric acid (2.0 M, 2 mL × 2), water (3 mL × 2), and brine (4 mL), and dried over MgSO₄. After removal of the solvent, product **1g** were obtained.


Method 5

LDA (1.0 M in THF/hexane, 6.4 mL, 6.4 mmol) was added to a solution of 1-methyl-2-piperidinone (0.66 mL, 5.8 mmol) in 4 mL of THF under nitrogen at -50 °C. After it was stirred at -50 °C for 45 min, the anion solution was transferred into a solution of phenylselenenyl chloride (1.22 g, 6.4 mmol) in 4 mL of THF at -78 °C under nitrogen. The reaction mixture was stirred at -78 °C for 7 h and quenched with water. Then, it was extracted with DCM. The organic layer was then dried (MgSO₄), filtered and concentrated under reduced pressure. The crude mixture was purified by column chromatography on silica gel (SiO₂, pentane:Et₂O 1:2) to afford 1-Methyl-3-(phenylseleno)-2-piperidinone (65% yield) as a colorless oil. Then, a solution of MCPBA (77%, 0.84 g, 3.8 mmol) in anhydrous DCM (10 mL) was added to a solution of 1-methyl-3-(phenylseleno)-2-piperidinone (0.67 g, 2.5 mmol) in anhydrous DCM (10 mL) cooled at 0 °C. The mixture was allowed to rise to room temperature, and stirring was continued for 3 h. Saturated aqueous NaHCO₃ was added, and the aqueous layer was extracted with DCM. The organic layer was then dried (MgSO₄), filtered and concentrated under reduced pressure and concentrated under reduced pressure and stirring was continued for 3 h. Saturated aqueous NaHCO₃ was added, and the aqueous layer was extracted with DCM. The organic layer was then dried (MgSO₄), filtered and concentrated under reduced pressure. The crude mixture was purified by column chromatography on silica gel (SiO₂, Et₂O) to afford the corresponding enamide **1j** (89% yield).

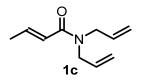
Method 6

The corresponding alkene (7.5 mmol) and *N*,*N*-dimethylacrylamide (5 mmol) were added simultaneously to a stirred solution of 5 mol% of second generation Grubbs catalyst in DCM (20 mL) at room temperature. The reaction was refluxed under nitrogen for 16 h. The solvent and the remaining *N*,*N*-dimethylacrylamide were removed under reduced pressure and the corresponding enamide was purified by column chromatography.


(*E*)-*N*,*N*-Dimethylhex-2-enamide $(1a)^{1}$

The product 1a was synthesized following Method 1 and obtained as a colorless oil in 86 % yield.

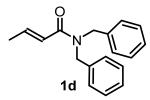
¹H NMR (CDCl₃, 400 MHz): δ 6.86 (dt, *J* = 15.1, 7.0 Hz, 1H, C*H*=CH), 6.24 (dt, *J* = 15.1, 1.3 Hz, 1H, CH=C*H*), 3.07 (s, 3H, NC*H*₃), 2.99 (s, 3H, NC*H*₃), 2.18 (q, *J* = 7.1 Hz, 2H, C*H*₂CH), 1.48 (sex (qt), *J* = 7.4 Hz, 2H, C*H*₂CH₃), 0.93 (t, *J* = 7.4 Hz, 3H, CH₂CH₃).


(*E*)-*N*,*N*-Dimethylbut-2-enamide (1b)¹

The product **1b** was synthesized following Method 2 and obtained as a colorless liquid after column chromatography (SiO₂, Et₂O) in 90 % yield.

¹H NMR (CDCl₃, 400 MHz): δ 6.87 (dq, *J* = 15.0, 6.9 Hz, 1H, C*H*=CH), 6.27 (dq, *J* = 15.0, 1.7 Hz, 1H, CH=C*H*), 3.06 (s, 3H, NC*H*₃), 2.99 (s, 3H, NC*H*₃), 1.87 (dd, *J* = 6.9, 1.7 Hz, 3H, C*H*₃CH).

(E)-N,N-Diallylbut-2-enamide (1c)

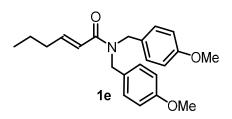

The product 1c was synthesized following Method 3 and obtained after column chromatography (SiO₂, pentane:Et₂O 2:1) as a colorless oil in 85% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 6.93 (dq, *J* = 14.9, 6.9 Hz, 1H, CH₃C*H*=), 6.16 (dq, *J* = 14.9, 1.7 Hz, 1H, COC*H*=), 5.78 (ddt, *J* = 17.1, 10.3, 5.3 Hz, 2H, NCH₂C*H*=), 5.21-5.10 (m, 4H, CH=C*H*₂), 4.01 (d, *J* = 5.7 Hz, 2H, NC*H*₂), 3.91 (d, *J* = 4.1 Hz, 2H, NC*H*₂), 1.86 (dd, *J* = 6.9, 1.7 Hz, 3H, CHC*H*₃).

¹³C NMR (CDCl₃, 100 MHz): δ 166.7, 142.1, 133.4, 133.1, 121.8, 117.2, 116.7, 49.1, 48.4, 18.3.

HRMS (ESI+, m/Z): calcd for $C_{10}H_{16}NO [M+H]^+$: 166.12264, found: 166.12242.

(E)-N,N-Dibenzyllbut-2-enamide (1d)

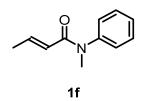

The product **1d** was synthesized following Method 3 and obtained after column chromatography (SiO₂, pentane:Et₂O 2:1) as a colorless oil in 85% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.39-7.17 (m, 10H, CH_{Ar}), 7.08 (dq, J = 14.9, 6.9 Hz, 1H, CH₃CH=), 6.30 (dq, J = 14.9, 1.6 Hz, 1H, COCH=), 4.64 (s, 2H, NCH₂), 4.51 (s, 2H, NCH₂), 1.87 (dd, J = 6.9, 1.6 Hz, 3H, CHCH₃).

¹³C NMR (CDCl₃, 100 MHz): δ 167.4, 143.1, 137.5, 136.9, 129.0, 128.7, 128.4, 127.7, 127.5, 126.6, 121.7, 49.9, 48.5, 18.4.

HRMS (ESI+, m/Z): calcd for C₁₈H₂₀NO [M+H]⁺: 266.15394, found: 266.15408.

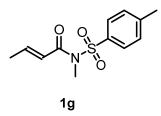
(E)-N,N-Bis(4-methoxybenzyl)hex-2-enamide (1e)


The product **1e** was synthesized following Method 1 and obtained after column chromatography (SiO₂, pentane:Et₂O 2:1) as a pale yellow oil in 91% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.19 (d, *J* = 8.5 Hz, 2H, *CH*_{Ar}), 7.09 (d, *J* = 8.5 Hz, 2H, *CH*_{Ar}), 7.04 (dt, *J* = 15.0, 7.1 Hz, 1H, CH₂C*H*=), 6.89 (d, *J* = 8.5 Hz, 2H, *CH*_{Ar}), 6.84 (d, *J* = 8.5 Hz, 2H, *CH*_{Ar}), 6.27 (dt, *J* = 15.0, 1.4 Hz, 1H, COC*H*=), 4.54 (s, 2H, NCH₂), 4.42 (s, 2H, NCH₂), 3.81 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 2.16 (qd, *J* = 7.6, 1.5 Hz, 2H, CHCH₂), 1.46 (sex (qt), *J* = 7.4 Hz, 2H, CH₃CH₂), 0.90 (t, *J* = 7.4 Hz, 3H, CH₂CH₃).

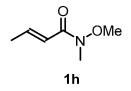
¹³C NMR (CDCl₃, 100 MHz): δ 167.2, 159.1, 158.9, 147.6, 129.8, 129.7, 128.7, 127.9, 120.4, 114.3, 113.9, 55.4, 55.3, 49.1, 47.6, 34.6, 21.7, 13.8.

HRMS (ESI+, m/Z): calcd for C₂₂H₂₈NO₃ [M+H]⁺: 354.20637, found: 354.20663.


(E)-N-Methyl-N-phenylbut-2-enamide (1f)⁶

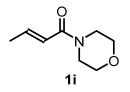
The product **1f** was synthesized following Method 3 and obtained after column chromatography (SiO₂, pentane: Et_2O 2:1) as a colorless oil in 24% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.38 (t, *J* = 7.4 Hz, 2H, *CH*_{Ar}), 7.30 (t, *J* = 7.4 Hz, 1H, *CH*_{Ar}), 7.15 (d, *J* = 7.4 Hz, 2H, *CH*_{Ar}), 6.90 (dq, *J* = 15.1, 6.9 Hz, 1H, CH₃C*H*=), 5.73 (d, *J* = 15.1 Hz, 1H, COC*H*=), 3.30 (s, 3H, NC*H*₃), 1.70 (dd, *J* = 6.9, 1.5 Hz, 3H, CHC*H*₃).


(E)-N-Methyl-N-tosylbut-2-enamide (1g)³

The product 1g was synthesized following Method 4 and obtained as a colorless oil in 97% of yield.

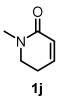
¹H NMR (CDCl₃, 400 MHz): δ 7.74 (d, *J* = 8.0 Hz, 2H, *CH*_{Ar}), 7.33 (d, *J* = 8.0 Hz, 2H, *CH*_{Ar}), 6.96 (dq, *J* = 15.0, 6.8 Hz, 1H, CH₃C*H*=), 6.80 (dd, *J* = 15.0, 1.5 Hz, 1H, COC*H*=), 3.27 (s, 3H, NC*H*₃), 2.43 (s, 3H, PhC*H*₃), 1.90 (dd, *J* = 6.8, 1.5 Hz, 3H, CHC*H*₃).


(E)-N-Methyl-N-methoxybut-2-enamide (1h)⁷

The product **1h** was synthesized following Method 3 and obtained after column chromatography (pentane:Et₂O 1:1) as a colorless oil in 70% of yield. *Note: In this case N-methoxy-methylamine hydrochloride (8 mmol) and dry triethylamine (10 mmol) were used.*

¹H NMR (CDCl₃, 400 MHz): δ 6.98 (dq, *J* = 15.4, 6.9 Hz, 1H, CH₃C*H*=), 6.42 (dq, *J* = 15.4, 1.7 Hz, 1H, COC*H*=), 3.70 (s, 3H, OC*H*₃), 3.23 (s, 3H, NC*H*₃), 1.91 (dd, *J* = 6.9, 1.7 Hz, 3H, CHC*H*₃).

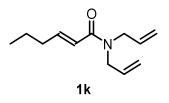
(E)-1-(4-Morpholinyl)-2-buten-1-one (1i)⁸


The product **1i** was synthesized following Method 3 and obtained after column chromatography (SiO₂, Et_2O) as a colorless oil in 92% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 6.82 (dq, *J* = 15.0, 6.9 Hz, 1H, CH₃C*H*=), 6.16 (dq, *J* = 15.0, 1.7 Hz, 1H, COC*H*=), 3.61-3.50 (m, 8H, C*H*₂), 1.81 (dd, *J* = 6.9, 1.7 Hz, 3H, CHC*H*₃).

¹³C NMR (CDCl₃, 100 MHz): δ 165.6, 142.1, 121.0, 66.8, 46.1, 42.2, 18.2.

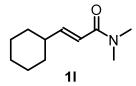
HRMS (ESI+, m/Z): calcd for C₈H₁₄NO₂ [M+H]⁺: 156.10191, found: 156.10190.


```
5,6-Dihydro-1-methyl-2(1H)-pyridinone (1j)<sup>9</sup>
```


The product 1j was synthesized following Method 5 and obtained as a colorless oil in 58% of total yield.

¹H NMR (CDCl₃, 400 MHz): δ 6.48 (dt, *J* = 9.7, 4.2 Hz, 1H, CH₂C*H*=), 5.86 (dt, *J* = 9.7, 1.9 Hz, 1H, COC*H*=), 3.36 (t, *J* = 7.2 Hz, 2H, NC*H*₂), 2.93 (s, 3H, NC*H*₃), 2.34 (tdd, *J* = 7.2, 4.2, 1.9 Hz, 2H, C*H*₂CH=).

(E)-N,N-Diallyl-hex-2-enamide (1k)

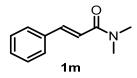

The product 1k was synthesized following Method 1 and obtained as a colorless oil in 63% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 6.93 (dt, J = 15.1, 7.0 Hz, 1H, CH=CH), 6.14 (dd, J = 15.1, 1.5 Hz, 1H, CH=CH), 5.84-5.74 (m, 2H, 2 CH=CH₂), 5.22-5.11 (m, 4H, 2CH=CH₂), 4.02 (d, J = 5.3 Hz, 2H, CH₂CH), 3.92 (d, J = 4.6 Hz, 2H, CH₂CH), 2.17 (qd, J = 7.3, 1.5 Hz, 2H, CH₂CH₂), 1.47 (dq, J = 14.7, 7.3 Hz, 2H, CH₂CH₃), 0.92 (t, J = 7.3 Hz, 3H, CH₂CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ 166.9, 147.1, 133.5, 133.2, 120.4, 117.4, 116.8, 49.2, 48.5, 34.7, 21.7, 13.8.

HRMS (ESI+, m/Z): calcd for C₁₂H₂₀NO [M+H]⁺: 194.15394, found: 194.15402.

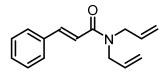
(E)-N,N-Dimethyl-3-cyclohexyl-prop-2-enamide (11)¹⁰



The product **11** was synthesized following Method 6 and obtained as a colorless liquid after column chromatography (SiO₂, Et₂O) in 14% yield.

¹H NMR (CDCl₃, 400 MHz): δ 6.82 (dd, *J* = 15.2, 7.0 Hz, 1H, C*H*=CH), 6.17 (dd, *J* = 15.2, 1.2 Hz, 1H, CH=C*H*), 3.06 (s, 3H, NC*H*₃), 2.99 (s, 3H, NC*H*₃), 2.16-2.08 (m, 1H, C*H*), 1.76-1.64 (m, 5H, C*H*₂), 133-1.09 (m, 5H, C*H*₂).

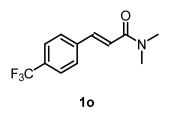
HRMS (ESI+, m/Z): calcd for C₁₁H₂₀NO [M+H]⁺: 182.15394, found: 182.15371.


(*E*)-*N*,*N*-Dimethyl-3-phenyl-prop-2-enamide (1m)¹¹

The product 1m was synthesized following Method 1 and obtained as a white powder in 82 % yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.67 (d, J = 15.4 Hz, 1H, CH=CH), 7.54-7.52 (m, 2H, CH_{Ar}), 7.39-7.32 (m, 3H, CH_{Ar}), 6.89 (d, J = 15.4 Hz, 1H, CH=CH), 3.17 (s, 3H, NCH₃), 3.07 (s, 3H, NCH₃).

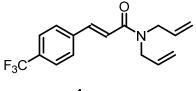
(E)-N,N-Diallyl-3-phenyl-prop-2-enamide (1n)


1n

The product **1n** was synthesized following Method 1 and obtained as a colorless oil in 90% of yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.72 (d, *J* = 15.4 Hz, 1H, C*H*=CH), 7.50-7.48 (m, 2H, C*H*_{Ar}), 7.37-7.30 (m, 3H, C*H*_{Ar}), 6.78 (d, *J* = 15.4 Hz, 1H, CH=C*H*), 5.89-5.78 (m, 2H, 2C*H*=CH₂), 5.25-5.15 (m, 4H, 2CH=C*H*₂), 4.09 (d, *J* = 5.8 Hz, 2H, C*H*₂CH), 4.02 (d, *J* = 4.1 Hz, 2H, C*H*₂CH).

¹³C NMR (CDCl₃, 100 MHz): δ 166.7, 143.0, 135.4, 133.3, 133.3, 129.6, 128.8, 127.9, 117.7, 117.5, 116.9, 49.3, 48.8.

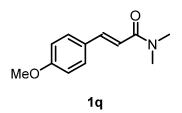
HRMS (ESI+, m/Z): calcd for C₁₅H₁₈NO [M+H]⁺: 228.13838, found: 228.13829.


(E)-N,N-Dimethyl-3-(4-(trifluoromethyl)phenyl)-prop-2-enamide (10)¹²

The product 10 was synthesized following Method 1 and obtained as a white solid in 87% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.67 (d, *J* = 15.4 Hz, 1H, C*H*=CH), 7.62 (s, 4H, C*H*_{Ar}), 6.96 (d, *J* = 15.5 Hz, 1H, CH=C*H*), 3.19 (s, 3H, NC*H*₃), 3.09 (s, 3H, NC*H*₃).

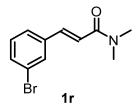
1р


The product 1p was synthesized following Method 1 and obtained as a colorless oil in 69% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.73 (d, *J* = 15.4 Hz, 1H, C*H*=CH), 7.61 (d, *J* = 8.6 Hz, 2H, C*H*_{Ar}), 7.59 (d, *J* = 8.6 Hz, 2H, C*H*_{Ar}), 6.84 (d, *J* = 15.4 Hz, 1H, CH=C*H*), 5.91-5.78 (m, 2H, 2C*H*=CH₂), 5.29-5.17 (m, 4H, 2CH=CH₂), 4.11 (d, *J* = 6.1 Hz, 2H, C*H*₂CH), 4.04 (d, *J* = 4.7 Hz, 2H, C*H*₂CH).

¹³C NMR (CDCl₃, 100 MHz): δ 166.2, 141.3, 138.9 (q, *J* = 1.3 Hz), 133.2, 1³¹.3 (q, *J* = 32.7 Hz), 128.1, 125.9 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 272.3 Hz), 120.3, 117.8, 117.1, 49.4, 49.0.

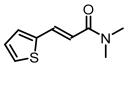
HRMS (ESI+, m/Z): calcd for C₁₆H₁₇F₃NO [M+H]⁺: 296.12568, found: 296.12584.


(E)-N,N-Dimethyl-3-(4-methoxyphenyl)-prop-2-enamide (1q)^{4,5}

The product 1q was synthesized following Method 1 and obtained as a white solid in 79% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.63 (d, *J* = 15.4 Hz, 1H, C*H*=CH), 7.48 (d, *J* = 8.7 Hz, 2H, C*H*_{Ar}), 6.89 (d, *J* = 8.7 Hz, 2H, C*H*_{Ar}), 6.76 (d, *J* = 15.4 Hz, 1H, CH=C*H*), 3.83 (s, 3H, OC*H*₃), 3.16 (s, 3H, NC*H*₃), 3.06 (s, 3H, NC*H*₃).

(E)-N,N-Dimethyl-3-(3-bromophenyl)-prop-2-enamide (1r)¹³

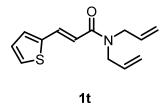

The product 1r was synthesized following Method 1 and obtained as a white solid in 79% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.67 (t, *J* = 1.5 Hz, 1H, *CH*_{Ar}), 7.58 (d, *J* = 15.5 Hz, 1H, *CH*=CH), 7.47 (d, *J* = 7.8 Hz, 1H, *CH*_{Ar}), 7.42 (d, *J* = 7.8 Hz, 1H, *CH*_{Ar}), 7.23 (d, *J* = 7.8 Hz, 1H, *CH*_{Ar}), 6.88 (d, *J* = 15.5 Hz, 1H, *CH*=CH), 3.18 (s, 3H, NCH₃), 3.08 (s, 3H, NCH₃).

¹³C NMR (CDCl₃, 100 MHz): δ 166.3, 140.8, 137.6, 132.4, 130.4, 130.2, 126.8, 123.0, 119.0, 37.5, 36.1.

HRMS (ESI+, m/Z): calcd for C₁₁H₁₃BrNO [M+H]⁺: 254.01750, found: 254.01757.

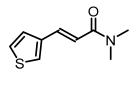
(E)-N,N-Dimethyl-3-(thiophen-2-yl)-prop-2-enamide (1s)^{4,5}



The product 1s was synthesized following Method 1 and obtained as a brown solid in 77% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.79 (d, *J* = 15.1 Hz, 1H, C*H*=CH), 7.31 (d, *J* = 5.1 Hz, 1H, C*H*_{Ar}), 7.21 (d, *J* = 3.6 Hz, 1H, C*H*_{Ar}), 7.03 (dd, *J* = 5.1, 3.6 Hz, 1H, C*H*_{Ar}), 6.69 (d, *J* = 15.1 Hz, 1H, CH=C*H*), 3.14 (s, 3H, NC*H*₃), 3.07 (s, 3H, NC*H*₃).

(E)-N,N-Diallyl-3-(thiophen-2-yl)-prop-2-enamide (1t)

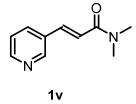

The product **1t** was synthesized following Method 1 and obtained as a colorless oil in 88% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.83 (d, *J* = 15.1 Hz, 1H, C*H*=CH), 7.31 (d, *J* = 5.0 Hz, 1H, C*H*_{Ar}), 7.21 (d, *J* = 3.5 Hz, 1H, C*H*_{Ar}), 7.03 (dd, *J* = 5.0, 3.5 Hz, 1H, C*H*_{Ar}), 6.58 (d, *J* = 15.1 Hz, 1H, CH=C*H*), 5.90-5.78 (m, 2H, 2 C*H*=CH₂), 5.27-5.15 (m, 4H, 2 CH=C*H*₂), 4.09 (d, *J* = 5.9 Hz, 2H, C*H*₂CH), 4.00 (d, *J* = 3.8 Hz, 2H, C*H*₂CH).

¹³C NMR (CDCl₃, 100 MHz): δ 166.4, 140.6, 135.8, 133.4, 133.3, 130.3, 128.1, 127.3, 117.5, 117.0, 116.5, 49.4, 48.9.

HRMS (ESI+, m/Z): calcd for C₁₃H₁₆NOS [M+H]⁺: 234.09471, found: 234.09476.

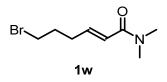
(E)-N,N-Dimethyl-3-(thiophen-3-yl)-prop-2-enamide (1u)


The product 1u was synthesized following Method 1 and obtained as a brown solid in 72% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.66 (d, *J* = 15.4 Hz, 1H, C*H*=CH), 7.45 (dd, *J* = 2.8, 1.2 Hz, 1H, C*H*_{Ar}), 7.32 (dd, *J* = 5.1, 2.8 Hz, 1H, C*H*_{Ar}), 7.30 (dd, *J* = 5.1, 1.2 Hz, 1H, C*H*_{Ar}), 6.72 (d, *J* = 15.4 Hz, 1H, CH=C*H*), 3.13 (s, 3H, NC*H*₃), 3.08 (s, 3H, NC*H*₃).

¹³C NMR (CDCl₃, 100 MHz): δ 166.9, 138.4, 136.1, 126.9, 126.7, 125.2, 117.1, 37.4, 36.1.

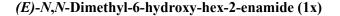
HRMS (ESI+, m/Z): calcd for C₉H₁₂NOS [M+H]⁺: 182.06341, found: 182.06333.

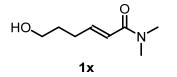

(E)-N,N-Dimethyl-3-(3-piridinyl)-prop-2-enamide (1v)¹⁴

The product 1v was synthesized following Method 1 and obtained after column (SiO₂, EtOAc) as a white solid in 69% of yield. *Note: In this case the reaction was quenched with saturated Na*₂CO₃ solution and the aqueous layer was extracted with DCM. The organic layer was dried (MgSO₄), filtered and concentrated under reduced pressure.

¹H NMR (CDCl₃, 400 MHz): δ 8.70 (d, J = 1.9 Hz, 1H, CH_{Ar}), 8.51 (dd, J = 4.7, 1.4 Hz, 1H, CH_{Ar}), 7.77 (dt, J = 7.9, 1.9 Hz, 1H, CH_{Ar}), 7.59 (d, J = 15.5, 1.2 Hz, 1H, PyCH), 7.25 (dd, J = 7.9, 4.7 Hz, 1H, CH_{Ar}), 6.92 (d, J = 15.5 Hz, 1H, COCH), 3.13 (s, 3H, NCH₃), 3.02 (s, 3H, NCH₃).

(E)-N,N-Dimethyl-6-bromo-hex-2-enamide (1w)

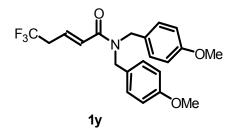

The product 1w was synthesized following Method 6 and obtained as a colorless oil.


Note: In this case after purification by column chromatography (SiO₂, EtOAc) a mixture of 90% title amide and 10% chloro-substituted amide was obtained. The mixture (1.5 mmol) was dissolved in CH₂Br₂ (10 mL) and added to a stirred solution of tetraethylammonium bromide (3.15 g, 15 mmol) in CH₂Br₂ (20 mL). The flask was fitted with a condenser and heated at 80 °C under nitrogen for 16 h. The reaction mixture was condensed under reduced pressure and Et_2O was added. The mixture was filtered and the filtrate was condensed under reduced pressure. The residue was purified by column chromatography on silica gel (SiO₂, EtOAc) to afford the title amide (21% yield) as a colorless oil.

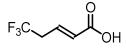
¹H NMR (CDCl₃, 400 MHz): δ 6.81 (dt, *J* = 15.0, 7.2 Hz, 1H, CH₂C*H*=), 6.32 (dt, *J* = 15.0, 1.4 Hz, 1H, COC*H*=), 3.42 (t, *J* = 6.5 Hz, 2H, BrC*H*₂), 3.08 (s, 3H, NC*H*₃), 3.00 (s, 3H, NC*H*₃), 2.38 (qd, *J* = 7.2, 1.5 Hz, 2H, C*H*₂CH=), 2.01 (quint, *J* = 6.6 Hz, 2H, BrCH₂C*H*₂).

¹³C NMR (CDCl₃, 100 MHz): δ 166.5, 143.5, 121.7, 37.3, 35.7, 32.9, 31.0, 30.6.

HRMS (ESI+, m/Z): calcd for C₈H₁₅BrNO [M+H]⁺: 220.03315, found: 220.03144


The product 1x was synthesized following Method 6 and obtained after column chromatography (SiO₂, Et₂O:MeOH 20:1) as a colorless oil 15% of yield.

¹H NMR (CDCl₃, 400 MHz): δ 6.87 (dt, *J* = 15.1, 7.0 Hz, 1H, CH₂C*H*=), 6.28 (dt, *J* = 15.1, 1.5 Hz, 1H, COC*H*=), 3.67 (t, *J* = 6.4 Hz, 2H, OHC*H*₂), 3.07 (s, 3H, NC*H*₃), 2.99 (s, 3H, NC*H*₃), 2.31 (qd, *J* = 7.2, 1.5 Hz, 2H, CH₂CH=), 1.73 (quint, *J* = 6.6 Hz, 2H, OHCH₂C*H*₂).


¹³C NMR (CDCl₃, 100 MHz): δ 167.0, 145.8, 120.4, 61.5, 37.4, 35.7, 31.2, 28.8.

HRMS (ESI+, m/Z): calcd for C₈H₁₆NO₂ [M+H]⁺: 158.11756, found: 158.11764.

```
(E)-N,N-Bis(4-methoxybenzyl)hex-2-enamide (1y)
```


Amide **1y** was synthesized from the corresponding carboxylic acid: (*E*)-5,5,5-trifluoropent-2-enoic acid, which was not commercially available and it was prepared by cross metathesis: Allyl trifluoromethane (437 mg, 3.97 mmol) was condensed at 0 °C in a pressure proof flask and dissolved in toluene (2.5 mL). Then, Hoveyda-Grubbs II catalyst (50 mg, 0.079 mmol) and acrylic acid (545 μ L, 4.94 mmol) were added, pressure tube was carefully closed and warmed up to 80 °C while stirring overnight. Then, flask was cooled down to room temperature and carefully opened, and solvent was evaporated in vacuo. The crude mixture was purified by column chromatography on silica gel (SiO₂, pentane:Et₂O 10:1) to afford the acid (257 mg, 42% yield) as a yellowish oil and it was fully characterized:

¹H NMR (CDCl₃, 400 MHz): δ 6.94 (dt, *J* = 15.6, 7.2 Hz, 1H, CH=CHCH₂), 6.07 (d, *J* = 15.8 Hz, 1H, CH=CHCH₂), 3.04 (qdd, *J* = 10.3, 7.3, 1.3 Hz, 2H, CH₂).

¹⁹F NMR (CDCl₃, 377 MHz): δ -65.4 (t, *J* = 10.3 Hz).

¹³C NMR (CDCl₃, 101 MHz): δ 170.7, 137.9 (q, *J* = 3.6 Hz), 127.0, 125.1 (q, *J* = 276.9 Hz), 36.9 (q, *J* = 30.8 Hz).

HRMS (ESI+, m/Z): calcd for C₅H₄F₃O₂ [M-H]⁻: 153.01689, found: 153.01712.

Then, the product 1y was synthesized following Method 1 and obtained after column chromatography (SiO₂, pentane:Et₂O 2:1) as a pale yellow oil in 16 % of yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.19 (d, J = 8.3 Hz, 2H, CH_{Ar}), 7.07 (d, J = 8.4 Hz, 2H, CH_{Ar}), 6.91-6.84 (m, 5H, CH_{Ar}, CH₂CH=), 6.50 (dt, J = 15.2 Hz, 1H, COCH=), 4.55 (s, 2H, NCH₂), 4.42 (s, 2H, NCH₂), 3.82 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.02-2.92 (m, 1H, CH₂).

¹⁹F NMR (CDCl₃, 377 MHz): δ -65.5 (t, J = 10.5 Hz).

¹³C NMR (CDCl₃, 100 MHz): δ 165.8, 159.4, 159.2, 133.3 (q, *J* = 3.5 Hz), 130.0, 129.2, 128.2, 127.9, 127.2, 125.4 (q, *J* = 276.8 Hz), 114.5, 114.1, 55.44, 55.39, 49.3, 47.9, 37.1 (q, *J* = 30.4 Hz).

HRMS (ESI+, m/Z): calcd for C₂₁H₂₃F₃NO₃ [M+H]⁺: 394.16245, found: 394.16197.

8. Cu- asymmetric conjugate addition (ACA) of Grignard reagents to enamides

General procedure

In a flame-dried Schlenk tube equipped with septum and magnetic stirring bar, CuBr·SMe₂ and ligand (R,S_{Fe}) -L1 were dissolved in DCM (final concentration of enamide substrate is 0.1M) and stirred under nitrogen atmosphere for 20 min. The substrate was added at once. After stirring for 5 min. at RT the reaction mixture was cooled down (see the details per substrate), followed by addition of LA. After 20 min., RMgBr was added by hand in about 1 min. After stirring for 18 h, the reaction was quenched with MeOH followed by addition of saturated aqueous NH₄Cl solution and warming up to RT. The reaction mixture was extracted with DCM (10 mL \times 3). Combined organic phases were dried over MgSO₄, filtered and solvents were evaporated on a rotary evaporator. The crude was purified by flash chromatography on silica gel.

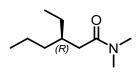
Note 1: The procedures for ACA differ in LA, the reaction temperature and mode of addition. The details are given per product. The reactions were carried out either using 0.1 or 0.2 mmol of an enamide substrate.

Note 2: DCM was found to be the most optimal solvent while presence of even traces of THF is detrimental for the reaction conversion and enantioselectivity. On the other hand Cu salts other than CuBr can be used as well as long as the halide in the Grignard reagent used is a bromide (RMgBr)

Note 3: Grignard reagents must be used either in Et2O or tBuOMe. THF even in a small quantities must be avoided. Copper catalysed conjugate addition of THF solution of iPrMgBr for instance led to racemic product while Et2O solution afforded product wih 76% ee

<u>Procedure for the preparative (10 g) scale copper ACA using 5 mol% of chiral catalyst and</u> the recovery of the chiral catalyst (L1-CuBr)

The reaction on a preparative scale (Table S2, entry 23)_was carried out for the synthesis of the product **3h** using the general procedure described above. The reaction was carried out using **1a** (10 g, 71mmol), CuBrSMe₂ (727.9 mg, 3.54 mmol, 5 mol%), ligand L1 (2721.2 mg, 4.25 mmol, 6 mol%), TMSOTf (25.6 mL, 141.6 mmol), MeMgBr (141.6 mmol, 3.0 M in Et₂O), 708 mL of DCM at 0 °C, for a total reaction time of 2h. Product **3h** was obtained as a colorless oil [93% yield, 96% *ee*] after column chromatography (SiO₂, pentane:Et₂O 1:1).


The chiral catalyst was recovered in this reaction in the form of a Cu-complex (L1-CuBr). The reaction mixture was loaded on a column with silica. Using a pentane: Et_2O ratio of 1:1 the L1-CuBr eluted first, followed by CA product **3h**. Catalyst L1-CuBr was obtained as a yellow-orange solid in 80% of yield and reused for another ACA reaction (Table S2, entry 21) with similar performance.

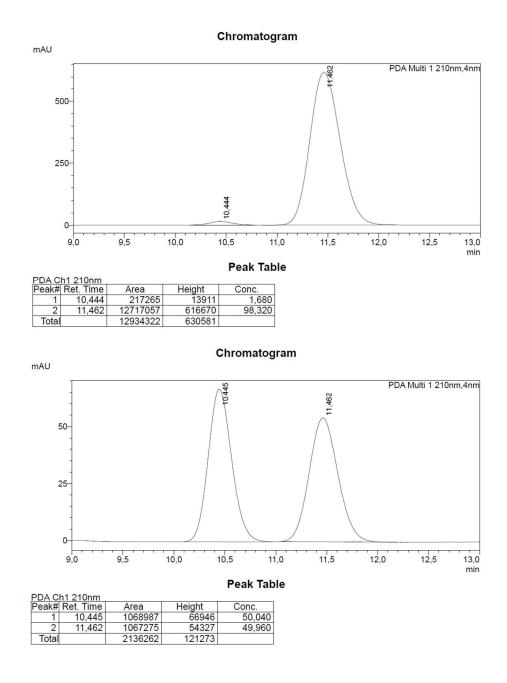
General procedure for the synthesis of racemic products

Racemic products were synthesized in a flame-dried Schlenk tube equipped with septum and magnetic stirring bar by mixing the corresponding enamide substrate (0.1 M in DCM) with 2 equiv. of corresponding Grignard reagents and 1.1 equiv. of TMSOTf at -10 °C for 2 h. The quenching and isolation procedure is the same as described above.

Specific experimental details and product characterisation

(R)-N,N-Dimethyl-3-ethyl-hexanamide (2a)

2a

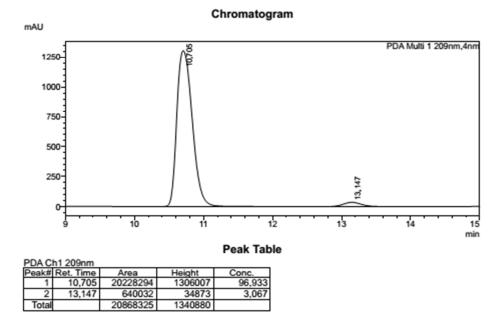

The reaction was performed with 0.2 mmol **1a**, CuBr SMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand **L1** (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), EtMgBr (0.4 mmol, 3.0 M in Et₂O), 2.0 mL of DCM at -78 °C. Product **2a** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:1) [73% yield, 97% *ee*]. *Note: When the reaction was carried out at 0 °C using 10mol% of the catalyst and 2 equiv. of TMSOTf the product 2a was obtained in 92% yield and 93% <i>ee (Table S2, entry 19)*.

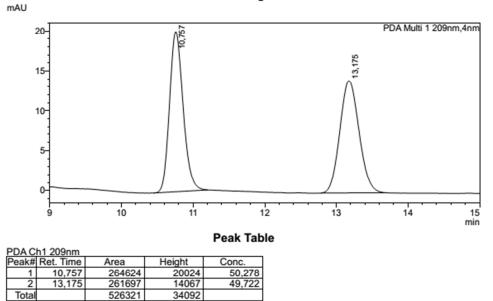
¹H NMR (CDCl₃, 400 MHz): δ 3.00 (s, 3H, NC*H*₃), 2.93 (s, 3H, NC*H*₃), 2.21 (dd, *J* = 15.1, 7.1 Hz, 1H, CHHCO), 2.20 (dd, *J* = 15.1, 6.7 Hz, 1H, CHHCO), 1.91-1.81 (m, 1H, CHCH₂), 1.36-1.21 (m, 5H, CH₂CH₃, CH₂CH₂CH₃), 1.24-1.18 (m, 1H, CHHCH₃), 0.87 (d, *J* = 7.0 Hz, 3H, CH₃CH), 0.85 (t, *J* = 7.5 Hz, 3H, CH₃CH₂).

¹³C NMR (CDCl₃, 100 MHz): δ 173.1, 37.8, 37.6, 36.1, 35.9, 35.5, 26.4, 19.9, 14.5, 11.0.

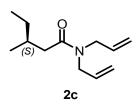
HRMS (ESI+, m/Z): calcd for $C_{10}H_{22}NO [M+H]^+$: 172.16959, found: 172.16962.

HPLC: Chiracel-OBH, *n*-heptane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 210 nm. Retention time (min): 10.4 (minor) and 11.5 (major).


(S)-N,N-Dimethyl-3-methyl-pentanamide (2b)¹


The reaction was performed with 0.2 mmol **1b**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), EtMgBr (0.4 mmol, 3.0 M in Et₂O), 2.0 mL of DCM at -78 °C. Product **2b** was obtained as a colorless oil after column chromatography (SiO₂, Et₂O) [79% yield, 94% *ee*].

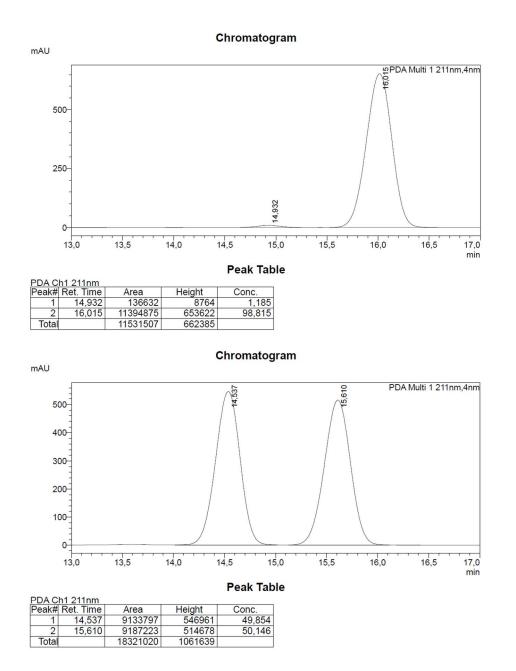
¹H NMR (CDCl₃, 400 MHz): δ 3.00 (s, 3H, NC*H*₃), 2.94 (s, 3H, NC*H*₃), 2.30 (dd, *J* = 14.7, 5.9 Hz, 1H, CHHCO), 2.11 (dd, *J* = 14.7, 8.1 Hz, 1H, CHHCO), 1.98-1.86 (m, 1H, CHCH₂), 1.44-1.34 (m, 1H, CHHCH₃), 1.24-1.14 (m, 1H, CHHCH₃), 0.92 (d, *J* = 6.7 Hz, 3H, CH₃CH), 0.89 (t, *J* = 7.3 Hz, 3H, CH₃CH₂).


HPLC: Chiracel-OBH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 209 nm. Retention time (min): 10.7 (major) and 13.1 (minor).

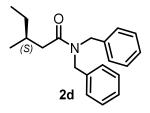
Chromatogram

(S)-N,N-Diallyl-3-methyl-pentanamide (2c)

The reaction was performed with 0.2 mmol 1c, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), EtMgBr (0.4 mmol, 3.0 M in Et₂O), 2.0 mL of DCM at -78 °C. Product 2c was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 5:1) [52% yield, 98% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 5.80-5.70 (m, 2H, C*H*=CH₂), 5.20-5.08 (m, 4H, CH=C*H*₂), 4.00 (dd, *J* = 15.3, 5.9 Hz, 1H, NC*H*HCH=CH₂), 3.96 (dd, *J* = 15.3, 5.9 Hz, 1H, NCH*H*CH=CH₂), 3.87 (dt, *J* = 4.8, 1.8 Hz, 2H, NC*H*₂CH=CH₂), 2.28 (dd, *J* = 14.9, 5.9 Hz, 1H, C*H*HCO), 2.10 (dd, *J* = 14.9, 8.0 Hz, 1H,

CH*H*CO), 2.02-1.90 (m, 1H, C*H*CH₂), 1.43-1.33 (m, 1H, CH₃C*H*H), 1.22-1.13 (m, 1H, CH₃CH*H*), 0.91 (d, *J* = 6.6 Hz, 3H, C*H*₃CH), 0.88 (t, *J* = 7.5 Hz, 3H, C*H*₃CH₂).

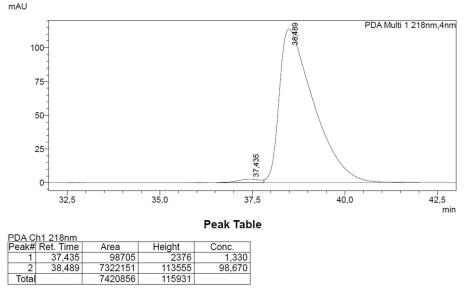

¹³C NMR (CDCl₃, 100 MHz): δ 172.8, 133.6, 133.2, 117.1, 116.6, 49.3, 47.9, 40.1, 32.0, 29.7, 19.6, 11.6.

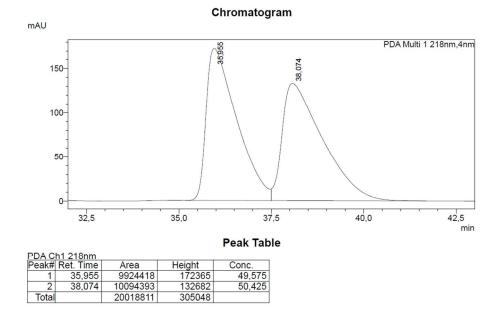
HRMS (ESI+, m/Z): calcd for C₁₂H₂₂NO [M+H]⁺: 196.16959, found: 196.16933.

HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 99:01, 0.5 mL/min, 40 °C, detection at 211 nm. Retention time (min): 14.9 (minor) and 16.0 (major).

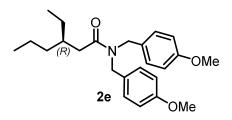
(S)-N,N-Dibenzyl-3-methyl-pentanamide (2d)

The reaction was performed with 0.2 mmol 1d, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), EtMgBr (0.4 mmol, 3.0 M in Et₂O), 2.0 mL of DCM at -78 °C. Product 2d was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 5:1) [78% yield, 97% *ee*].

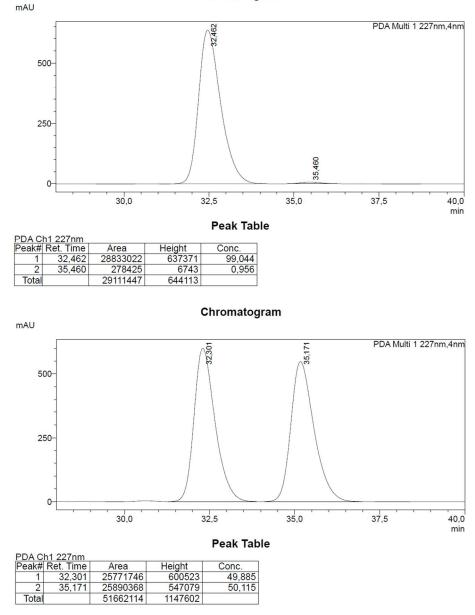

¹H NMR (CDCl₃, 400 MHz): δ 7.39-7.27 (m, 6H, CH_{Ar}), 7.23 (d, J = 7.4 Hz, 2H, CH_{Ar}), 7.16 (d, J = 7.4 Hz, 2H, CH_{Ar}), 4.65 (d, J = 14.7 Hz, 1H, NCHH), 4.58 (d, J = 14.7 Hz, 1H, NCHH), 4.46 (s, 2H, NCH₂), 2.42 (dd, J = 15.0, 5.8 Hz, 1H, CHHCO), 2.24 (dd, J = 15.0, 8.0 Hz, 1H, CHHCO), 2.11-2.02 (m, 1H, CH), 1.45-1.40 (m, 1H, CH₃CHH), 1.24-1.19 (m, 1H, CH₃CHH), 0.97 (d, J = 6.6 Hz, 3H, CH₃CH), 0.90 (t, J = 7.4 Hz, 3H, CH₃CH₂).


¹³C NMR (CDCl₃, 100 MHz): δ 173.3, 137.8, 136.8, 129.0, 128.7, 128.4, 127.7, 127.4, 126.5, 50.0, 48.1, 40.3, 32.2, 29.7, 19.6, 11.6.

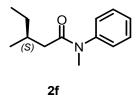
HRMS (ESI+, m/Z): calcd for C₂₀H₂₆NO [M+H]⁺: 296.20089, found: 296.20084.


HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 99.5:0.5, 0.8 mL/min, 40 °C, detection at 218 nm. Retention time (min): 37.4 (minor) and 38.5 (major).

(R)-N,N-Bis(4-methoxybenzyl)-3-ethyl-hexanamide (2e)


The reaction was performed with 0.1 mmol 1e, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand L1 (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (38 μ L, 0.3 mmol), EtMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product 2e was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 4:1) [72% yield, 98% *ee*].

¹H NMR (CDCl₃, 400 MHz): δ 7.15 (d, J = 8.6 Hz, 2H, CH_{Ar}), 7.07 (d, J = 8.6 Hz, 2H, CH_{Ar}), 6.89 (d, J = 8.6 Hz, 2H, CH_{Ar}), 6.84 (d, J = 8.6 Hz, 2H, CH_{Ar}), 4.51 (s, 2H, NCH₂), 4.37 (s, 2H, NCH₂), 3.81 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 2.33 (dd, J = 15.4, 7.1 Hz, 1H, CHHCO), 2.31 (dd, J = 15.4, 6.7 Hz, 1H, CHHCO), 2.00-1.97 (m, 1H, CH), 1.40-1.28 (m, 6H, CH₃CH₂, CH₃CH₂CH₂), 0.90-0.84 (m, 6H, CH₃CH₂). ¹³C NMR (CDCl₃, 100 MHz): δ 173.3, 159.1, 159.0, 129.9, 129.8, 128.7, 127.8, 114.3, 114.0, 55.4, 55.4, 49.2, 47.2, 37.8, 36.3, 35.8, 26.4, 19.9, 14.5, 11.0.

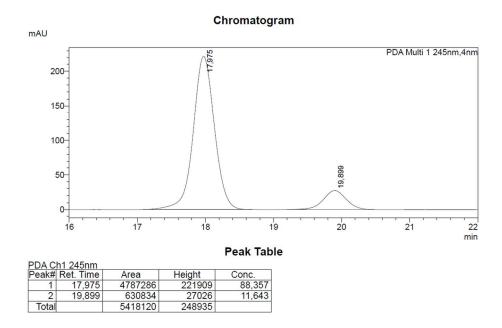

HRMS (ESI+, m/Z): calcd for C₂₄H₃₄NO₃ [M+H]⁺: 384.25332, found: 384.25366.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 227 nm. Retention time (min): 32.5 (major) and 35.5 (minor).

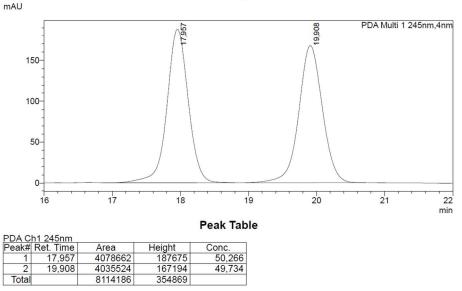
Chromatogram

(S)-N-Methyl-N-phenyl-3-methyl-pentanamide (2f)

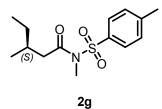
The reaction was performed with 0.2 mmol **1f**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand **L1** (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), EtMgBr (0.4 mmol, 3.0 M in Et₂O), 2.0


mL of DCM at -78 °C. Product **2f** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 3:1) [66% yield, 77% *ee*].

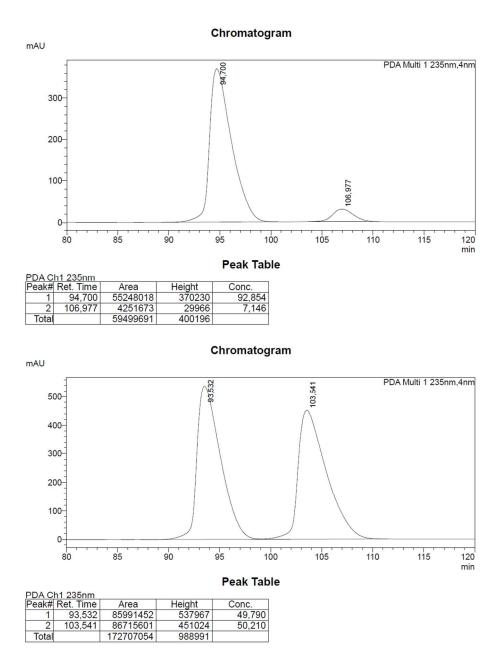
¹H NMR (CDCl₃, 400 MHz): δ 7.40 (t, *J* = 7.6 Hz, 2H, *CH*_{Ar}), 7.32 (t, *J* = 7.3 Hz, 1H, *CH*_{Ar}), 7.15 (d, *J* = 7.5 Hz, 2H, *CH*_{Ar}), 3.25 (s, 3H, NC*H*₃), 2.08-2.06 (m, 1H, *CH*HCO), 1.91-1.83 (m, 2H, *CHHCO*, *CH*), 1.24-1.20 (m, 1H, CH₃CHH), 1.06-1.03 (m, 1H, CH₃CHH), 0.81 (d, *J* = 6.0 Hz, 3H, *CH*₃CH), 0.75 (t, *J* = 7.4 Hz, 3H, *CH*₃CH₂).


¹³C NMR (CDCl₃, 100 MHz): δ 172.9, 144.5, 129.8, 127.7, 127.6, 41.0, 37.5, 32.3, 29.5, 19.5, 11.5.

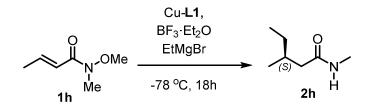
HRMS (ESI+, m/Z): calcd for C₁₃H₂₀NO [M+H]⁺: 206.15394, found: 206.15401.


HPLC: Chiracel-OZH, *n*-heptane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 245 nm. Retention time (min): 18.0 (major) and 19.9 (minor).

(S)-N-Methyl-N-tosyl-3-methyl-pentanamide (2g)


The reaction was performed with 0.1 mmol 1g, CuBrSMe₂ (2.06 mg, 0.01 mmol, 10 mol%), ligand L1 (7.68 mg, 0.012 mmol, 12 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), EtMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product 2g was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 10:1) [83% yield, 86% *ee*]. *Note: When the reaction was carried out in the absence of Lewis acid the product 2g was obtained in 60% yield and 36% ee*.

¹H NMR (CDCl₃, 400 MHz): δ 7.76 (d, *J* = 8.3 Hz, 2H, *CH*_{Ar}), 7.33 (d, *J* = 8.0 Hz, 2H, *CH*_{Ar}), 3.29 (s, 3H, NC*H*₃), 2.61 (dd, *J* = 16.3, 5.7 Hz, 1H, *CH*HCO), 2.46 (dd, *J* = 16.3, 7.9 Hz, 1H, *CHHCO*), 2.43 (s, 3H, PhC*H*₃), 1.98-1.86 (m, 1H, CH₃C*H*), 1.35-1.25 (m, 1H, CH₃C*H*H), 1.19-1.08 (m, 1H, CH₃CH*H*), 0.83 (d, *J* = 6.6 Hz, 3H, *CH*₃CH), 0.82 (t, *J* = 7.4 Hz, 3H, *CH*₃CH₂).


¹³C NMR (CDCl₃, 100 MHz): δ 173.1, 144.9, 136.6, 129.9, 127.5, 43.4, 33.2, 31.6, 29.4, 21.8, 19.3, 11.4.

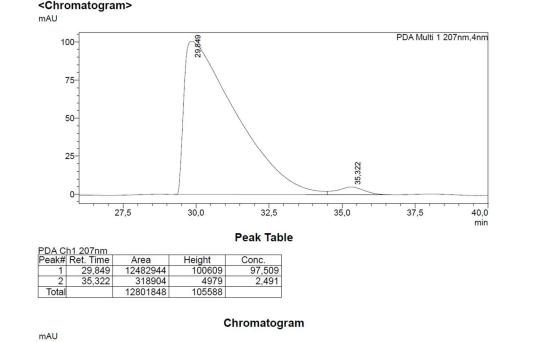
HRMS (ESI+, m/Z): calcd for C₁₄H₂₃N₃OS [M+H]⁺: 284.13149, found: 284.13154.

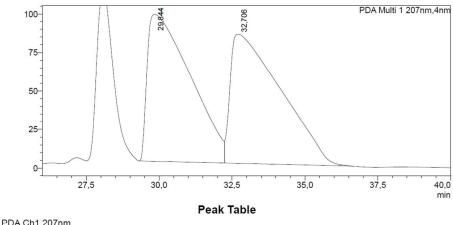
HPLC: Chiracel-OZH, *n*-heptane/*i*-PrOH 99.2:0.8, 0.5 mL/min, 40 °C, detection at 235 nm. Retention time (min): 94.7 (major) and 107.0 (minor).

(S)-N-Methyl-3-methyl-pentanamide (2h)

The reaction was performed with 0.2 mmol **1h**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), EtMgBr (0.4 mmol, 3.0 M in Et₂O), 2.0 mL of DCM at -78 °C. Product **2h** was obtained as a colorless oil after column chromatography (SiO₂, Et₂O) [65% yield, 95% *ee*].

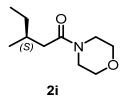
Note: Only demethoxylated product **2h**, most likely promoted by the Grignard reagent, was obtained. Decreasing the amount of Grignard reagent to 0.2 mmol led to decrease in the substrate conversion (which was also demthoxylated) and once again **2h** was the major product.


¹H NMR (CDCl₃, 400 MHz): δ 5.61 (br s, 1H, N*H*), 2.79 (d, *J* = 4.9 Hz, 3H, NC*H*₃), 2.20-2.13 (m, 1H, C*H*HCO), 1.94-1.82 (m, 2H, CH*H*CO, C*H*), 1.40-1.30 (m, 1H, CH₃C*H*H), 1.24-1.12 (m, 1H, CH₃CH*H*), 0.90 (d, *J* = 6.2 Hz, 3H, C*H*₃CH), 0.87 (t, *J* = 7.4 Hz, 3H, C*H*₃CH₂).


¹³C NMR (CDCl₃, 100 MHz): δ 173.6, 44.3, 32.4, 29.6, 26.3, 19.3, 11.4.

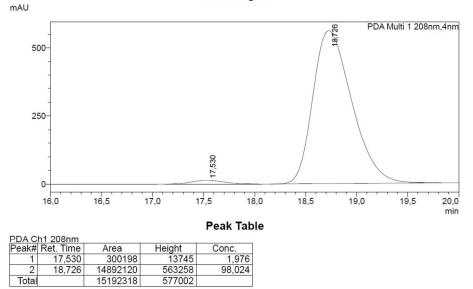
HRMS (ESI+, m/Z): calcd for $C_7H_{16}NO[M+H]^+$: 130.12264, found: 130.12266.

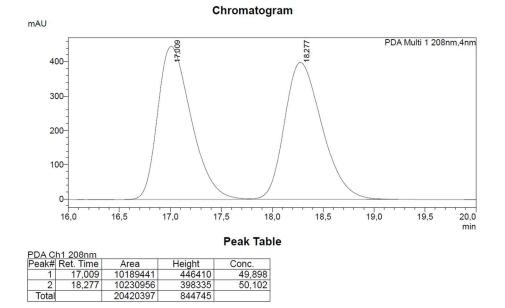
HPLC: Chiracel-ASH, *n*-heptane/*i*-PrOH 98:2, 0.5 mL/min, 40 °C, detection at 207 nm. Retention time (min): 29.8 (major) and 35.3 (minor).



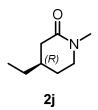
Peak#	Ret. Time	Area	Height	Conc.
1	29,844	9815559	95488	49,279
2	32,706	10102927	83645	50,721
Total		19918486	179133	

(S)-3-Methyl-1-(4-morpholinyl)-pentan-1-one (2i)


The reaction was performed with 0.2 mmol 1i, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), EtMgBr (0.4 mmol, 3.0 M in Et₂O), 2.0 mL of DCM at -78 °C. Product 2i was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:1 [75% yield, 96% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 3.68-3.49 (m, 8H, NC*H*₂C*H*₂O), 2.31 (dd, *J* = 14.6, 5.9 Hz, 1H, C*H*HCO), 2.12 (dd, *J* = 14.6, 8.2 Hz, 1H, CH*H*CO), 1.94-1.85 (m, 1H, C*H*), 1.43-1.37 (m, 1H, CH₃C*H*H), 1.25-1.20 (m, 1H, CH₃CH*H*), 0.94 (d, *J* = 6.6 Hz, 3H, C*H*₃CH), 0.90 (t, *J* = 7.4 Hz, 3H, C*H*₃CH₂).

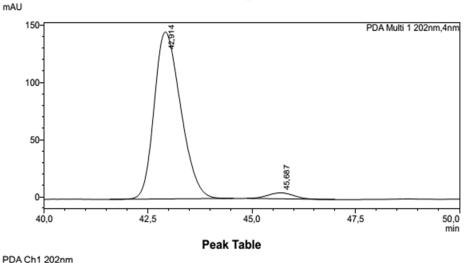
¹³C NMR (CDCl₃, 100 MHz): δ 171.6, 67.1, 66.8, 46.4, 42.0, 40.1, 32.1, 29.7, 19.5, 11.5.


HRMS (ESI+, m/Z): calcd for C₁₀H₂₀NO₂ [M+H]⁺: 186.14886, found: 186.14893.

HPLC: Chiracel-OBH, *n*-heptane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 208 nm. Retention time (min): 17.5 (minor) and 18.7 (major).

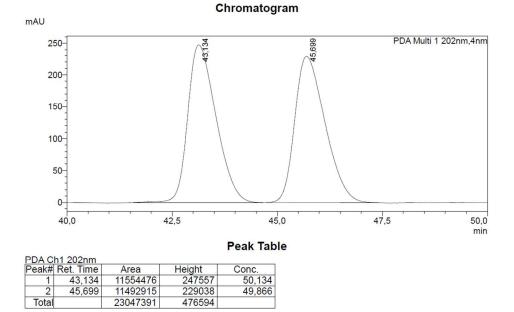
(*R*)-4-Ethyl-1-methylpiperidin-2-one (2j)

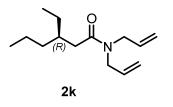
The reaction was performed with 0.2 mmol 1j, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), EtMgBr (0.4 mmol, 3.0 M in Et₂O) in 2.0 mL of DCM at -50 °C. Product 2j was obtained as a pale yellow oil after column chromatography (SiO₂, Et₂O) [75% yield, 93% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 3.30-3.27 (m, 2H, CH₂N), 2.93 (s, 3H, NCH₃), 2.54-2.48 (m, 1H, CH), 2.00-1.88 (m, 2H, CH₂CO), 1.75-1.64 (m, 1H, CH₂CHHCH), 1.49-1.39 (m, 1H, CH₂CHHCH), 1.33 (dq, J = 14.5, 7.3, Hz, 2H, CH₂CH₃), 0.91 (t, J = 7.3 Hz, 3H, CH₃CH₂).

¹³C NMR (CDCl₃, 100 MHz): δ 170.1, 49.4, 38.6, 34.9, 34.6, 28.9, 28.6, 11.2.

HRMS (ESI+, m/Z): calcd for $C_8H_{16}NO[M+H]^+$: 142.12264, found: 142.12263.


HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 98:02, 0.5 mL/min, 40 °C, detection at 202 nm. Retention time (min): 43.0 (major) and 45.7 (minor).

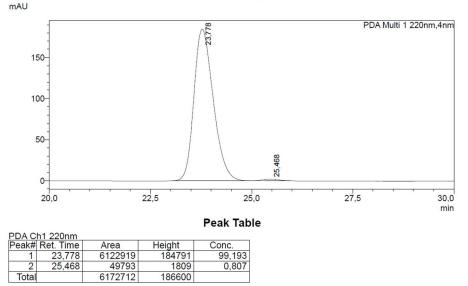


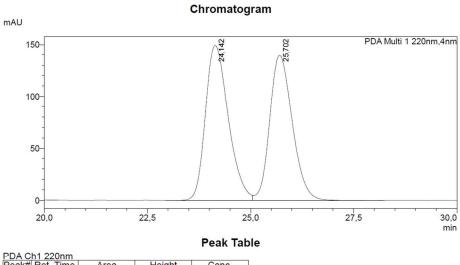
	111 20211111			
Peak#	Ret. Time	Area	Height	Conc.
1	42,914	6486680	145799	96,727
2	45,687	219477	5161	3,273
Total		6706157	150960	

Total

(R)-N,N-Diallyl-3-ethylhexanamide (2k)

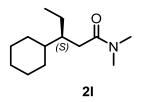
The reaction was performed with 0.2 mmol 1k, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), EtMgBr (0.4 mmol, 3.0 M in Et₂O), 2.0 mL of DCM at -78 °C. Product 2k was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 5:1) [71% yield, 98% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 5.80-5.70 (m, 2H, C*H*=CH₂), 5.20-5.07 (m, 4H, CH=C*H*₂), 3.98 (dt, *J* = 6.0, 1.4 Hz, 2H, NC*H*₂CH=CH₂), 3.86 (dt, *J* = 4.8, 1.8 Hz, 2H, NC*H*₂CH=CH₂), 2.21 (dd, *J* = 15.2, 7.2 Hz, 1H, C*H*HCO), 2.20 (dd, *J* = 15.2, 6.6 Hz, 1H, CHHCO), 1.95-1.86 (m, 1H, CHCH₂), 1.36-1.21 (m, 6H, CH₂), 0.88 (t, *J* = 6.8 Hz, 3H, C*H*₃), 0.85 (t, *J* = 7.4 Hz, 3H, C*H*₃).


¹³C NMR (CDCl₃, 100 MHz): δ 173.0, 133.6, 133.2, 117.1, 116.6, 49.3, 48.0, 37.5, 36.1, 35.6, 26.4, 19.9, 14.5, 11.0.

HRMS (ESI+, m/Z): calcd for C₁₄H₂₆NO [M-H]⁺: 224.20089, found: 224.20105.

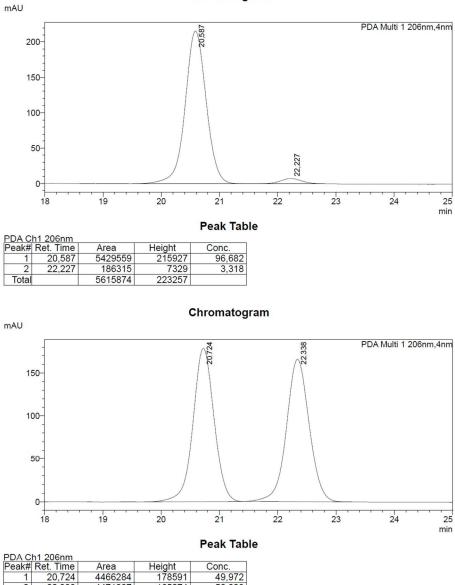
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 99.2:2, 0.5 mL/min, 40 °C, detection at 220 nm. Retention time (min): 23.8 (major) and 25.5 (minor).



Peak#	Ret. Time	Area	Height	Conc.
1	24,142	5741742	149285	51,979
2	25,702	5304468	139387	48,021
Total		11046210	288672	

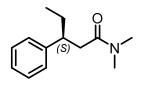
(S)-N,N-Dimethyl-3-cyclohexyl-pentanamide (21)

The reaction was performed with 0.1 mmol **11**, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand **L1** (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), EtMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product **21** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:1) [73% yield, 93% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 3.01 (s, 3H, NC*H*₃), 2.94 (s, 3H, NC*H*₃), 2.30 (dd, *J* = 15.1, 5.7 Hz, 1H, CHHCO), 2.13 (dd, *J* = 15.1, 7.8 Hz, 1H, CHHCO), 1.77-1.57 (m, 6H, C*H*₂, C*H*), 1.42-0.96 (m, 8H, C*H*₂, C*H*), 0.86 (t, *J* = 7.4 Hz, 3H, C*H*₃CH₂).

¹³C NMR (CDCl₃, 100 MHz): δ 173.5, 41.8, 40.0, 37.6, 35.7, 34.7, 30.2, 29.4, 27.00, 26.96 (2C), 23.8, 12.0.

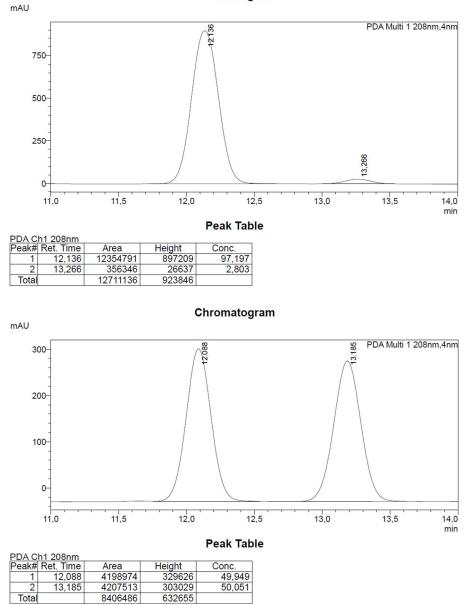
HRMS (ESI+, m/Z): calcd for C₁₃H₂₆NO [M+H]⁺: 212.20089, found: 212.20080.


HPLC: Chiracel-OZH, *n*-heptane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 206 nm. Retention time (min): 20.6 (major) and 22.2 (minor).

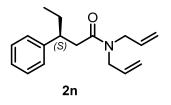
Peak#	Ret. Time	Area	Height	Conc.
1	20,724	4466284	178591	49,972
2	22,338	4471287	165274	50,028
Total		8937571	343865	

(S)-N,N-Dimethyl-3-phenylpentanamide (2m)

The reaction was performed with 0.1 mmol **1m**, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand L1 (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), EtMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product **2m** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:2) [70% yield, 94% *ee*].

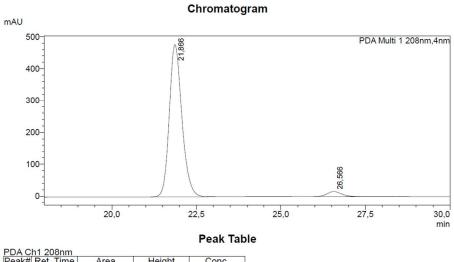

¹H NMR (CDCl₃, 400 MHz): δ 7.30-7.26 (m, 2H, CH_{Ar}), 7.21-7.17 (m, 3H, CH_{Ar}), 3.08 (ddt, J = 9.9, 7.1, 5.2 Hz, 1H, CH), 2.87 (s, 3H, NCH₃), 2.83 (s, 3H, NCH₃), 2.60 (dd, J = 15.1, 6.9 Hz, 1H, CHHCO), 2.56 (dd, J = 15.1, 7.2 Hz, 1H, CHHCO), 1.79 (dqd, J = 13.5, 7.4, 5.1 Hz, 1H, CHHCH₃), 1.61 (ddq, J = 13.5, 7.4 Hz, 1H, CHHCH₃), 0.79 (t, J = 7.4 Hz, 3H, CH₃CH₂).

¹³C NMR (CDCl₃, 100 MHz): δ 172.0, 144.9, 128.5, 127.8, 126.4, 44.2, 40.6, 37.5, 35.5, 28.9, 12.3.

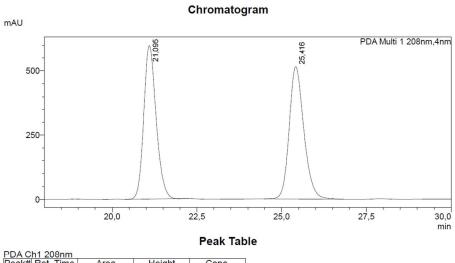

HRMS (ESI+, m/Z): calcd for C₁₃H₂₀NO [M+H]⁺: 206.15394, found: 206.15400.

HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 208 nm. Retention time (min): 12.1 (major) and 13.3 (minor).

(S)-N,N-Diallyl-3-phenylpentanamide (2n)

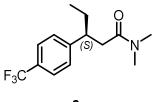

The reaction was performed with 0.1 mmol **1n**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 10 mol%), ligand **L1** (7.68 mg, 0.012 mmol, 12 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), in 1.0 mL of DCM at -78 °C and slow addition of a solution of EtMgBr (0.2 mmol, 3.0 M in Et₂O) in 0.5 mL of toluene and added dropwise to the reaction mixture during 2 hours using a syringe pump. Product **2n** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 5:1) [63% yield, 93% *ee*].

¹H NMR (CDCl₃, 400 MHz): δ 7.30-7.28 (m, 2H, CH_{Ar}), 7.20-7.17 (m, 3H, CH_{Ar}), 5.70-5.60 (m, 2H, CH=CH₂), 5.14 (dq, J = 10.4, 1.5 Hz, 1H, CHH=CH), 5.06 (dq, J = 10.3, 1.4 Hz, 1H, CHH=CH), 5.03 (dq, J = 17.1, 1.7 Hz, 1H, CHH=CH), 4.94 (dq, J = 17.1, 1.6 Hz, 1H, CHH=CH), 4.00 (dd, J = 15.3, 5.7, 1H, CHHCH=), 3.82 (dd, J = 15.3, 5.9, 1H, CHHCH=), 3.78-3.65 (m, 2H, CH₂CH=), 3.13 (dtd, J = 9.8, 7.2, 5.2 Hz, 1H, CH), 2.57 (d, J = 7.2 Hz, 2H, CH₂CO), 1.82-1.72 (m, 1H, CHHCH₃), 1.65-1.54 (m, 1H, CHHCH₃), 0.79 (t, J = 7.3 Hz, 3H, CH₃CH₂).


¹³C NMR (CDCl₃, 100 MHz): δ 172.0, 144.7, 133.4, 133.0, 128.5, 127.9, 126.4, 117.0, 116.6, 49.2, 48.0, 44.2, 40.2, 29.0, 12.3.

HRMS (ESI+, m/Z): calcd for $C_{17}H_{24}NO [M+H]^+$: 258.18549, found: 258.18524.

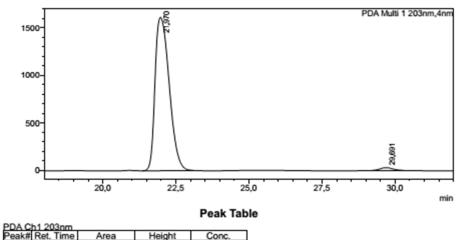
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 98:2, 0.5 mL/min, 40 °C, detection at 208 nm. Retention time (min): 21.9 (major) and 26.6 (minor).



Peak#	Ret. Time	Area	Height	Conc.
1	21,866	12443048	478839	96,377
2	26,566	467788	15844	3,623
Total		12910836	494684	

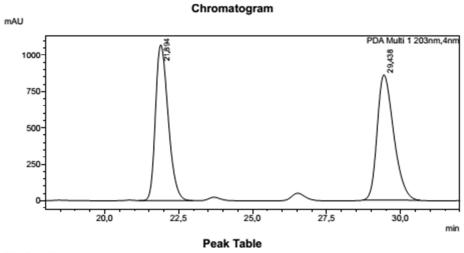
Pe	ak#	Ret. Time	Area	Height	Conc.
	1	21,095	15118330	597199	49,437
	2	25,416	15462949	513992	50,563
Т	otal		30581279	<u>1111191</u>	

(S)-N,N-Dimethyl-3-(4-(trifluoromethyl)phenyl)pentanamide (20)

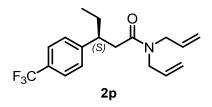


The reaction was performed with 0.1 mmol **10**, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand L1 (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), EtMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product **20** was obtained as a colorless oil after column chromatography (SiO₂, Et₂O) [81% yield, 96% *ee*].

¹H NMR (CDCl₃, 400 MHz): δ 7.54 (d, *J* = 8.1 Hz, 2H, *CH*_{Ar}), 7.33 (d, *J* = 8.1 Hz, 2H, *CH*_{Ar}), 3.19 (dtd, *J* = 9.6, 7.0, 5.3 Hz, 1H, *CH*), 2.89 (s, 3H, NC*H*₃), 2.88 (s, 3H, NC*H*₃), 2.60 (d, *J* = 7.0 Hz, 2H, *CH*₂CO), 1.80 (ddq, *J* = 13.4, 5.3, 7.3 Hz, 1H, *CH*HCH₃), 1.61 (ddq, *J* = 13.4, 9.6, 7.3 Hz, 1H, CHHCH₃), 0.79 (t, *J* = 7.3 Hz, 3H, *CH*₃CH₂).


¹³C NMR (CDCl₃, 100 MHz): δ 171.4, 149.2 (q, *J* = 1.1 Hz), 128.6 (q, *J* = 32.2 Hz), 128.1, 125.4 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 272.0 Hz), 43.9, 40.1, 37.4, 35.6, 29.0, 12.1.

HRMS (ESI+, m/Z): calcd for $C_{14}H_{19}F_3NO [M+H]^+$: 274.14133, found: 274.14140. HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 98:2, 0.5 mL/min, 40 °C, detection at 203 nm. Retention time (min): 21.9 (major) and 29.7 (minor).

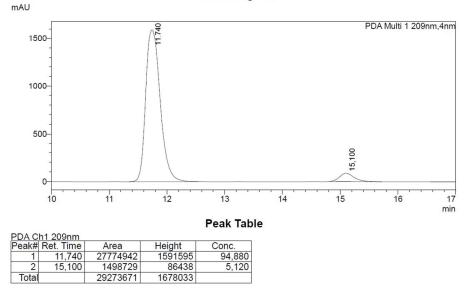

Peak#	Ret. Time	Area	Height	Conc.
1	21,970		1613896	98,109
2	29,691	1048684	31286	1,891
Total		55449653	1645182	

mAU

PDA C	h1 203nm			
Peak#	Ret. Time	Area	Height	Conc.
1	21,894	31940760	1068861	48,894
2	29,438	33386436	857427	51,106
Total		65327196	1926288	

(S)-N,N-Diallyl-3-(4-trifluoromethyl)phenyl)pentanamide (2p)

The reaction was performed with 0.1 mmol **1p**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 10 mol%), ligand **L1** (7.68 mg, 0.012 mmol, 12 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), in 1.0 mL of DCM at -78 °C and slow addition of a solution of EtMgBr (0.2 mmol, 3.0 M in Et₂O) in 0.5 mL of toluene and added dropwise to the reaction mixture during 2 hours using a syringe pump. Product **2p** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 5:1) [67% yield, 90% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 7.53 (d, *J* = 7.8 Hz, 2H, *CH*_{Ar}), 7.31 (d, *J* = 7.8 Hz, 2H, *CH*_{Ar}), 5.72-5.59 (m, 2H, *CH*=CH₂), 5.15 (dd, *J* = 10.1, 1.5 Hz, 1H, *CH*H=CH), 5.06 (dd, *J* = 10.2, 1.4 Hz, 1H, *CH*H=CH), 5.01 (dd, *J* = 17.1, 1.8 Hz, 1H, CH*H*=CH), 4.94 (dd, *J* = 17.1, 1.6 Hz, 1H, CH*H*=CH), 3.93 (ddt, *J* = 15.3, 5.8, 1.5 Hz, 1H, *CH*HCH=), 3.87 (ddt, *J* = 15.3, 5.9, 1.4 Hz, 1H, CH*H*CH=), 3.76 (dt, *J* = 4.8, 1.7 Hz, 2H, *CH*₂CH=), 3.24 (dtd, *J* = 9.6, 7.2, 5.3 Hz, 1H, *CH*), 2.59 (dd, *J* = 15.6, 6.9 Hz, 1H, CH*H*CO), 2.59 (dd, *J* = 15.6, 7.4 Hz, 1H, *CH*HCO), 1.77 (dqd, *J* = 13.3, 7.3, 5.3 Hz, 1H, *CH*HCH₃), 1.77 (ddq, *J* = 13.3, 9.6, 7.3 Hz, 1H, CH*H*CH₃), 0.78 (t, *J* = 7.3 Hz, 3H, *CH*₃CH₂).

¹³C NMR (CDCl₃, 100 MHz): δ 171.4, 149.0, 133.2, 132.8, 129.0 (q, *J* = 30.7 Hz), 128.2, 125.4 (q, *J* = 3.7 Hz), 124.4 (q, *J* = 272.1 Hz), 117.1, 116.6, 49.2, 48.2, 43.9, 39.7, 29.0, 12.2.

HRMS (ESI+, m/Z): calcd for C₁₈H₂₃F₃NO [M+H]⁺: 326.17263, found: 326.17300.

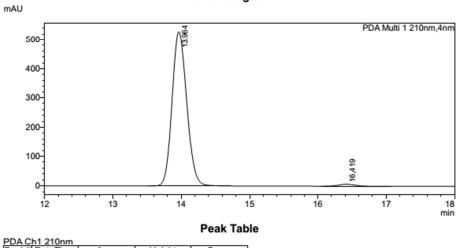
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 209 nm. Retention time (min): 11.7 (major) and 15.1 (minor).



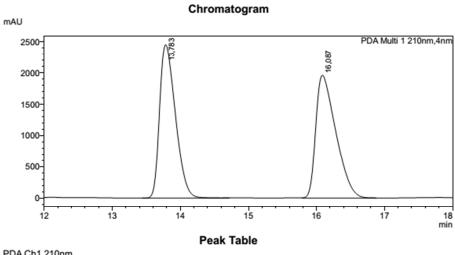
Chromatogram mAU PDA Multi 1 209nm,4nm 11,698 14,922 500-250-0-12 11 14 15 16 13 17 min 10 **Peak Table** PDA Ch1 209nm

F	'eak#	Ret. Time	Area	Height	Conc.
Γ	1	11,698	9562547	653296	49,836
Γ	2	14,922	9625463	529518	50,164
Г	Total		19188010	1182814	
_					

(S)-N,N-Dimethyl-3-(4-methoxyphenyl)pentanamide (2q)

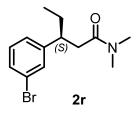

The reaction was performed with 0.1 mmol 1q, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand L1 (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), EtMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product 2q was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:10) [70% yield, 97% *ee*].

¹H NMR (CDCl₃, 400 MHz): δ 7.12 (d, *J* = 8.6 Hz, 2H, *CH*_{Ar}), 6.83 (d, *J* = 8.6 Hz, 2H, *CH*_{Ar}), 3.78 (s, 3H, OCH₃), 3.03 (dtd, *J* = 9.8, 7.1, 5.2 Hz, 1H, *CH*), 2.87 (s, 3H, NCH₃), 2.84 (s, 3H, NCH₃), 2.55 (dd, *J* = 15.5, 7.1 Hz, 1H, *CH*HCO) 2.54 (dd, *J* = 15.5, 7.1 Hz, 1H, CHHCO), 1.76 (dqd, *J* = 14.6, 7.2, 5.2 Hz, 1H, CHHCH₃), 1.57 (ddq, *J* = 14.6, 9.8, 7.2 Hz, 1H, CHHCH₃), 0.78 (t, *J* = 7.3 Hz, 3H, *CH*₃CH₂).


¹³C NMR (CDCl₃, 100 MHz): δ 172.2, 158.1, 136.9, 128.6, 113.8, 55.3, 43.5, 40.9, 37.5, 35.6, 29.1, 12.3.

HRMS (ESI+, m/Z): calcd for C₁₄H₂₂NO₂ [M+H]⁺: 236.16451, found: 236.16450.

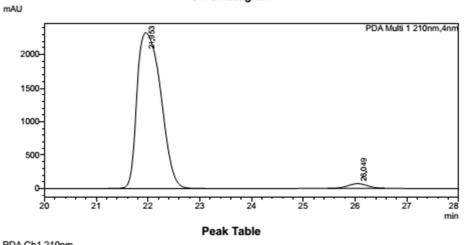
HPLC: Chiracel-OJH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 210 nm. Retention time (min): 14.0 (major) and 16.4 (minor).



Peak#	Ret. Time	Area	Height	Conc.
1	13,964	7850822	528047	98,523
2	16,419	117709	6702	1,477
Total		7968531	534748	

- F	'DA C	n1 210nm			
F	Peak#	Ret. Time	Area	Height	Conc.
Γ	1	13,783	39665936	2454329	49,783
Γ	2	16,087	40011474	1958244	50,217
	Total		79677409	4412573	

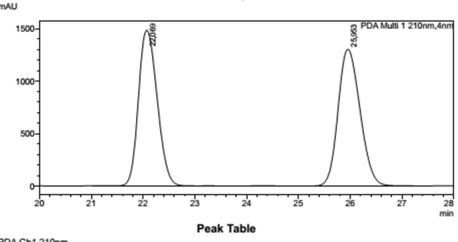
(S)-N,N-Dimethyl-3-(3-bromophenyl)pentanamide (2r)


The reaction was performed with 0.1 mmol 1r, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand L1 (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), EtMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product 2r was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:2) [74% yield, 95% *ee*].

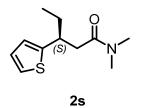
¹H NMR (CDCl₃, 400 MHz): δ 7.34-7.30 (m, 2H, CH_{Ar}), 7.15-7.14 (m, 2H, CH_{Ar}), 3.07 (dtd, J = 9.8, 7.1, 5.1 Hz, 1H, CH), 2.88 (s, 6H, NCH₃), 2.55 (d, J = 7.0 Hz, 2H, CH₂CO), 1.77 (dqd, J = 14.7, 7.3, 5.1 Hz, 1H, CHHCH₃), 1.57 (ddq, J = 14.7, 9.8, 7.3 Hz, 1H, CHHCH₃), 0.78 (t, J = 7.4 Hz, 3H, CH₃CH₂).

¹³C NMR (CDCl₃, 100 MHz): δ 171.5, 147.5, 130.6, 130.0, 129.5, 126.8, 122.6, 43.9, 40.2, 37.4, 35.6, 29.0, 12.2.

HRMS (ESI+, m/Z): calcd for C₁₃H₁₉BrNO [M+H]⁺: 284.06445, found: 284.06469.


HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 97:3, 0.5 mL/min, 40 °C, detection at 210 nm. Retention time (min): 22.0 (major) and 26.0 (minor).

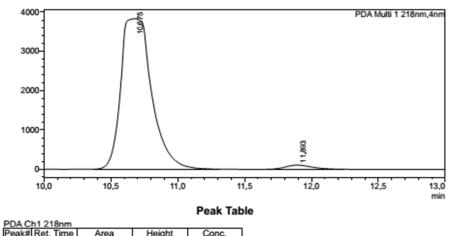
PDA C	h1 210nm			
Peak#	Ret. Time	Area	Height	Conc.
1	21,953	74443452	2327134	97,606
2	26,049	1825778	69430	2,394
Total		76269229	2396564	


mAU

	PDA Ch1 210nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	22,069	37665334	1486350	49,455		
2	25,953	38495669	1301772	50,545		
Total		76161003	2788122			

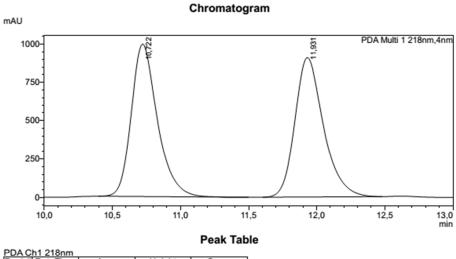
(S)-N,N-Dimethyl-3-(thiophen-2-yl)pentanamide (2s)

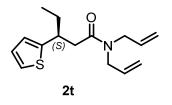
The reaction was performed with 0.1 mmol **1s**, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand **L1** (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), EtMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product **2s** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:5) [85% yield, 95% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 7.13 (d, *J* = 5.1 Hz, 1H, *CH*_{Ar}), 6.91 (dd, *J* = 5.1, 3.4 Hz, 1H, *CH*_{Ar}), 6.83 (d, *J* = 3.4 Hz, 1H, *CH*_{Ar}), 3.49-3.42 (m, 1H, *CH*), 2.90 (s, 3H, NC*H*₃), 2.89 (s, 3H, NC*H*₃), 2.64 (dd, *J* = 15.2, 7.1, Hz, 1H, *CH*HCO), 2.58 (dd, *J* = 15.2, 6.9, Hz, 1H, CHHCO), 1.82 (dqd, *J* = 14.4, 7.3, 5.1 Hz, 1H, *CH*HCH₃), 1.61 (ddq, *J* = 14.4, 9.3, 7.3 Hz, 1H, CHHCH₃), 0.88 (t, *J* = 7.2 Hz, 3H, *CH*₃CH₂).

¹³C NMR (CDCl₃, 100 MHz): δ 171.6, 148.9, 126.7, 124.2, 123.0, 41.4, 39.6, 37.4, 35.6, 30.3, 12.2.

HRMS (ESI+, m/Z): calcd for C₁₁H₁₈NOS [M+H]⁺: 212.11036, found: 212.11043.


HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 218 nm. Retention time (min): 10.7 (major) and 11.9 (minor).

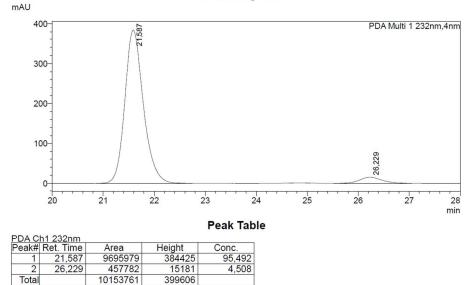

Peak#	Ret. Time	Area	Height	Conc.
1	10,675	61580191	3829489	97,636
2	11,893	1490738	108543	2,364
Total		63070929	3938032	

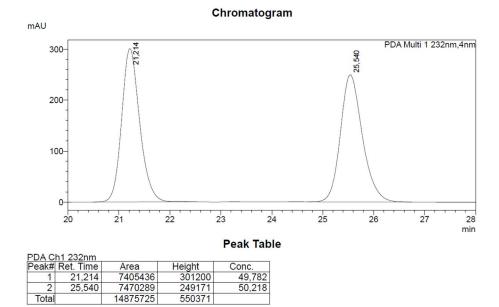
mAU

Peak#	Ret. Time	Area	Height	Conc.
1	10,722	13192277	994164	49,986
2	11,931	13199894	906279	50,014
Total		26392172	1900443	

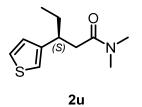
(S)-N,N-Diallyl-3-(thiophen-2-yl)pentanamide (2t)

The reaction was performed with 0.1 mmol **1t**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 10 mol%), ligand **L1** (7.68 mg, 0.012 mmol, 12 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), in 1.0 mL of DCM at -78 °C and slow addition of a solution of EtMgBr (0.2 mmol, 3.0 M in Et₂O) in 0.5 mL of toluene and added dropwise to the reaction mixture during 2 hours using a syringe pump. Product **2t** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 5:1) [63% yield, 91% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 7.13 (d, J = 5.0 Hz, 1H, CH_{Ar}), 6.91 (dd, J = 5.0, 3.4 Hz, 1H, CH_{Ar}), 6.83 (d, J = 3.4 Hz, 1H, CH_{Ar}), 5.74-5.63 (m, 2H, $CH=CH_2$), 5.16 (d, J = 10.4, 1H, CHH=CH), 5.10-5.04 (m, 2H, $CH_2=CH$), 4.99 (d, J = 17.1, 1H, CHH=CH), 4.04 (dd, J = 15.3, 5.5 Hz, 1H, CHHCH=), 3.84 (dd, J = 15.3, 6.0 Hz, 1H, CHHCH=), 3.83-3.69 (m, 2H, $CH_2CH=$), 3.73 (dd, J = 17.5, 4.7 Hz, 2H, $CH_2CH=$), 3.54-3.47 (m, 1H, CH), 2.62 (dd, J = 15.1, 7.3 Hz, 1H, CHHCO), 2.57 (dd, J = 15.1, 6.8 Hz, 1H, CHHCO), 1.85-1.75 (m, 1H, $CHHCH_3$), 1.66-1.54 (m, 1H, $CHHCH_3$), 0.87 (t, J = 7.3 Hz, 3H, CH_3CH_2).

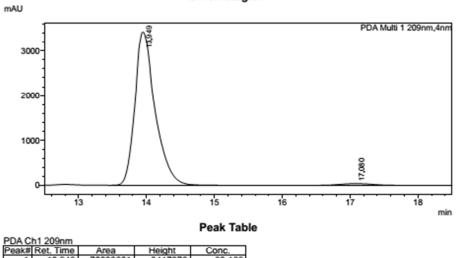

41.1, 39.6, 30.3, 12.2.

HRMS (ESI+, m/Z): calcd for $C_{15}H_{22}NOS [M+H]^+$: 264.14166, found: 264.14193.

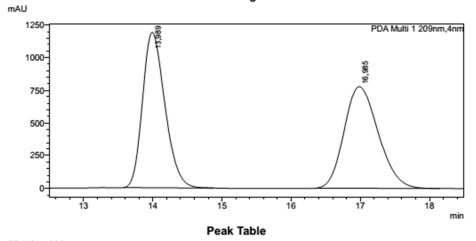

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 98:2, 0.5 mL/min, 40 °C, detection at 232 nm. Retention time (min): 21.6 (major) and 26.2 (minor).

(S)-N,N-Dimethyl-3-(thiophen-2-yl)pentanamide (2u)

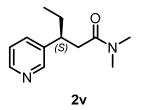
The reaction was performed with 0.1 mmol 1u, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand L1 (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), EtMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product 2u was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:5) [63% yield, 96% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 7.24 (dd, J = 5.0, 3.0 Hz, 1H, CH_{Ar}), 6.98 (ddd, J = 3.0, 1.3, 0.5 Hz, 1H, CH_{Ar}), 6.98 (dd, J = 5.0, 1.3 Hz, 1H, CH_{Ar}) 3.24 (dtd, J = 9.5, 7.0, 5.0 Hz, 1H, CH), 2.89 (s, 3H, NCH₃), 2.84 (s, 3H, NCH₃), 2.56 (dd, J = 14.9, 7.0, Hz, 1H, CHHCO), 2.53 (dd, J = 14.9, 7.0, Hz, 1H, CHHCO), 1.76 (dqd, J = 13.3, 7.3, 5.0 Hz, 1H, CHHCH₃), 1.60 (ddq, J = 13.3, 9.5, 7.3 Hz, 1H, $CHHCH_3$), 0.82 (t, J = 7.4 Hz, 3H, CH_3CH_2).

¹³C NMR (CDCl₃, 100 MHz): δ 172.1, 145.7, 126.9, 125.4, 120.3, 40.3, 39.5, 37.4, 35.6, 29.0, 12.2.


HRMS (ESI+, m/Z): calcd for $C_{11}H_{18}NOS [M+H]^+$: 212.11036, found: 212.11035.

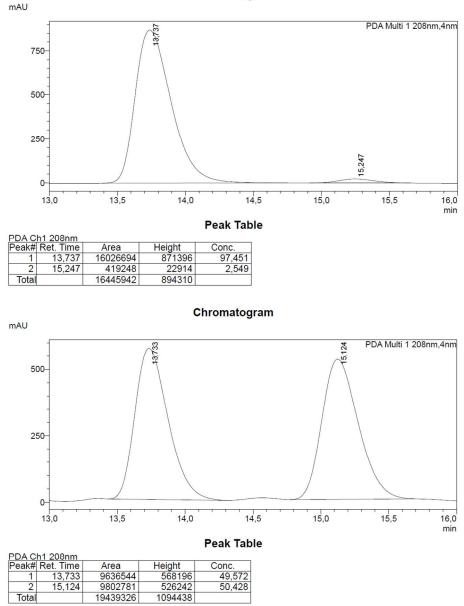
HPLC: Chiracel-OBH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 209 nm. Retention time (min): 13.9 (major) and 17.1 (minor).



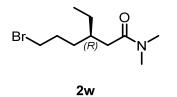
Peak#	Ret. Time	Area	Height	Conc.
1	13,949	70888601	3417676	98,169
2	17,080	1321822	40020	1,831
Total		72210423	3457696	

PDA C	PDA Ch1 209nm					
Peak#	Ret. Time	Area	Height	Conc.		
1	13,989	26693908	1188704	50,046		
2	16,985	26645038	778613	49,954		
Total		53338946	1967317			

(S)-N,N-Dimethyl-3-(3-pyridinyl)pentanamide (2v)


The reaction was performed with 0.1 mmol 1v, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand L1 (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), EtMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product 2v was obtained as a colorless oil after column chromatography (SiO₂ previously treated with NEt₃ (10%), Et₂O:MeOH 30:1) [74% yield, 95% *ee*]. *Note: In this case the reaction was quenched with 2 M NaOH solution*.

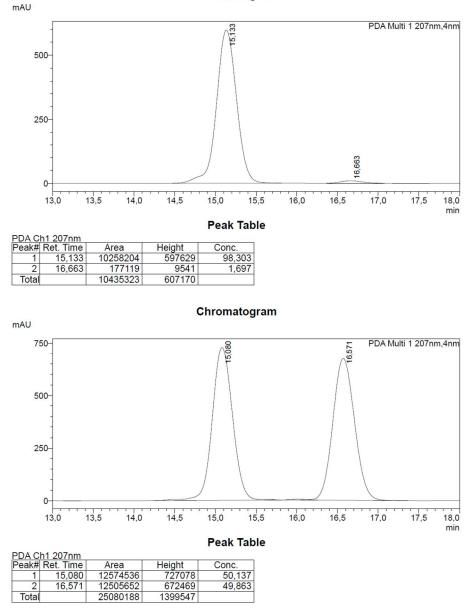
¹H NMR (CDCl₃, 400 MHz): δ 8.44 (s, 1H, *CH*_{Ar}), 8.41 (d, *J* = 4.8 Hz, 1H, *CH*_{Ar}), 7.51 (dt, *J* = 7.8, 1.9 Hz, 1H, *CH*_{Ar}), 7.19 (dd, *J* = 7.8, 4.8 Hz, 1H, *CH*_{Ar}), 3.11 (dtd, *J* = 9.6, 7.1, 5.2 Hz, 1H, *CH*), 2.87 (s, 3H, NC*H*₃), 2.84 (s, 3H, NC*H*₃), 2.59 (dd, *J* = 15.4, 6.7 Hz, 1H, *CH*HCO), 2.57 (dd, *J* = 15.4, 7.4 Hz, 1H, CHHCO), 1.79 (dqd, *J* = 13.6, 7.4, 5.1 Hz, 1H, *CH*HCH₃), 1.59 (ddq, *J* = 13.6, 9.6, 7.4 Hz, 1H, CHHCH₃), 0.77 (t, *J* = 7.4 Hz, 3H, *CH*₃CH₂).


¹³C NMR (CDCl₃, 100 MHz): δ 171.2, 149.5, 147.9, 140.2, 135.5, 123.5, 41.7, 40.0, 37.4, 35.6, 28.9, 12.1.

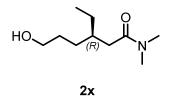
HRMS (ESI+, m/Z): calcd for $C_{12}H_{19}N_2O[M+H]^+$: 207.14919, found: 207.14865.

HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 80:20, 0.5 mL/min, 40 °C, detection at 208 nm. Retention time (min): 13.7 (major) and 15.2 (minor).

(R)-N,N-Dimethyl-6-bromo-3-ethyl-hexanamide (2w)


The reaction was performed with 0.1 mmol **1w**, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand **L1** (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), EtMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product **2w** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:1) [76% yield, 97% *ee*].

¹H NMR (CDCl₃, 400 MHz): δ 3.40 (dt, *J* = 12.0, 6.8 Hz, 1H, C*H*HBr), 3.38 (dt, *J* = 12.0, 6.8 Hz, 1H, CHHBr), 3.00 (s, 3H, NCH₃), 2.94 (s, 3H, NCH₃), 2.28 (dd, *J* = 15.3, 6.5 Hz, 1H, C*H*HCO), 2.18 (dd, *J* = 15.3, 7.1 Hz, 1H, CHHCO), 1.97-1.82 (m, 3H, CHCH₂, CH₂CH₂Br), 1.46-1.32 (m, 4H, CH₂CH₃, CH₂CH₂CH₂Br), 0.88 (t, *J* = 7.4 Hz, 3H, CH₃CH₂).

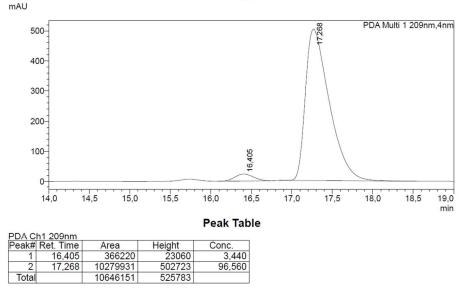

¹³C NMR (CDCl₃, 100 MHz): δ 172.6, 37.6, 35.6, 34.3, 32.3, 30.3, 26.5, 11.0.

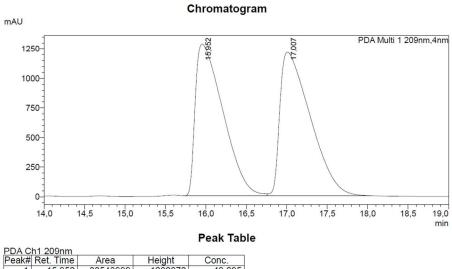
HRMS (ESI+, m/Z): calcd for C₁₀H₂₁BrNO [M+H]⁺: 250.08010, found: 250.08049.

HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 207 nm. Retention time (min): 15.1 (major) and 16.7 (minor).

(R)-N,N-Dimethyl-6-hydroxy-3-ethyl-hexanamide (2x)

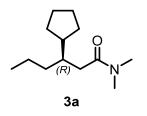
The reaction was performed with 0.1 mmol 1x, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand L1 (3.84 mg, 0.006 mmol, 6 mol%), TMSOTf (54 μ L, 0.3 mmol), EtMgBr (0.3 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -50 °C. Product 2x was obtained as a colorless oil after column chromatography (SiO₂, Et₂O:MeOH 30:1) [71% yield, 93% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 3.69-3.58 (m, 2H, CH₂OH), 3.00 (s, 3H, NCH₃), 2.93 (s, 3H, NCH₃), 2.30 (dd, J = 15.5, 5.4 Hz, 1H, CHHCO), 2.15 (dd, J = 15.5, 8.4 Hz, 1H, CHHCO), 1.93-1.86 (m, 1H, CH), 1.65-1.35 (m, 2H, CH₂CH₂OH), 1.46-1.35 (m, 2H, CH₂CH₂OH), 1.34-1.22 (m, 2H, CH₂CH₃), 0.87 (t, J = 7.4 Hz, 3H, CH₃CH₂).


¹³C NMR (CDCl₃, 100 MHz): δ 173.2, 62.5, 37.7, 37.5, 35.6, 35.1, 29.7, 29.4, 26.6, 11.2.

HRMS (ESI+, m/Z): calcd for C₁₀H₂₂NO₂ [M+H]⁺: 188.16451, found: 188.16425.

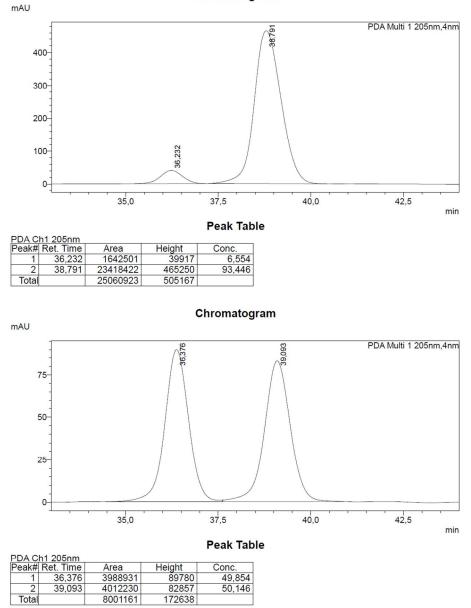
HPLC: Chiracel-OJH, *n*-heptane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 209 nm. Retention time (min): 16.4 (minor) and 17.3 (major).



Реак#	Ret. Time	Area	Height	Conc.
1	15,952	30543999	1282872	49,095
2	17,007	31670290	1211003	50,905
Total		62214289	2493875	

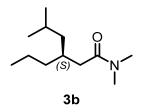
(R)-N,N-Dimethyl-3-cyclopentyl-hexanamide (3a)

The reaction was performed with 0.2 mmol **1a**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L**1** (7.68 mg, 0.012 mmol, 6 mol%), TMSOTf (72 μ L, 0.4 mmol), cyclopentylMgBr (0.4 mmol, 2.0 M in Et₂O), 2.0 mL of DCM at -50 °C. Product **3a** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 2:1) [78% yield, 87% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 3.01 (s, 3H, NC*H*₃), 2.93 (s, 3H, NC*H*₃), 2.28 (dd, *J* = 15.2, 5.6 Hz, 1H, CHHCO), 2.22 (dd, *J* = 15.2, 7.5 Hz, 1H, CHHCO), 1.96-1.44 (m, 8H, CHCH₂, CH₂), 1.38-1.09 (m, 6H, CH₂), 0.87 (t, *J* = 6.9 Hz, 3H, CH₃CH₂).

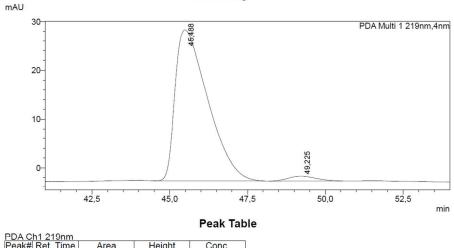
¹³C NMR (CDCl₃, 100 MHz): δ 173.3, 43.9, 39.1, 37.6, 36.4, 35.6, 35.1, 30.1, 30.0, 25.6, 25.5, 19.8, 14.7.

HRMS (ESI+, m/Z): calcd for C₁₃H₂₆NO [M+H]⁺: 212.20089, found: 212.20077.

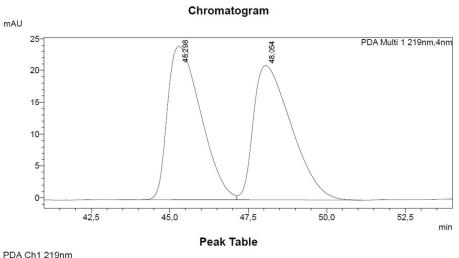

HPLC: Chiracel-OZH, *n*-heptane/*i*-PrOH 98:2, 0.5 mL/min, 40 °C, detection at 205 nm. Retention time (min): 36.2 (minor) and 38.8 (major).

Total

(S)-N,N-Dimethyl-5-methy-3-propyl-hexanamide (3b)

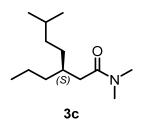

The reaction was performed with 0.2 mmol **1a**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), TMSOTf (72 μ L, 0.4 mmol), cyclopentylMgBr (0.4 mmol, 2.0 M in Et₂O), 2.0 mL of DCM at -50 °C. Product **3b** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 2:1) [84% yield, 95% *ee*].

¹H NMR (CDCl₃, 400 MHz): δ 2.99 (s, 3H, NC*H*₃), 2.93 (s, 3H, NC*H*₃), 2.22 (dd, *J* = 15.1, 7.3 Hz, 1H, CHHCO), 2.17 (dd, *J* = 15.1, 6.4 Hz, 1H, CHHCO), 2.03-1.93 (m, 1H, CH₃CH₂CH₂CH), 1.67-1.59 (dhept, *J*=13.3, 6.6 Hz, 1H, CH₃C*H*), 1.34-1.21 (m, 4H, CH₃C*H*₂, CH₃CH₂C*H*₂), 1.19-1.04 (m, 2H, CH₃CHC*H*₂), 0.87 (t, *J* = 6.9 Hz, 3H, CH₃CH₂), 0.87 (d, *J* = 6.6 Hz, 3H, CH₃CH), 0.86 (d, *J* = 6.6 Hz, 3H, CH₃CH).


¹³C NMR (CDCl₃, 100 MHz): δ 173.1, 44.1, 38.6, 37.6, 36.8, 35.6, 32.5, 25.5, 23.1, 22.9, 19.7, 14.6.

HRMS (ESI+, m/Z): calcd for C₁₂H₂₆NO [M+H]⁺: 200.20089, found: 200.20066.

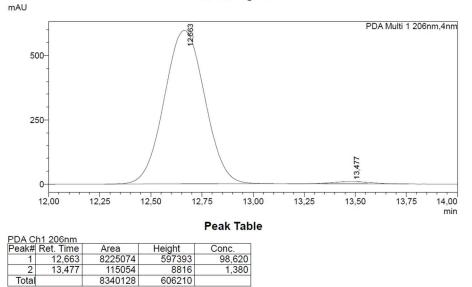
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 95.5:0.5, 0.5 mL/min, 40 °C, detection at 219 nm. Retention time (min): 45.5 (major) and 49.2 (minor).

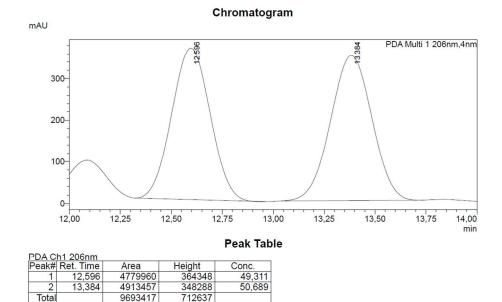


Peak#	Ret. Time	Area	Height	Conc.
1	45,488	2263494	30996	97,365
2	49,225	61265	1002	2,635
Total		2324759	31998	

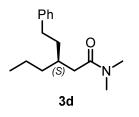
	Ret. Time	Area	Height	Conc.
1	45,298	1780403	24126	50,090
2	48,054	1774024	21055	49,910
Total		3554427	45181	

(S)-N,N-Dimethyl-6-methy-3-propyl-heptanamide (3c)


The reaction was performed with 0.2 mmol **1a**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand **L1** (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), *i*-pentylMgBr (0.4 mmol, 2.0 M in Et₂O), 2.0 mL of DCM at -78 °C. Product **3c** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 2:1) [77% yield, 97% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 2.99 (s, 3H, NC*H*₃), 2.93 (s, 3H, NC*H*₃), 2.21 (d, *J* = 6.9 Hz, 2H, C*H*₂CO), 1.94-1.84 (m, 1H, CH₃CH₂CH₂C*H*), 1.52-1.41 (m, 1H, CH₃C*H*), 1.34-1.19 (m, 6H, C*H*₂), 1.17-1.11 (m, 2H, CH₃CHC*H*₂), 0.87 (t, *J* = 6.7 Hz, 3H, C*H*₃CH₂), 0.85 (d, *J* = 6.6 Hz, 6H, C*H*₃CH).

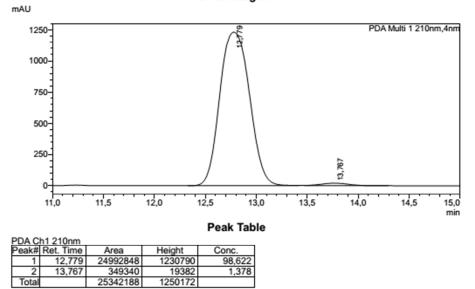
¹³C NMR (CDCl₃, 100 MHz): δ 173.1, 38.2, 37.6, 36.4, 35.9, 35.6, 34.9, 31.8, 28.4, 22.8, 22.7, 19.9, 14.5.

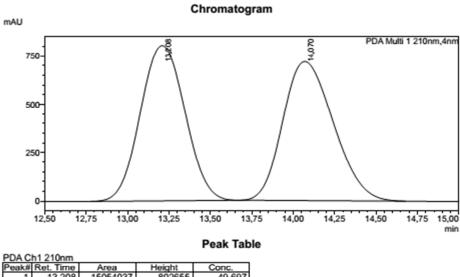

HRMS (ESI+, m/Z): calcd for C₁₃H₂₈NO [M+H]⁺: 214.21654, found: 214.21645.

HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 98:2, 0.5 mL/min, 40 °C, detection at 206 nm. Retention time (min): 12.7 (major) and 13.5 (minor).

(S)-N,N-Dimethyl-3-phenethylhexanamide (3d)

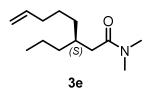
The reaction was performed with 0.2 mmol **1a**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), phenylethylMgBr (0.4 mmol, 2.6 M in Et₂O), 2.0 mL of DCM at -78 °C. Product **3d** was obtained as a orange oil after column chromatography (SiO₂, pentane:Et₂O 1:1) [73% yield, 97% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 7.28-7.25 (m, 2H, CH_{Ar}), 7.19-7.14 (m, 3H, CH_{Ar}), 2.96 (s, 3H, NCH₃), 2.94 (s, 3H, NCH₃), 2.67-2.55 (m, 2H, CH₂Ph), 2.30 (dd, J = 15.9, 7.0 Hz, 1H, CHHCO), 2.28 (dd, J = 15.9, 6.8 Hz, 1H, CHHCO), 2.07-1.97 (m, 1H, CH), 1.66-1.60 (m, 2H, CH₂CH₃), 1.38-1.28 (m, 4H, CH₂CH₂CH₃ and CH₂CH₂Ph), 0.90 (t, J = 6.9 Hz, 3H, CH₃CH₂).


¹³C NMR (CDCl₃, 100 MHz): δ 172.8, 142.9, 128.5, 128.4, 125.8, 38.2, 37.6, 36.4, 36.0, 35.6, 34.6, 33.3, 19.9, 14.6.

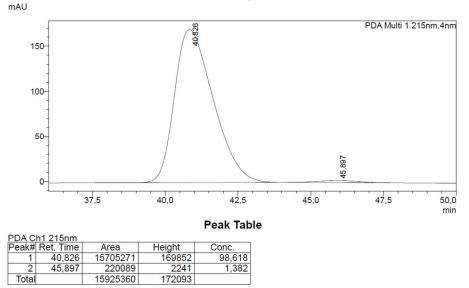
HRMS (ESI+, m/Z): calcd for C₁₆H₂₆NO [M+H]⁺: 248.20089, found: 248.20103.

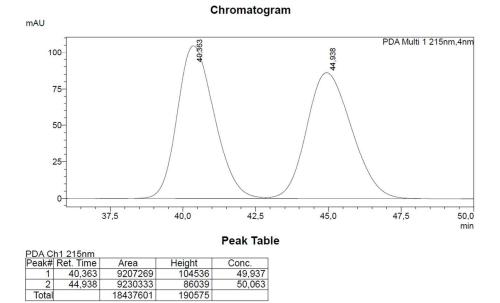
HPLC: Chiracel-OJH, *n*-heptane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 210 nm. Retention time (min): 12.8 (major) and 13.8 (minor).



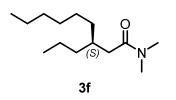
Peak#	Ret. Time	Area	Height	Conc.
1	13,208	15054037	802655	49,697
2	14,070	15237642	717338	50,303
Tota		30291679	1519993	

(S)-N,N-Dimethyl-3-propyl-oct-7-enamide (3e)



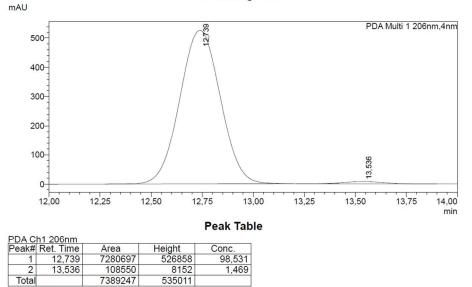

The reaction was performed with 0.2 mmol **1a**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), pent-4-en-1-ylMgBr (0.4 mmol, 1.7 M in Et₂O), 2.0 mL of DCM at -78 °C. Product **3e** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:1) [80% yield, 97% *ee*].

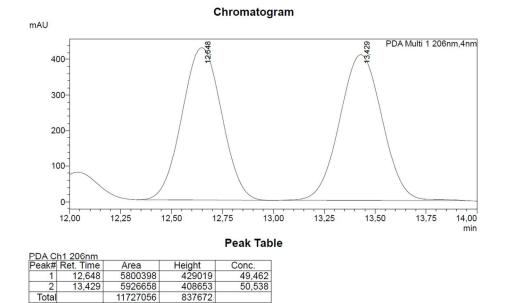
¹H NMR (CDCl₃, 400 MHz): δ 5.79 (ddt, *J* = 17.1, 10.3, 6.7 Hz, 1H, CH=CH₂), 4.97 (dc, *J* = 17.1, 1.9 Hz, 1H, CH=CHH), 4.91 (ddt, *J* = 10.3, 2.0, 1.1 Hz, 1H, CH=CHH), 2.99 (s, 3H, NCH₃), 2.93 (s, 3H, NCH₃), 2.23 (dd, *J* = 15.4, 6.9 Hz, 1H, CHHCO), 2.19 (dd, *J* = 15.4, 6.9 Hz, 1H, CHHCO), 2.05-1.99 (m, 2H, CH₂CH=CH₂), 1.97-1.90 (m, 1H, CHCH₂CO), 1.41-1.24 (m, 8H, CH₂), 0.87 (t, *J* = 6.6 Hz, 3H, CH₃CH₂). ¹³C NMR (CDCl₃, 100 MHz): δ 173.0, 139.1, 114.4, 38.2, 37.6, 36.4, 35.6, 34.6, 34.2, 33.6, 26.1, 19.9, 14.5.


HRMS (ESI+, m/Z): calcd for C₁₃H₂₆NO [M+H]⁺: 212.20089, found: 212.20081.

HPLC: Chiracel-OBH, *n*-heptane/*i*-PrOH 99.7:0.3, 0.5 mL/min, 40 °C, detection at 215 nm. Retention time (min): 40.8 (major) and 45.9 (minor).

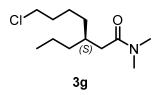
(S)-N,N-Dimethyl-3-propyl-nonanamide (3f)


The reaction was performed with 0.2 mmol **1a**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), HexMgBr (0.4 mmol, 2.0 M in Et₂O), 2.0 mL of DCM at -78 °C. Product **3f** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:1) [82% yield, 97% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 2.99 (s, 3H, NC*H*₃), 2.93 (s, 3H, NC*H*₃), 2.21 (d, *J* = 6.9 Hz, 2H, C*H*₂CO), 1.92-1.89 (m, 1H, C*H*), 1.32-1.17 (m, 14H, C*H*₂), 0.87 (t, *J* = 6.6 Hz, 3H, C*H*₃), 0.86 (t, *J* = 6.9 Hz, 3H, C*H*₃).

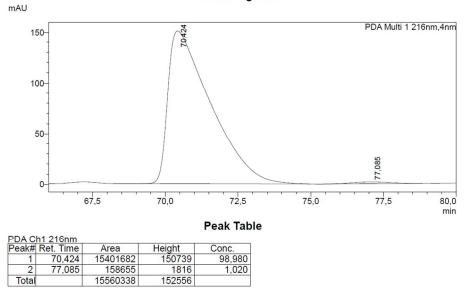
¹³C NMR (CDCl₃, 100 MHz): δ 173.1, 38.2, 37.6, 36.5, 35.6, 34.8, 34.1, 32.0, 29.8, 26.7, 22.8, 19.9, 14.5, 14.2.

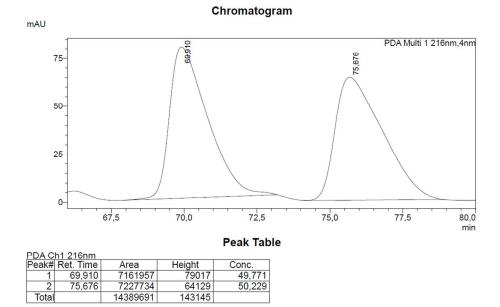
HRMS (ESI+, m/Z): calcd for C₁₄H₃₀NO [M+H]⁺: 228.23219, found: 228.23209.


HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 98:2, 0.5 mL/min, 40 °C, detection at 206 nm. Retention time (min): 12.7 (major) and 13.5 (minor).

S121

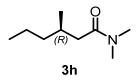
(S)-N,N-Dimethyl-7-chloro-3-propyl-heptanamide (3g)


The reaction was performed with 0.2 mmol **1a**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand L1 (7.68 mg, 0.012 mmol, 6 mol%), BF₃·Et₂O (50 μ L, 0.4 mmol), (4-chlorobutyl)MgBr (0.4 mmol, 1.3 M in Et₂O), 2.0 mL of DCM at -78 °C. Product **3g** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:1) [41% yield, 98% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 3.54 (t, *J* = 6.6 Hz, 2H, CH₂Cl), 3.01 (s, 3H, NCH₃), 2.95 (s, 3H, NCH₃), 2.26 (dd, *J* = 15.2, 6.7 Hz, 1H, CHHCO), 2.20 (dd, *J* = 15.2, 7.0 Hz, 1H, CHHCO), 1.98-1.94 (m, 1H, CH), 1.80-1.73 (m, 2H, CH₂CH₂Cl), 1.48-1.40 (m, 2H, CH₂CH₂CH₂Cl), 1.35-1.25 (m, 6H, CH₂), 0.89 (t, *J* = 6.7 Hz, 3H, CH₃CH₂).

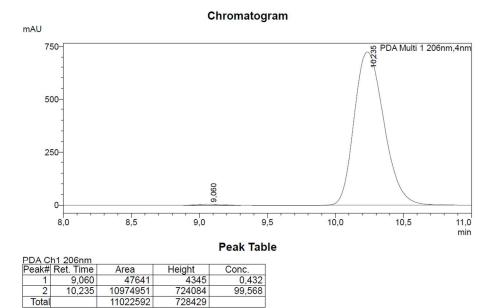
¹³C NMR (CDCl₃, 100 MHz): δ 172.9, 45.2, 38.0, 37.6, 36.4, 35.6, 34.5, 33.3, 32.9, 24.0, 19.9, 14.5.

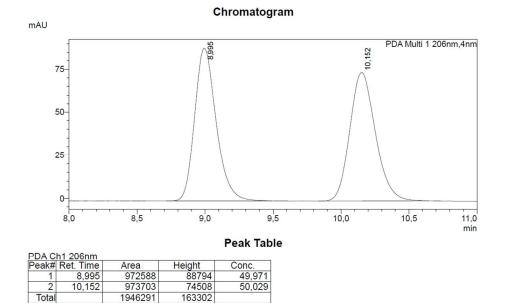
HRMS (ESI+, m/Z): calcd for $C_{12}H_{25}CINO [M+H]^+$: 234.16192, found: 234.16222.


HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 99.5:0.5, 0.5 mL/min, 40 °C, detection at 216 nm. Retention time (min): 70.4 (major) and 77.1 (minor).

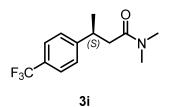
S123

(R)-N,N-Dimethyl-3-methyl-hexanamide (3h)


The reaction was performed with 0.2 mmol **1a**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), ligand **L1** (7.68 mg, 0.012 mmol, 6 mol%), TMSOTf (72 μ L, 0.4 mmol), MeMgBr (0.4 mmol, 3.0 M in Et₂O), 2.0 mL of DCM at -50 °C. Product **3h** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:1) [93% yield, 99% *ee*]. *Note: different temperatures and reactions scales, LA have been tried providing the corresponding product with nearly similar outcome. For details see Table S2 , entries 13, 14, 17, 20, 23*


¹H NMR (CDCl₃, 400 MHz): δ 3.00 (s, 3H, NC*H*₃), 2.95 (s, 3H, NC*H*₃), 2.29 (dd, *J* = 14.6, 5.8 Hz, 1H, CHHCO), 2.12 (dd, *J* = 14.6, 8.1 Hz, 1H, CHHCO), 2.05-1.97 (m, 1H, CHCH₂), 1.43-1.24 (m, 3H, CH₂CH₃, CHHCH₂CH₃), 1.19-1.10 (m, 1H, CHHCH₂CH₃), 0.93 (d, *J* = 6.6 Hz, 3H, CH₃CH), 0.89 (t, *J* = 7.0 Hz, 3H, CH₃CH₂).

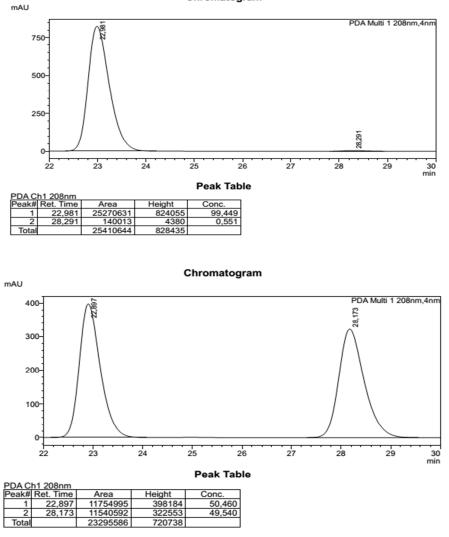
¹³C NMR (CDCl₃, 100 MHz): δ 172.9, 40.8, 39.5, 37.6, 35.5, 30.2, 20.3, 20.0, 14.4.


HRMS (ESI+, m/Z): calcd for $C_9H_{20}NO [M+H]^+$: 158.15394, found: 158.15384. HPLC: Chiracel-OBH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 206 nm. Retention time

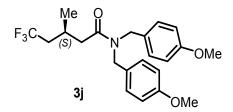
(min): 9.1 (minor) and 10.2 (major).

(S)-N,N-Dimethyl-3-(4-(trifluoromethyl)phenyl)butanamide (3i)

The reaction was performed with 0.1 mmol **10**, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand L1 (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (25 μ L, 0.2 mmol), MeMgBr (0.2 mmol, 3.0 M in Et₂O), 1.0 mL of DCM at -78 °C. Product **3i** was obtained as a colorless oil after column chromatography (SiO₂, Et₂O) [54% yield, 99% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 7.54 (d, J = 8.1 Hz, 2H, CH_{Ar}), 7.36 (d, J = 8.1 Hz, 2H, CH_{Ar}), 3.45 (sex (qt), J = 6.9 Hz, 1H, CH), 2.91 (s, 6H, NCH₃), 2.62 (dd, J = 15.3, 6.7 Hz, 1H, CHHCO), 2.54 (dd, J = 15.3, 7.3 Hz, 1H, CHHCO), 1.33 (d, J = 6.9 Hz, 3H, CH_3 CH₂).

¹³C NMR (CDCl₃, 100 MHz): δ 171.3, 150.9, 128.7 (q, *J* = 32.3 Hz), 127.4, 125.5 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 272.4 Hz), 41.5, 37.4, 36.4, 35.7, 21.8.

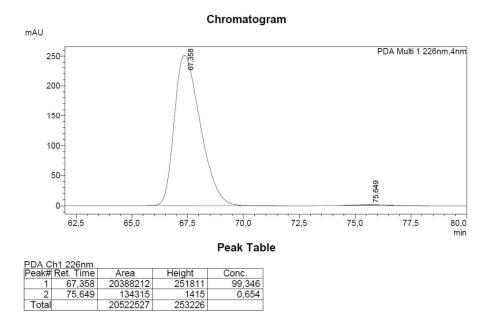

HRMS (ESI+, m/Z): calcd for $C_{13}H_{17}F_3NO [M+H]^+$: 260.12568, found: 260.12609.

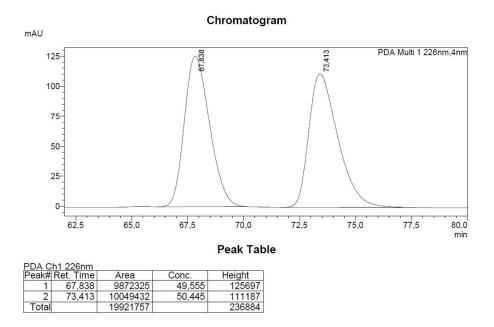
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 98:2, 0.5 mL/min, 40 °C, detection at 208 nm. Retention time (min): 23.0 (major) and 28.3 (minor).

(S)-5,5,5-trifluoro-N,N-bis(4-methoxybenzyl)-3-methylpentanamide (3j)

The reaction was performed with 0.1 mmol 1y, CuBrSMe₂ (1.03 mg, 0.005 mmol, 5 mol%), ligand L1 (3.84 mg, 0.006 mmol, 6 mol%), BF₃·Et₂O (37 μ L, 0.3 mmol), MeMgBr (0.3 mmol, 3.0 M in Et₂O), 1.0

mL of DCM at -78 °C. Product **3j** was obtained as a colorless oil after column chromatography (SiO₂, Et₂O) [62% yield, 99% *ee*].


¹H NMR (CDCl₃, 400 MHz): δ 7.14 (d, *J* = 8.4 Hz, 2H, *CH*_{Ar}), 7.04 (d, *J* = 8.5 Hz, 2H, *CH*_{Ar}), 6.90 (d, *J* = 8.5 Hz, 2H, *CH*_{Ar}), 6.85 (d, *J* = 8.4 Hz, 2H, *CH*_{Ar}), 4.52 (s, 2H, NC*H*₂), 4.35 (s, 2H, NC*H*₂), 3.82 (s, 3H, OC*H*₃), 3.80 (s, 3H, OC*H*₃), 2.58-2.24 (m, 4H, *CH*₂), 2.08-1.94 (m, 1H, *CH*), 1.10 (d, *J* = 6.6 Hz, 3H, *CH*₃).

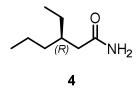

¹⁹F NMR (CDCl₃, 377 MHz): δ -63.0 (t, J = 11.3 Hz).

¹³C NMR (CDCl₃, 100 MHz): δ 171.5, 159.3, 159.1, 129.8, 129.6, 128.3, 127.7, 127.2 (q, *J* = 277.8 Hz), 114.5, 114.1, 55.5, 55.4, 49.2, 47.5, 39.8, 29.8, 25.4 (q, *J* = 2.4 Hz), 20.3.

HRMS (ESI+, m/Z): calcd for C₂₂H₂₇F₃NO₃ [M+H]⁺: 410.19375, found: 410.19382.

HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 99:1, 0.5 mL/min, 40 °C, detection at 226 nm. Retention time (min): 67.4 (major) and 75.6 (minor).

N,N-Dimethyl-3-methyl-butanamide (3k)¹

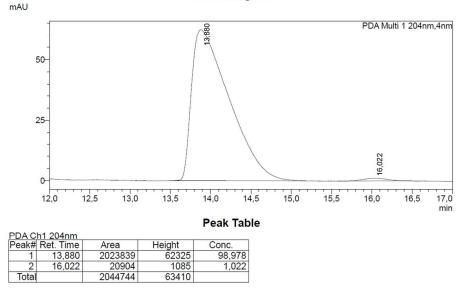


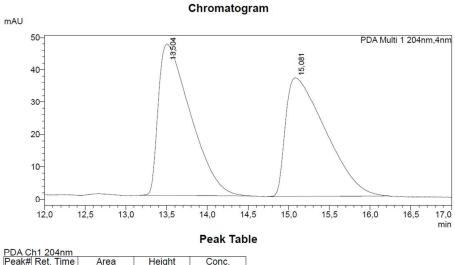
The reaction was performed with 0.2 mmol **1b**, CuBrSMe₂ (2.06 mg, 0.01 mmol, 5 mol%), TMSOTf (72 μ L, 0.4 mmol), MeMgBr (0.4 mmol, 3.0 M in Et₂O), 2.0 mL of DCM at -10 °C. Product **3k** was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:1) [63% yield].

¹H NMR (CD₂Cl₂, 400 MHz): δ 2.93 (s, 3H, NCH₃), 2.84 (s, 3H, NCH₃), 2.12 (d, J = 7.0 Hz, 2H, CH₂CO), 2.00 (nonuplet, J = 6.7 Hz, 1H, CH₂CH), 0.87 (d, J = 6.6 Hz, 6H, (CH₃)₂CH).

9. Deprotection of protecting group at the Nitrogen

(R)-3-Ethyl-hexanamide (4)

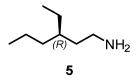

The product **4** was prepared by a literature procedure.¹⁶ **2e** (0.2 mmol) was dissolved in trifluoroacetic acid (4.0 mL) and heated to reflux for 17 h at 90 °C. The product solution was concentrated under reduced pressure. After the addition of DCM (4 mL), the organic layer was washed with saturated aqueous NaHCO₃ (4 mL). The aqueous layer was extracted with DCM (10 mL \times 3) and the combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (SiO₂, Et₂O) to afford product **4** as a white powder [92% yield, 98% ee].


¹H NMR (CDCl₃, 400 MHz): δ 5.37 (br s, 2H, N*H*₂), 2.14 (dd, *J* = 14.5, 7.5 Hz, 1H, C*H*HCO), 2.13 (dd, *J* = 14.5, 6.9 Hz, 1H, CH*H*CO), 1.85-1.80 (m, 1H, C*H*), 1.43-1.25 (m, 6H, C*H*₂), 0.90 (t, *J* = 6.6 Hz, 3H, C*H*₃), 0.88 (t, *J* = 7.4 Hz, 3H, C*H*₃).

¹³C NMR (CDCl₃, 100 MHz): δ 176.0, 40.8, 36.5, 35.6, 26.2, 19.8, 14.5, 10.8.

HRMS (ESI+, m/Z): calcd for C₈H₁₈NO [M+H]⁺: 144.13829, found: 144.13828.

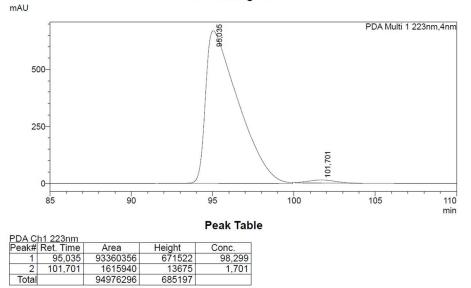
HPLC: Chiracel-ASH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 204 nm. Retention time (min): 13.9 (major) and 16.0 (minor).

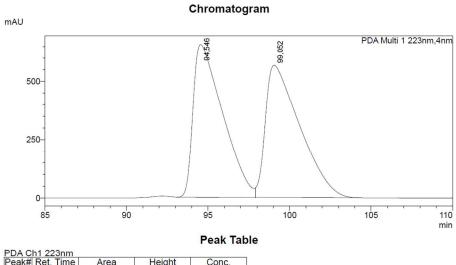


Peak#	Ret. Time	Area	Height	Conc.
1	13,504	1281122	46806	50,686
2	15,081	1246450	36537	49,314
Total		2527572	83343	

10. Transformation of amide into β - and γ -branched amines

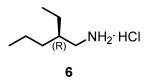
(R)-3-Ethyl-hexan-1-amine (5)


A solution of **4** (50.1 mg, 0.35 mmol, 97% *ee*) in anhydrous THF (3.5 mL) cooled at 0 °C was added under nitrogen a solution of LiAlH₄ (1.0 M in Et₂O, 0.7 mL, 0.7 mmol). The resulting mixture was stirred at ambient temperature (1 h) and then heated to 60 °C for 18 h. The reaction was quenched with NaOH (2 M, 2.0 mL) and extracted with DCM (10 mL \times 3). The organic layer was then dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was redissolved in Et₂O (5 mL), filtered and concentrated under reduced pressure to afford product **5** as a light yellow oil [85% yield, 97% ee].


¹H NMR (CDCl₃, 400 MHz): δ 2.68 (t, 2H, J = 7.4 Hz, CH₂NH₂), 1.43-1.13 (m, 11H, CH, CH₂, NH₂), 0.88 (t, J = 6.7 Hz, 3H, CH₃), 0.84 (t, J = 7.4 Hz, 3H, CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ 40.1, 37.8, 36.5, 35.7, 26.0, 19.8, 14.6, 10.8.

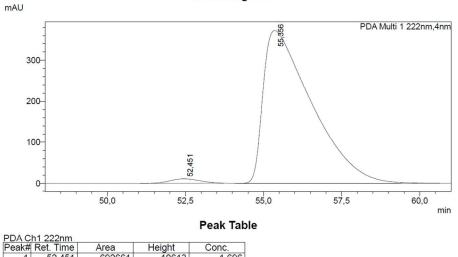
HRMS (ESI+, m/Z): calcd for C₈H₂₀N [M+H]⁺: 130.15903, found: 130.15904.


The *ee* of this compound was determined from the corresponding *N*-benzoyl derivate: HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 98:2, 0.5 mL/min, 40 °C, detection at 223 nm. Retention time (min): 95.0 (major) and 101.7 (minor).

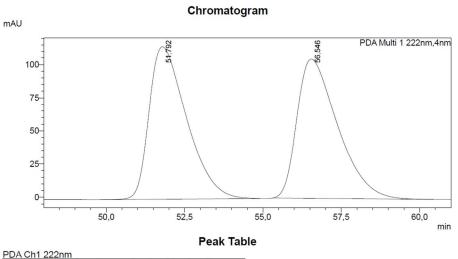
	Peak#	Ret. Time	Area	Height	Conc.
	1	94,546	82717020	655920	49,874
1	2	99,052	83133367	566070	50,126
[Total		165850387	1221990	

(R)-2-Ethylpentan-1-amine hydrochloride (6)

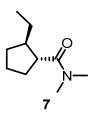
The compound was prepared following the literature procedure.²⁰ *m*-Chloroperbenzoic acid (72% purity, 290 mg, 1.2 mmol) was dried under vacuum for 15 min at room temperature prior to use. To a stirred solution of *m*-CPBA in DCM (1 mL) and water (99 μ l) was added a 48% aqueous solution of tetrafluoroboric acid (155 μ L, 1.2 mmol), a 0.89 M DCM solution of iodobenzene (55 μ L, 0.05 mmol) and then **4** (143.1 mg, 1.0 mmol, 97% *ee*) at 25 °C under nitrogen and the mixture was stirred for 48 h. A 10% aqueous HCl solution (2 mL) was added and the reaction mixture was extracted with DCM four times. Combined organic phase was extracted with 10% aqueous HCl solution two times. Combined aqueous phase was concentrated under reduced pressure. Product **6** was obtained as a white solid in 91% yield and 97% *ee*.


¹H NMR (D₂O, 400 MHz): δ 2.84 (d, *J* = 6.1 Hz, 2H, *CH*₂NH₂), 1.61-1.51 (m, 1H, *CH*), 1.32-1.15 (m, 6H, *CH*₂), 0.80-0.76 (m, 6H, *CH*₃).

¹³C NMR (D₂O, 100 MHz): δ 45.0, 39.3, 34.5, 25.3, 21.3, 15.9, 12.1.


HRMS (ESI+, m/Z): calcd for C₇H₁₈N [M+H]⁺: 116.14338, found: 116.14317.

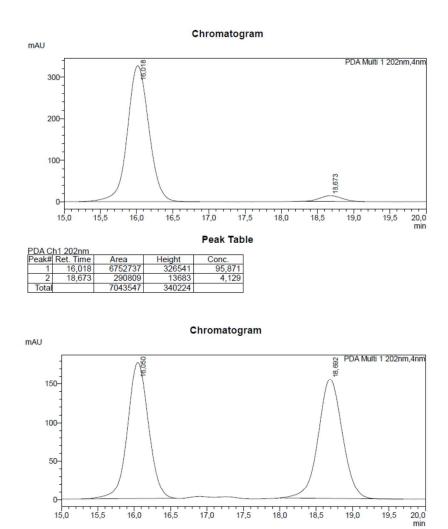
The *ee* of this compound was determined from the corresponding *N*-benzoyl derivate: HPLC: Chiracel-OBH, *n*-heptane/*i*-PrOH 99:1, 0.5 mL/min, 40 °C, detection at 222 nm. Retention time (min): 52.5 (minor) and 55.4 (major).


Peak#	Ret. Time	Area	Height	Conc.
1	52,451	692661	10613	1,696
2	55,356	40153969	372474	98,304
Total		40846630	383086	

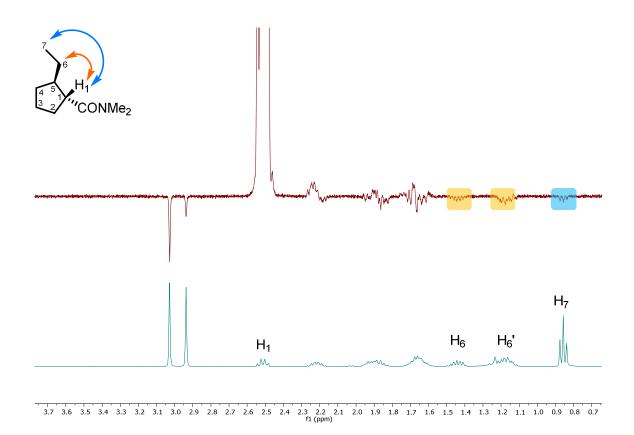
Peak#	Ret. Time	Area	Height	Conc.
1	51,792	9577222	115215	50,288
2	56,546	9467523	104978	49,712
Total		19044745	220193	

11. Catalytic ACA followed by intramolecular trapping

(1R,2R)-2-ethyl-N,N-dimethylcyclopentane-1-carboxamide (7)


In a flame-dried Schlenk tube equipped with septum and magnetic stirring bar, CuBr·SMe₂ (2.06 mg, 0.01 mmol, 5 mol%), and ligand L1 (7.68 mg, 0.012 mmol, 6 mol%) were dissolved in DCM (2 mL) and stirred under nitrogen atmosphere for 20 min. Amide 1v (0.2 mmol) was added at once. After stirring for 5 min. at RT the reaction mixture was cooled to -78 °C and EtMgBr (0.4 mmol, 3.0 M in Et₂O) was added. Immediately after TMSOTf (72 µL, 0.4 mmol) was added. After stirring at -78 °C for 18 h, the reaction was warmed up to RT and stirred for 8 h. The resulting reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with DCM (10 mL × 3). Combined organic phases were dried over MgSO₄, filtered and solvents were evaporated on rotary evaporator. Product 7 was obtained as a colorless oil after column chromatography (SiO₂, pentane:Et₂O 1:1) [66% yield, 92% *ee*]. Relative configuration was determined by NOE experiments (Figure S35).

¹H NMR (CDCl₃, 400 MHz): δ 3.05 (s, 3H, NC*H*₃), 2.96 (s, 3H, NC*H*₃) 2.53 (q (dt), *J* = 8.3 Hz, 1H, CHCO), 2.24 (ttd, *J* = 8.6, 8.6, 5.5 Hz, 1H, CHCHCO), 1.99-1.84 (m, 2H, CH₂), 1.78-1.61 (m, 3H, CH₂), 1.52-1.41 (m, 1H, CH₂), 1.29-1.13 (m, 2H, CH₂), 0.88 (t, *J* = 7.4 Hz, 3H, CH₃).


¹³C NMR (CDCl₃, 100 MHz): δ 176.3, 47.6, 45.8, 37.4, 35.8, 31.9, 30.7, 28.0, 24.7, 12.9.

HRMS (ESI+, m/Z): calcd for $C_{10}H_{20}NO [M+H]^+$:170.15449, found:170.15379.

HPLC: Chiracel-OZH, *n*-heptane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 202 nm. Retention time (min): 16.0 (major) and 18.7 (minor).

PDA C	h1 202nm			Peak Table
	Ret. Time	Area	Height	Conc.
1	16,050	3549085	176667	49,796
2	18,692	3578234	154526	50,204
Total		7127318	331193	

Figure S35. ¹H NMR and 1D NOE experiment of **7**. Selective irradiation on H₁ showed NOE with ethyl moiety (H₆ and H₇, highlighted) which are positioned on the same side of the ring.

12. References

- See reference 15 in the manuscript: Biswas, K.; Woodward, S. *Tetrahedron: Asymmetry* 2008, *19*, 1702-1708.
- Grubbs, R. H.; Wenzel, A. G.; O'Leary, D. J.; Khosravi, E. *Handbook of Metathesis*; Wiley-VCH, 2015.
- (3) Pace, V.; Rae, J. P.; Procter, D. J. Org. Lett. 2014, 16, 476-479.
- (4) Casamitjana, N.; López, Virginia; Jorge, Angela; Bosch, Joan; Molins, Elies; Roig, A.
 Tetrahedron 2000, 56, 4027-4042.
- (5) Hua, D. H.; Zhang, F.; Chen, J.; Robinson, P. D. J. Org. Chem. 1994, 59, 5084-5087.

- Liu, L.; L, Hang; Wang, H.; Yang, Ch.; Zhang, X.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Org. Lett. 2013, 15, 2906-2909.
- (7) Evans, D. A.; Fandrick, K. R.; Song, H.-J. J. Am. Chem. Soc. 2005, 127, 8942-8943.
- (8) Ando, K.; Tsuji, E.; Ando, Y.; Kunitomo, J.-I.; Kobayashi, R.; Yokomizo, T.; Shimizu, T.;
 Yamashita, M.; Ohta, S.; Nabe, T.; Kohno, S.; Ohishi, Y. Org. Biomol. Chem. 2005, 3, 2129-2139.
- (9) Pineschi, M.; Del Moro, F.; Gini, F.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2004, 1244-1245.
- (10) Kojima, S.; Inai, H.; Hidaka, T.; Fukuzaki, T.; Ohkata, K. J. Org. Chem. 2002, 67, 4093-4099.
- (11) Ruan, J.; Li, X.; Saidi, O.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 2424-2425.
- (12) Yan, H.; Yang, H.; Lu, L.; Liu, D.; Rong, G.; Mao, J. Tetrahedron 2013, 69, 7258-7263.
- Duffey, M. O.; Vos, T. J.; Adams, R.; Alley, J.; Anthony, J.; Barret, C.; Bharathan, I.; Bowman, D.; Bump, N. J.; Chau, R.; Cullis, C.; Driscoll, D. L.; Elder, A.; Forsyth, N.; Frazer, J.; Guo, J.; Guo, L.; Hyer, M. L.; Janowick, D.; Kulkarni, B.; Lai, S.-J.; Lasky, K.; Li, G.; Li, J.; Liao, D.; Little, J.; Peng, B.; Qian, M. G.; Reynolds, D. J.; Rezaei, M.; Scott, M. P.; Sells, T. B.; Shinde, V.; Shi, Q. J.; Sintchak, M. D.; Soucy, F.; Sprott, K. T.; Stroud, S. G.; Nestor, M.; Visiers, I.; Weatherhead, G.; Ye, Y.; D'Amore, N. *J. Med. Chem.* 2012, *55*, 197-208.
- (14) Ye, M.; Gao, G.-L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 6964-6967.
- (15) Kobeissi, M.; Cherry, K.; Jomaa, W. Synth. Commun. 2013, 43, 2955-2965.
- (16) Nagaki, A.; Takahashi, Y.; Yoshida, J.-I. Angew. Chem., Int. Ed. Engl. 2016, 55, 5327-5331.