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Consistency of the predictions: details and theorem proofs
Additional file 2 provides a simple example to show that we need a per level traversal of the DAG, in

which levels are defined in the sense of the maximum distance from the root, to obtain consistent pre-

dictions that obey the “true path rule”. Indeed looking at the HTD-DAG scores obtained respectively

with the minimum and maximum distance from the root (bottom-left of Additional Figure 2 of the

additional file 2), we see that only the maximum distance preserves the consistency of the predictions.

For instance, focusing on node 5, by traversing the DAG levels according to the minimum distance

from the root, we have that the level of node 5 is 1 (ψmin(5) = 1) and in this case by applying the

HTD rule (eq. 2 of the main manuscript) the flat score ŷ5 = 0.8 is wrongly modified with the HTD

ensemble score ȳ5 = 0.7. If we instead traverse the DAG levels according to the maximum distance

from the root, we have ψmax(5) = 3 and the HTD ensemble score is correctly set to ȳ5 = 0.3. In other

words at the end of the HTD, by traversing the levels according to the minimum distance we have

ȳ5 = 0.7 > ȳ4 = 0.3. Therefore a child node has a score larger the score of its parent and the true path

rule is not preserved. On the contrary by traversing the levels according to the maximum distance we

achieve ȳ5 = 0.3 ≤ ȳ4 = 0.3 and the true path rule consistency is assured. This is due to the fact

that by adopting the minimum distance when we visit node 5, node 4 has not just been visited, and

hence the value 0.4 has not been transmitted by node 2 to node 4; on the contrary if we visit the

DAG according to the maximum distance all the ancestors of node 5 (including node 4) have just been

visited and the score 0.4 is correctly transmitted to node 5 along the path 2→ 4→ 5.

To prove the consistency of the predictions of the HTD-DAG algorithm, we first introduce a property

of the level function ψ. We recall here the definition of ψ, just given in the main paper. If p(r, i)

represents a path from the root node r and a node i ∈ V , l (p(r, i)) the length of p(r, i), L = {0, 1, . . . , ξ}
the set of observed levels, with ξ the maximum node level, then ψ : V −→ L is a level function which

assigns each node i ∈ V to its level ψ(i):

ψ(i) = max
p(r,i)

l (p(r, i)) (1)

Nodes {i|ψ(i) = 0} correspond to the root nodes, {i|ψ(i) = 1} is the set of nodes with a maximum

path length from the root (distance) equal to 1, and {i|ψ(i) = ξ} are nodes that lie at a maximum

distance ξ from the root.

To prove the consistency, we need the following lemma:

Lemma 1 Given a DAG G =< V,E >, a level function ψ that assigns to each node its maximum

path length from the root, it holds that ∀i ∈ V , ψ(j) < ψ(i) ∀j ∈ par(i).

Proof The proof is based on the optimal-substructure property holding for the longest path problem

in DAGs, that is a longest path between two vertices contains other longest path within it [1]. Indeed,

let p̄(r, i) be the longest path from r = root(G) to node i ∈ V , and suppose that there exists j ∈ par(i)
such that ψ(j) ≥ ψ(i). Let p̄(r, j) be the path between r and j whose length is ψ(j) (that is the longest

path between them). Note that the path p(r, j) does not contain the node i, otherwise the DAG would

contain a cycle. By adding the edge (j, i) to p̄(r, j), we obtain a path from r to i whose length is

ψ(j) + 1 > ψ(i), which contradicts the hypothesis that p̄(r, i) is the longest path between nodes r and

i.

By using Lemma 1, we can prove that the the top-down visit of the DAG obeys the true path rule:
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Theorem 1 Given a DAG G =< V,E >, a level function ψ that assigns to each node its maximum

path length from the root and the set of HTD-DAG flat predictions ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >, the top-

down hierarchical correction of the HTD-DAG algorithm assures that the set of ensemble predictions

ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > satisfies the following property:

∀i ∈ V, j ∈ par(i)⇒ ȳj ≥ ȳi

Proof For an arbitrary node i ∈ V , when it is processed by the top-down step of HTD-DAG algorithm,

we may have two basic cases:

1 i ∈ root(G). By applying the HTD rule (Section 2.3 of the main manuscript):

ȳi :=


ŷi if i ∈ root(G)

minj∈par(i) ȳj if minj∈par(i) ȳj < ŷi

ŷi otherwise

(2)

we set ȳi := ŷi and the property j ∈ par(i)⇒ ȳj ≥ ȳi trivially holds, since par(i) = ∅.
2 i /∈ root(G). We may have two cases:

(a) ŷi ≤ minj∈par(i) ŷj . In this case the rule (2) sets ȳi := ŷi and hence it holds that j ∈
par(i)⇒ ȳj ≥ ȳi.

(b) ŷi > minj∈par(i) ȳj . In this case by applying (2) of the main manuscript we have ȳi :=

minj∈par(i)ȳj and hence also in this case the property j ∈ par(i)⇒ ȳj ≥ ȳi holds.

Summarizing, in all cases we have that j ∈ par(i) ⇒ ȳj ≥ ȳi, after the node i has been processed.

Moreover, we note that for the currently processed node i both ȳi and ȳj , j ∈ par(i) will not be

further changed by the “per level” top-down visit of the HTD-DAG algorithm. Indeed, the score ȳi is

modified only once, since each node is visited exactly one time (each node belongs to one and only one

level of the hierarchy); moreover, since the visit is top-down, Theorem 1 implies that parent nodes are

processed before their children, and hence also the scores ȳj of the nodes j ∈ par(i) will not be further

changed, since j ∈ par(i) have just been visited and their scores ȳj have just been set before visiting

node i. As a consequence, once a node i is visited the property j ∈ par(i) ⇒ ȳj ≥ ȳi will hold till to

the end of the algorithm.

Finally, since the top-down step of the algorithm visits each node exactly one time, at the end of

this step the property j ∈ par(i)⇒ ȳj ≥ ȳi holds for each node i ∈ V .

From Theorem 1 it is easy to prove that the consistency of the predictions holds for all the ancestors

of a given node i ∈ V .

Corollary 1 Given a DAG G =< V,E >, the level function ψ and the set of flat predictions ŷ =<

ŷ1, ŷ2, . . . , ŷ|V | >, the HTD-DAG algorithm assures that for the set of ensemble predictions ȳ =<

ȳ1, ȳ2, . . . , ȳ|V | > the following property holds: ∀i ∈ V, j ∈ anc(i)⇒ ȳj ≥ ȳi.

Proof The corollary can be proven by “reductio ad absurdum” from Theorem 1. We suppose that for

an arbitrary node i does exist a node z ∈ anc(i) such that ȳz < ȳi. Let us consider all the edges (k, l)

included in the path p̄(z, i) connecting node z with node i. Without loss of generality, we focus on a

specific path, since we can repeat the same reasoning for any path connecting z with i. We claim that
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∃(k, l) ∈ p̄(z, i) such that ȳk < ȳl, and we show this again by “reductio ad absurdum”. By absurd

we suppose that ∀(k, l) ∈ p̄(z, i) we have ȳk ≥ ȳl. By transitivity along the path p̄(z, i), we obtain

that ȳz ≥ ȳi, but this contradicts our first hypothesis that ȳz < ȳi and hence it does exist an edge

(k, l) ∈ p̄(z, i) such that ȳk < ȳl. But for Theorem 1 it is not possible that ȳk < ȳl, since k ∈ par(l).
Since this contradiction comes from the assumption that does exist a node z ∈ anc(i) such that ȳz < ȳi,

it follows that ∀i ∈ V, j ∈ anc(i)⇒ ȳj ≥ ȳi.

Independently of the choice of the positive children, the following consistency theorem holds for

TPR-DAG:

Theorem 2 Given a DAG G =< V,E >, a set of flat predictions ŷ =< ŷ1, ŷ2, . . . , ŷ|V | > for each

class associated to each node i ∈ {1, . . . , |V |}, the TPR-DAG algorithm assures that for the set of

ensemble predictions ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > the following property holds: ∀i ∈ V, j ∈ anc(i) ⇒ ȳj ≥
ȳi.

The proof is substantially the same of Theorem 1 and is omitted for brevity.

It is worth noting that the following properties hold for HTD-DAG and TPR-DAG algorithms:

Lemma 2 Given a DAG G =< V,E >, a set of flat predictions ŷ =< ŷ1, ŷ2, . . . , ŷ|V | > for each

class associated to each node i ∈ {1, . . . , |V |}, a set of ensemble predictions ȳ =< ȳ1, ȳ2, . . . , ȳ|V | >

for the HTD-DAG and a set of ensemble predictions ỹ =< ỹ1, ỹ2, . . . , ỹ|V | > for the TPR-DAG with

“positive” children selected according to eq. 7 of the main manuscript, we have that ∀i ∈ V, ỹi ≥ ȳi.

The proof is based on the fact that the bottom-up step of TPR-DAG can only increment the scores

ỹi with respect to the flat predictions ŷi. Hence the successive top-down step of the TPR-DAG starts

from higher scores than that of the HTD-DAG, and the applied top-down procedure is the same for

both algorithms.

A good property of TPR-DAG is that its sensitivity is always equal or better than that of the

HTD-DAG:

Theorem 3 The TPR-DAG ensemble algorithm with “positive” children selected according to eq. 7

of the main manuscript achieves always a sensitivity equal or higher than the HTD-DAG ensemble

algorithm.

Proof From Lemma 2 we have that ∀i ∈ V, ỹi ≥ ȳi. Hence the TPR-DAG ensemble algorithm, with

respect to the HTD-DAG algorithm:

a) increments or maintains equal the number of true positives;

b) decreases or maintains equal the number of false negatives.

By definition of the sensitivity TPR-DAG achieves a sensitivity equal or higher than the HTD-DAG.

Unfortunately there is no guarantee that the precision of TPR-DAG is always larger or equal than

that of the HTD-DAG algorithm.
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